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Abstract: The Bartlett adjustment for the partial likelihood ratio test in Cox regres-
sion model is established under one-dimensional parameter. If the baseline hazard is
unspecified, the adjustment factor can be estimated from the data. The procedure
give more accurate probability than the normal approximation to the log-rank test.
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1. Introduction and Result

In parametric inference, the likelihood ratio test is one of the most popu-
lar statistic for inference. One reason for its popularity is the Bartlett (1937)
adjustment to the likelihood ratio statistics. When the sample size is small,
this adjustment may have a significant improvement over the ordinary asymp-
totic theory. For a detailed account and the proof, see Barndoff-Nielsen and Cox
(1984).

In biomedical statistical inference, it is often unrealistic to make full paramet-
ric assumptions. In 1972, Cox introduced the partial likelihood approach which
does not need full specification of the underlying distribution. As a special case,
the Cox regression model has become the most widely used statistical tool for
analyzing censored failure time data.

Early works on the Cox regression model have show that the partial likelihood
score statistics are asymptotically normal, for example Tsiatis (1981), Andersen
and Gill (1982), Naes (1982), Bailey (1983). As an easy consequence, one can
deduce that the partial likelihood ratio statistics are asymptotically x%. One
problem that has been mentioned but remains unsolved (Barndoff-Nielsen and
Cox (1984)) is whether the Bartlett adjustment or something similar works for
partial likelihood. This paper gives a positive answer to the problem under the
Cox regression model. The proof so far works for an one dimensional covariate
but we believe that it can be extended to a multi-dimensional covariate.
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Let m?,...,mg be a sequence of positive random variables, usually repre-
senting survival times of n patients in a clinical trial. Let 21,...,2, be their
corresponding covariates. The Cox (1972, 1975) regression model, for given z,
assumes that the hazard function of z° satisfies

A(t]z) = Ao(t) exp(Boz), (1.1)

where )¢ is called the baseline hazard function. In survival analysis, the z%’s
are usually not directly observable. We observe (z;,6;), i = 1,...,n, where
z; = min(z?, ¢;), & = liz,=20) and ¢; is the censoring variable. In this paper,
we assume that z?, ¢; are independent given z;, the hazard function of ¢; given
z does not depend on fy, 2; is uniformly bounded, and y; = (z;,2?,¢;) are i.i.d.
The partial likelihood function for inference of S is

exp(Bzi) b

> 5=1€xP(82;)1[z; >4,

Ln(ﬂ) = H (1'2)

i=1,...,n;x; <T

where T is such that Pr{z; > T} > 0. Let [3 be the Cox regression estimate, or
be a number such that L,(3) = supg Ln(B). The partial likelihood ratio statistic
is defined by )

w = 2{In(8) — In(Bo)}, (1.3)

where [,,(8) = log L,(8).
Before we introduce the main theorem, note that the Bartlett adjustment for

the likelihood ratio statistics w can be written as (one parameter case)
11 2. 1, 1.2 -1
Pr{w <wu}={1- Ebn xi(u) + Ebn x3(u) +o(n™%), (1.4)

where b is a constant.
The main theorem of this paper is the following.

Theorem 1.1. Under the above assumptions,

K 2 K 2
Priw<u) = @)+ -j;{(—é— R L O M LR S %1
+ 5w | + 0t~ (15)

where xf,(u) is the value of the x? distribution with p degree of freedom at u and

A -3¢
4 = 603 ’
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3 1 /7 11 1
F = % . ___A2___ 2 .
4+06<18 6AC+4C) (1.6)
1 1 1 1
+—<—Z#2+N3+3#4+§M5—#6~5u7+2#8—2M9),
CZ
Ky = _9;6_' (1.7)

The constants involved on the right of (1.6) and (1.7) are defined below. For
k=0,...,4,i=1,23

ag)(t) — E[zke(i+1)ﬁozl[x2t]]’ ax(t) = a(O)(t)

Ap(t) = /ta"g;)\(s)ds AP = / %8 o(5)ds,
(1) (1)
(t) (?)
ﬂk(t) = (t) (t) ét) Al(t)
_ 3 o (1)
70 = - (m(® - m) ()) (1.8)
) MO 2
00 = 2 -200,050 + 2,028, a0 =0,
and
o = /T92(t)ao(t)/\o(t)dt, A=- /OT (659 - Z;Eg)ao(t))\o(ﬂdt,

¢ = = [ (#08000) - 6080 aotta(01,

T ai(t) a3 (t)
m= [ (040 -2 255 + 0205 )aale) (et
e (t) of(t) o)
m= [ (w0 = 35280 + 324 m) - 20,0 aa(ro e,
T
1 /092 ()ao(t)Ao(t)dt,
s /OTa As(t) = AP (1)) an(t) Ao (D)t (1.9)

’*3

we = [ 9(2)(t)Ao(t) 267 (1) A1 (£)Ao(t) + 657 (1)AZ(1) ) co() Ao (),

K7 /
0
T

L8 ; 7% (t)ao(t) Ao (t)dt,

‘*3

(627 )A() ~ 260 (A1 (8) + 6 AP (1)) ao(B) Mo (D),
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s = [0 ([ 161 0(e)as ) aottmrotrae

Remark 1.1. The constants A, F and k4 appearing in the adjustment (1.5) have
statistical meanings. From the proof in the next section, we see that w = X?2,
and E[X]| = A/v/n+ O(n~3/%), Var(X) = 1+ F/n + O(n~?) and k4/n is the
fourth standardized cumulant of X upto the order of O(1/n).

Remark 1.2. If the baseline hazard function )g is unspecified, the constants A, F
and k4 in terms of o2, A, ¢ and pa — pg can be estimated easily from data. First
we can estimate ak,a,(:),Ak(t), and other quantities in (1.8) (see Gu (1992a));
then we can estimate ¢, A,{ and us — pg. Finally, we can obtain consistent
estimators for A, F and ky4.

Remark 1.3. If §p = 0, as in most applications, the expressions of A, F' and
k4 in Theorem 1.1 can be simplified. In this case, we have ag:) (t) = ag(t), then

9,(:)(t) = 6x(t). If further z = 0 or 1, great simplification can be achieved. In
this case, w can be considered as an alternative to the log-rank statistics (Mantel
(1967)) and, compared with the normal approximation to the log-rank statistics,
Theorem 1.1 provides more accurate approximations. Note that if we denote p
as the proportion of 1’s among the z’s, we have n(t) = —02(¢t)Ao(t) in (1.8) and
ak(t)/ao(t) = p, for k > 1 and 65(t) = p(1 — p),m(t) = 0,6x(t) = p(1 — p)? for
k > 3 and nx = p(1 — p)Ap for k > 2. More specifically, we have

o = p(1-p)To, A=-p(l-p)(1-2p)%,,
¢ = -p(1-p)(1-2p)51,  p2 = P(p)Zy,

ps = P(p)Zs, ps = —Q(p)L1,

e = P(p)La, ps = Q(p)Z2,

and ps = —p4, p7 = p3, po = —us/2, where P(p) = p(1 — p)(1 — 3p + 3p?),
Qp) = p?(1 — p)2 and for k=0,1,2

T
Ek-—_/o AR (t)ag(t) Xo(t)dt.

Example. Consider the case fy = 0, z = 1 or 0 with Pr{z = 1} = p = 1/2.
First we have A =0, ( = 0. Further calculation shows that
3 -3 — 8%; + 8%,

I$4=0.

Numerical comparisons between the adjusted probability of (1.5), the proba-
bility using x? and the true probability using simulation (number of simula-
tions = 10,000,000) with parameter T = 2.5 and T = 4, Ao(t) = 1 are presented
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in Tables 1 and 2. No censoring is introduced. From the tables, we see that the
relatlve errors of the adjusted probabilities are much better than those with the
x? approximations, especially when the sample size is larger than 30.

Table 1. Limited comparisons between the adjusted, x? and
the true probability Pr{w < u},T = 2.5.

U 1 2 3 4 ) 6.5 7.5
n = 10 true 6488 .8102 .8891 .9364 .9601 .9841 .9920
adjusted | .6597 .8230 .9021 .9442 9677 .9855 .9914
n =30 true 6722 .8335 .9096 .9492 .9710 .9872 .9925
adjusted | .6750 .8361 .9118 .9511 .9723 .9880 .9930
n =50 true 6772 .8376 9129 .9517 .9726 .9881 .9931
adjusted | .6781 .8388 9138 .9524 9733 .9885 .9933
x? .6827 .8427 9167 9545 .9747 .9892 .9938

Table 2. Limited comparisons between the adjusted, x? and
the true probability Pr{w < u},T = 4.

U 1 2 3 4 5 6.5 7.5
n =10 true .6431 .8095 .8889 .9366 .9605 .9842 .9921
adjusted | .6398 .8059 .8894 .9354 9617 .9822 .9893
n = 30 true 6685 .8306 .9079 .9483 .9706 .9871 .9924
adjusted | .6684 .8304 .9076 .9481 .9703 .9869 .9923
n =50 true 6739 .8349 .9109 .9506 .9720 .9878 .9929
adjusted | .6741 .8353 9113 .9507 .9721 .9878 .9929
x2 6827 .8427 9167 9545 .9747 9892 .9938

2. Proofs

The proof is based on a series of repfesenta.tions. These representations will
be stated as Lemmas below. The following functions are defined in Gu (1992a)

and will be used in the proof.

_ [T, )
o) = [ (== 2 )amce)
h(yi) = ha(yi) + ha(y:),

T
M) = [ OB, hofys) = [ srotrat,

2
Ait) = Eia(®)-02(0 -2 52 6101 -01(0) + S 0) - et (2)
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T
Yolti 1) = “/o mi()dM;(8),  Y(yi vi) = Yo(yi, ¥5) + Yo(y;, v:),
(

(Y, y5) = ¥(wi, y5) — glg(g(yi)h(yj) + 9(y;)h(y:)) + %g(yi)g(yj),

v

Wi(t) =

where o and A have been defined in (1.9).
In Lemma 2.1 U, = (8/98)In(8)|=p,-

Lemma 2.1. Under the conditions stated in the previous section, we have
Un(Bo) = Un(Bo) + R,

where Ry, is such that for any p > 2, E[|R1»|P) = O(n"?) and

Un(Bo) = Zg(yz)+ Z¢(yz,yg)+ Zwo(yz)+ > Blyi, yj, k), (2.2)

z<_7 1<j<k
where g(yi), ¥Y(yi,y;), and ¥o(y;) are defined in (2.1) and

B(yiyirye) = > Bo(¥iy, ¥ig» Yis),
(i1,92,i3)
T

Bo(yi, ¥, yx) = —/0 1L ; (t) d M (2), (2.3)
o Go(t) —ao(t)
Hz,](t) - C\fo(t) Wj(t)’

and where Ei,k(t) = zfeﬂzil{zizt] and the summation in the first expression is over
all premutations of {3, j, k}.

Proof of Lemma 2.1. We start with the well known identity (See, for example,
Gill (1984)):

Un(Bo) = i/OT (Zi - Z;Eg)dMi(t), | (2.4)

where ax(t) = 37y 2F exp(Bo2i) 11z, >e, ak(t) = Elér(t)] and M;(t) = 1(5,<q5,21)—
I exp(ﬂoz1)1[$'>s])\o(t)dt i=1,...,n are i.i.d. martingales. Using the identity
z_2zo _ =20 _To(y—yo) 2oy —90)’ (y—y0)(z — o)
Y Yo Y0 vs v &
+0((z ~ 20)* + (¥ — v0)°)
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we can write Up(80) —Un(Bo) as U-statistics of degree four with degenerate kernel.
Noting that the kernel of the U-statistics is bounded under our assumption, the
lemma then follows from a lemma of Callaert and Janssen (1978).

The proofs of Lemmas 2.2-2.4 are similar to Lemma 2.1. We omit the proofs.
In Lemma 2.2 we let I,, = —(82/0B%)1.(8)|p=p,-

Lemma 2.2. Under the conditions stated in Section 1, we have
I.(Bo) = I.n(ﬂo) + Ry p,
where Ry n is such that for any p > 2, E[|Ry ,[P] = O(n~P/?),

I.(Bo) = no +Zh (%) ——ZC (v, y3) + 7,

i=1 i<j
v = - [ onwa,
Clyi,y;) = D(vi,y5) + D(yj, vi) — E(vi, v5) — E(y5, vi),
Dluiys) = [ dusrot)at

i

2
0 %%(si,om ~ a0())(E0(8) - ao(t) (2.5)

28 (Ex0(t) — a0(®) €5 (t) — an (1)

-+ m(éi’l(t) — al(t))(fj,l(t) - ai1(t)),

T .
Bluy) = [ |2 - oaty SO ang

and where h(y;), p;(t) are defined in (2.1).
Now, we represent A,(8) = —(d/dB)I.(B).

Lemma 2.3. Under the conditions stated in Section 1, we have

An(ﬂO) = A'n(/BO) + R3,na

where Rz is such that for any p > 2, E[|R3,|P] = O(1) and

An(Bo) = nA =3 a(ys) + O(1),
i=1

a(w) = d(w)+ blw),
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aw) = [ (00~ 2g,0))arsco)

ao(t)
T
b(yi) = /0 <€i,3(t) — ag(t) - 33—;%(&,2@) — as(t)) (2.6)
2
I CORE - [CRORENO)
3
+ (32800 - 1) 60 - on() o1

where A, 03 have been defined in (1.9).
Finally, we have

Lemma 2.4. Under the conditions stated in Section 1, we have

Ar(Bo) = (d/dB)An(B)lg=p, = nA" + Rap,

where Ry, is such that for any p > 2, E[|Ryn|F] = O(n”/z) and

[ e ad) aa(edt)_ el
A= /6(4@) R R O(t)>/\(t)dt( 7

Proof of Theorem 1.1. To simplify notation, we shall denote the terms that
satisfy the property of R;, in Lemma 2.1 as O(n™!) and terms which satisfy
the property of Ry, as O(n~!/2). With this notation, we have Rz, = O(1) and
Ryn = O(n!/?). From Lemma 4.4 of Gu (1992a), we have B—Bo = O(n‘l/z) B-
ﬁo ©1 + O(n™1), and B — Bo = ©2 + O(n~%/%), where

%Zg(w),
L A2-¢

G')2 = n0_2 Zg y1)+ n2 2211,(?/1,3/_7 not

1<J

©,

Il

(2.8)

and where U was defined in (2.1), A, ¢ and o were defined in (1.9). By (1.2),
Lemma 2.1-Lemma 2.4 and three terms Taylor expansion we can show that

- R 2 - 5 1 5 -
w = In(Bo)(B - Bo)* ~ 38n(6o)(B — Bo)® - Z"A'(ﬂ — Bo)t +0(n7¥%). (2.9)
To handle the first term on the right, let us define

- 1
An(B0)O3 + gnA'@:{’.

[ R

0= (771(,30) +
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By (2 8), Lemma 2.1-Lemma 2.4 and three terms Taylor expansion we can show
that B — By = I 1(,30)@ + O(n~2). Therefore the first term on the right of (2 9)
can be written as I-1(60)®? + O(n=3/?). In the subsequent calculation, I71(6)
is replaced by Io,n, where

_ 1 1
Io,i =— n204 Zh(yz) + 53 Iy, Z Cyi, y5) ~ 2,4

TL(T
‘L<]

It is easy to see that 171(8,) = Io_,i + O(n~%?). For the second and third terms
on the right of (2.9), using ©; and ©; of (2.8) was enough. After some further
algebraic manipulation, we have

B N\P QM .
_<M+%) + 2280, (2.10)

where
1 n
M = 75;;9(%),
A
N = @ —Zl/f (i, ¥5) < Zh(yz>

(e )
+1(n3/2 qz;kB(yz,yg,yk)) A (gﬂb(yuw)

- M2<—;§—\/=Z Yi) 2?{‘\/1—;271:"(%))

1=1

+ oo (5 2 00w - 555 (77 2 1w0) (5 Zvtae)).

202 oy
From (2.10), N = O(1) and Q = O(1), so that we have
w=X%+0(n"%?), (2.12)

where

X=M+ + (2.13)

5=
310

It is easy to see that

E[M]=0, E[N]=A, and E[Q)=0+0(n"?), (2.14)
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where A has been defined in (1.6) and therefore E[X] = A//n + O(n=%/2).
The next step is to write X — E[X] as an U-statistics of degree three. We
have

n

1 1 1 —
X—E[X]z%ZG(yi)+h—3/—225(yi,yj)+m Z T(yi, y;, y6)+O(n~3/2),

i=1 i<j i<j<k
(2.15)
where
v oo 9(m) 174" 1A% Elg(y)a(y)] 5A¢ v \g(wi)
Gly) = o +ﬁ<8a4 + 306 304 " 606 2a2> o
A 1 1
50" (w) — 0*) = 5—5(g(u)h(y:) = O) + —bo(w)

1 (y;) 5A

+ s (H(w) = K(w)) - £ 2% - —=—=h(y))

S 3s). = g0 U)a0s) + B(yr35) — 55 A(w)0(ws) + hlus)o (w1,

Al 2A? 1
T(yi,y5,yx) = 107 T 3,0 g(yi)g(yj)g(yk)+;B(yi;yjayk) (2.16)
A 1
bYW ) - g sa(ui)gu5)9(0n)
{il}s{jlaj2}

1 1
+ %Eg(yil)c(yjl,yjz) - Fh(yil )'w(yjlvyjz)

- 657A7h(yn)g(yjl )g(yjz)},

where the summation in the last expression is over all three possible ways of
grouping i, j, k into two groups {i;} and {ji,j2} and

H(y:) = Elg(y;)C(¥s, y5)|yi]
K(y:) = E[h(y;)¥(ys, y5)lyil-

Next we shall use the Edgeworth expansion result for U-statistics developed
by Gu (1992c). In order to use the Edgeworth expansion result for U-statistics,
we need to calculate the variance of X up to O(n™!), k3 up to O(n~1/2?) and k4
up to O(1). From (2.15), Var(X) = E[G*(11)] + E[S?*(y1,2)]/(2n) + O(n=3%/2).

(2.17)

Ignoring the parts of order n=3/2 and higher, after some lengthy calculations, we
get
Var(X) =1+ F/n,
where
poo o LA 1At ¢ A Elg(y)awi)] _ Ele*(y1)h(y)
665 1805 406 404 ot ot
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+ B | Blo(y)g(w2)Clyn, v2)] _ 2B[$ (w1, y2)h(u1)g(v2))

404 ot ot
L Ely 2(3;,3;2)] 2E[g(y;)2¢o(y1)] _ % (2.18)

Simple algebra using (2.16) shows that

= (Var(X))™**{ BIG*(y1)] + 3EIG(31)G(12)S (w1, 32)]} = O(n™Y),

and therefore k3 can be considered as zero. The next task is to calculate K4 using
(2.16). We have

ks = 05 {E[G*(n1)] - 30& + 12E(G?(11)G(%2) S (41, v2)]
+4E[T(y1, 2, ¥3)G (y1)G(y2)G(y3)] + 12E[S(y1, y2)S(y1, ¥3)G(2) G (v3)]}

2
= 0_4{E[g4(y4)] — 30t - %C—z— + A’

+12B(g*(31)g(y2)v(v1, 2)] — 6Elg*(y1)h(y1)] — 4Ea(y1)g(w1)]
+6E[C(y1,¥2)9(y1)9(y2)] + 12E[v(y1, y2)% (¥1,y3)9(¥2)9(v3)]

~12E[(wn)a(ve)(un,vo)] + 3EIRw1) ), (2.19)

where we have used E[g°(y1)] = 3¢—A, Elg(y1)h(%1)] = ¢, Elg(v1)9(v2)¥(y1,2)] =

0, and E[B(y1,y2,y3)9(y1)9(y2)9(y3)] = 0 (see Gu (1992b)).
Using the result on the Edgeworth expansion of U-statistics of degree three

of Gu (1992c), the distribution function of (X — E[X])/\/Var(X) is
Fo(z) = &(z) - ——d)(:c)(a: — 3z) 4+ O(n~3/%), (2.20)

Since E[X] = A/+/n (2.14), after a change of variable, we get the distribution
function of X2 (and therefore w) as the right side of (1. 5). The proof is finished
if we can show the right side of (2.18) equals that of (1.6) and the right side of
(2.19) equals that of (1.7). To demonstrate this, let us consider, for example,
Elg(y1)%0(y1)]- From the definition, we have

Blownotw)] = 5| [ (s - ZD)areo [ mamn o)

—E[ /0 ’ <z1 _ o) >7r1(t)§1,o(t))\g(t)dt}

ap(t)
a1(t) /\o(t)

- —/OTE[(él,l(t) T ())} pd=r )

fi
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since
(1)

ey
E[(&,l(t)-ao(t)cl,ou)) } = 0" ).

Similar calculations show that

B[ (y1,12)] = —2v,
E[R*(y1)] = —2p5 +2p7 + v — o?,
Elg(y1)a(y1)] = —pa — 3pua,
E[gz(yl)h(yl)] = 2u4 — ps + pg + pr +v — 0'4,
Elg(y1)9(y2)C(y1,%2)] = 2ps, (2.22)
ElY(y1,y2)h(y1)9(y2)] = —pa + po,

Elg*(ya)] = p2 — 4p3 + 6us,
ElY(y1, y2)v(y1,y3)9(y2)9(ys)] = us,
Elg*(v1)g(y2)¥(y1,¥2)] = —pa — 2u8 + po,

where pa-pg have been defined in (1.9), v has been defined in (2.5) and

v = /0 ’ 62 (t)ap(t) Ao(2)dt.

Substituting the quantities on the right of (2.21) and (2.22) into (2.18) and (2.19),

also noting that A’ = —puy + 3ug, we get (1.6) and (1.7).
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