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1. Introduction

Group (or pooled) testing has proven to be an efficient tool for screening for

and estimating the prevalence of a rare disease by testing the pooled specimens

and then retesting each subject in the positive group; see, among many others,

Dorfman (1943); Graff and Roeloffs (1972); Sobel and Elashoff (1975); Chen and

Swallow (1990); Litvak, Tu and Pagano (1994); Tu, Litvak and Pagano (1995);

Brookmeyer (1999); Hung and Swallow (1999); Xie et al. (2001); Hepworth and

Watson (2009); Bilder, Tebbs and Chen (2010); Delaigle and Meister (2011);

McMahan, Tebbs and Bilder (2012); Pritchard and Tebbs (2011); Liu et al.

(2012). Due to its effectiveness in reducing time and cost, group testing has been

widely used in such areas as HCV or HIV screening (Cahoon-Young et al. (1989);

Jarvis et al. (2005)), drug discovery (Gastwirth and Johnson (1994); Kainkaryam

and Woolf (2009)), DNA genomic screening (Barcellos et al. (1997)), intellectual

disability determination (Chien, Huang and Lung (2009)), arbovirus infection

assessment (Gu, Lampman and Novak (2004)), and food contamination detection

(Fahey, Ourisson and Degnan (2006)). If one is only interested in estimating

the prevalence of a disease, retesting on subjects in the positive groups is not

necessary, since the probability of a group being positive is a monotone function

of the probability of an individual being positive. This attractive feature makes

group testing more appealing in situations where there are limited resources.
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There is a sizable literature on disease prevalence estimation using group

testing. Most of the literature focuses on a single-disease model, with or without

testing errors. In the presence of testing errors, Liu et al. (2012) recently derived

conditions under which a group testing strategy is superior to another in yielding

more efficient estimation of the disease prevalence. These conditions thus allow

practitioners to choose between different group testing strategies.

In many applications, one can encounter a situation where two or more

correlated diseases need to be detected simultaneously, using the same assay.

For example, chlamydia and gonorrhea, two commonly correlated diseases, were

tested on a single assay at the same time to measure their prevalence by using

urine specimens collected in the National Health and Nutrition Examination

Survey, 1999−2002 (Datta et al. (2007)). Notably, both chlamydia and gonorrhea

are detected with error. According to Datta et al. (2007) (and the citations

therein), the chlamydia LCx assay has a test sensitivity of approximately 90%

to 94% and a specificity of 95% to 98%. The gonorrhea LCx assay incurs a

sensitivity of approximately 86% to 92% and specificity greater than 99%.

It is often desirable to simultaneously estimate the prevalence of the diseases.

Unlike the single-disease model, however, much less attention has been given to

the multiple-disease model with group testing. Here the strategy for proving

the optimality of group testing for a single disease cannot be extended directly

to multiple diseases, especially when sensitivity and specificity are not equal to

1. Hughes-Oliver and Rosenberger (2000) considered estimating the proportions

of individuals with multiple rare traits. Their approach was based on the as-

sumption of no classification error. Recently Tebbs, McMahan and Bilder (2013)

proposed a two-stage hierarchical group testing for two correlated diseases with

misclassification. Their simulation results suggested that the group testing pro-

cedure can be more efficient than individual testing in estimating the diseases’

prevalence, an observation consistent with the theory developed in Tu, Litvak

and Pagano (1995) and Liu et al. (2012).

To further the results in Liu et al. (2012) and Tebbs, McMahan and Bilder

(2013), we aim to investigate the optimality properties of the group testing strat-

egy in estimating the prevalence of two correlated rare diseases whose statuses

are classified with errors. We derive conditions under which group testing yields

more efficient estimation than individual testing and other conventional testing

strategies.

2. D-Optimality in Group Testing

2.1. General framework

Suppose that n subjects are enrolled and their plasma are collected to eval-

uate the prevalence of two correlated diseases (D1 and D2). Let the disease
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prevalence be pab = Pr(D1 = a,D2 = b), a, b ∈ {0, 1}, where D1 = 1 means that

an individual has the disease D1 and 0 otherwise, and similarly D2. To estimate

p00, p10, p01 and p11, group testing is used with the plasma of k individuals being

pooled in one group and assayed. Without loss of generality, we assume that

n = mk. Let (X,Y )τ denote the real status of (D1, D2)
τ in a group, where τ

stands for the transpose of a vector or a matrix. We take X=1 (or 0) and Y = 1

(or 0) to mean that at least one (or no) subject in the group has D1 and at least

one (or no) subject has D2. Let (X̃, Ỹ )τ be the testing result of the group from

the assay. We assume that the statuses of D1 and D2 are measured with error,

and write the error probability for (a, b) ̸= (c, d) as

πcd
ab = Pr

(
X̃ = c, Ỹ = d

��X = a, Y = b
)
, a, b, c, d ∈ {0, 1}.

Let qab = Pr(X = a, Y = b), a, b = 0, 1. Then, q00 = pk00, q01 = (p00 +

p01)
k − pk00, q10 = (p00 + p10)

k − pk00, q11 = 1 + pk00 − (p00 + p10)
k − (p00 + p01)

k

and gab = Pr(X̃ = a, Ỹ = b) = πab
00q00 + πab

10q10 + πab
01q01 + πab

11q11, a, b ∈ {0, 1}.
Let mab be the number of groups with assay results (a, b). According to Tu,

Litvak and Pagano (1995) and Liu et al. (2012), then gab satisfies π
ab
a−b− ≤ gab ≤

πab
ab, and the maximum likelihood estimate of gab is

ĝab = min
{
πab
ab,max

{
πab
a−b− ,

mab

m

}}
, a− = 1− a, b− = 1− b.

Once we have ĝab, we can obtain the maximum likelihood estimates p̂cd of pcd,

a, b, c, d ∈ {0, 1}. Technical details are given in Appendix A. We parameterize

the notations as
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,
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τ , and g = (g00, g10, g01)
τ . Since p11 =

1− p00− p10− p01, such a definition of the parameter p = (p00, p01, p10)
τ enables

us to reduce the dimension of the parameter space, following Tebbs, McMahan

and Bilder (2013). Then the covariance matrix of p̂ is Vp = I−1
p (p), whose

derivation is given in Appendix B, where Ip(p) =
(
∂g
∂q

∂q
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)τ
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While there are different ways to evaluate the efficiency of an estimate of a pa-

rameter vector, we adopt the D-optimal criterion (Kiefer (1974)) that minimizes

the determinant of Vp, written as det(Vp). With corresponding probabilities

given, we seek a group size that minimizes det(Vp).

Theorem 1. If ψ(k, π,p) = det
(
cov(Vp)

)
, then for fixed π and p, there exists a

kopt that minimizes ψ(k, π,p).

For a proof, see Appendix C. From Theorem 1, there exists an optimal kopt
that minimizes ψ(k, π,p). kopt can be obtained by minimizing det

(
cov(Vp)

)
using the Newton-Raphson algorithm since it is a one-dimensional optimization.

If kopt = 1, then the D-Optimal design reduces to individual testing.

2.2. Optimality of group testing

For a single rare disease, Liu et al. (2012) obtained conditions for group

testing to be more efficient than random sampling with a fixed number of groups

or a fixed number of subjects. It is desirable to derive such conditions for two

correlated rare diseases. Based on Theorem 1, we find that a necessary and

sufficient condition that group testing is more efficient than random sampling is

ψ(2, π,p) < ψ(1, π,p), using the D-optimal criterion. Theorems 2 and 3 give

the results that group testing improves the precision in estimating p. Details are

given in Appendix D.

As notation, we write ξ00 = π00
10 + π00

01 + 2π00
11, η00 = π00

10 + π00
01, ζ00 = π00

00,

ξ10 = π10
10 + π10

01 + 2π10
11, η10 = π10

10 + π10
01, ζ10 = π10

00, ξ01 = π01
10 + π01

01 + 2π01
11,

η01 = π01
10 + π01

01, ζ01 = π01
00, ξ11 = π11

10 + π11
01 + 2π11

11, η11 = π11
11, ζ11 = π11

00.

We invoke one condition on the joint probabilities, a natural requirement for a

screening tool to be practically useful.

Condition: πab
a−b− < min{πab

a−b, π
ab
ab−}, max{πab

ab− , π
ab
a−b} < πab

ab.

Theorem 2 (Fixed number of groups). Suppose the number of groups is fixed at

m, and let δ1 be the solution of the equation

p200
26(p00 + p10)2(p00 + p01)2

∏
a,b∈{0,1}

ξabδ
2 + 2ηabδ + ζab
ηabδ + ζab

= 1

for δ. If δ1 > max
{
p10/p00+p11/p00, p01/p00+p11/p00

}
, then group testing with

size k is more efficient in estimating the disease prevalence p than a random

sample of size m under the D-optimal criterion.

D-OPTIMALITY OF GROUP TESTING 5

Table 1. Values of δ1 and δ2.

p δ1 δ2 cp

(0.901,0.079,0.019) 1.1586 0.0926 0.0888
(0.916,0.079,0.004) 1.1568 0.0919 0.0873
(0.931,0.049,0.019) 1.1577 0.0923 0.0537
(0.941,0.049,0.009) 1.157 0.092 0.0531
(0.966,0.014,0.019) 1.1567 0.0919 0.0207
(0.971,0.019,0.009) 1.1566 0.0918 0.0206
(0.976,0.009,0.014) 1.1565 0.0918 0.0154
(0.981,0.009,0.009) 1.1565 0.0918 0.0102

(0.896,0.099,0.004) 1.1569 0.092 0.1116
(0.879,0.119,0.001) 1.1565 0.0918 0.1365

Theorem 3 (Fixed number of subjects). Suppose the total of subjects is fixed at

n, and let δ2 be the solution of the equation

p200
23(p00 + p10)2(p00 + p01)2

∏
a,b∈{0,1}

ξabδ
2 + 2ηabδ + ζab
ηabδ + ζab

= 1

for δ. If δ2 > max
{
p10/p00+p11/p00, p01/p00+p11/p00

}
, then group testing with

size k and m groups is more efficient in estimating the disease prevalence p than

a random sample of size n under the D-optimal criterion.

3. Numerical Results

3.1. Selection of δ1 and δ2

To gain some insight into the range of p where group testing is more efficient

than random sampling, we conducted numerical studies to obtain the values

of δ1 and δ2, for practical values of testing error rates. Let the error rate be

πτ = (0.96, 0.06, 0.1, 0.006, 0.03, 0.9, 0.004, 0.1, 0.009, 0.008, 0.89, 0.03, 0.001, 0.032,

0.006, 0.864). The prevalence of the two correlated diseases were chosen from the

set {0.01, 0.015, 0.02, 0.05, 0.08} and the joint prevalence was 0.001. We also

calculated max
{
p10/p00 + p11/p00, p01/p00 + p11/p00

}
, denoted by cp. Table 1

presents the numerical results. The last two rows of Table 1 correspond to situa-

tions in which δ1 and δ2 are not larger than cp. They indicate that the conditions

in Theorems 2 and 3 are satisfied. For example, when p = (0.966, 0.014, 0.019),

δ1 = 1.1567, and δ = 0.0919, both are larger than 0.0207.

Denote efficiency by EFF(k) = ψ(1, π,p)/ψ(k, π,p). Here, we consider the

case that the subject number is fixed. We present the results for different group

sizes and highlight the largest value of efficiency using the settings as above. The
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Table 2. Efficiency of group testing compared with individual testing.

the group size k
p 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00

(0.901,0.079,0.019) 1.02 0.83 0.65 0.51 0.40 0.32 0.25 0.20
(0.916,0.079,0.004) 1.64 1.81 1.76 1.62 1.45 1.28 1.11 0.96
(0.931,0.049,0.019) 1.25 1.14 0.97 0.81 0.68 0.57 0.48 0.41
(0.941,0.049,0.009) 1.59 1.70 1.62 1.48 1.32 1.18 1.04 0.92
(0.966,0.014,0.019) 1.99 2.40 2.51 2.45 2.33 2.18 2.03 1.87
(0.971,0.019,0.009) 2.21 2.86 3.14 3.22 3.17 3.07 2.93 2.77
(0.976,0.009,0.014) 2.43 3.38 3.91 4.17 4.25 4.22 4.13 4.00
(0.981,0.009,0.009) 2.69 4.01 4.88 5.42 5.72 5.86 5.88 5.84

(0.896,0.099,0.004) 1.50 1.56 1.45 1.28 1.09 0.92 0.77 0.63
(0.879,0.119,0.001) 1.70 1.93 1.90 1.73 1.52 1.29 1.07 0.87

corresponding group size is the optimal size to be chosen. We also calculated

EFF(k). Table 2 shows the results. It indicates that group testing is more

efficient than individual testing even when the Condition is not satisfied. For

example, when p = (0.971, 0.019, 0.009), the optimal group size is 5 with the

EFF(5) = 3.22.

Both cases reveal the common feature that group testing gains efficiency as

compared to random sampling when the conditions of Theorems 2 and 3 hold.

3.2. An example: Estimation of Chlamydia and Gonorrhea prevalence

Chlamydia is the most common sexually transmitted bacterial infection, af-

fecting 3-4 million people each year in the US. It causes pelvic inflammatory

disease, ectopic pregnancy, and infertility in women, and testicular and prostate

infections, and sterility in men. Gonorrhea is a bacterial infection that often

co-exists with chlamydia.

Due to the low prevalence and the serious consequences of the diseases, a

group testing strategy is deemed desirable to simultaneously assay-test Chlamy-

dia and Gonorrhea. To demonstrate how to choose the group size in such a study

with the methods proposed here, we use data from Datta et al. (2007). In the

National Health and Nutrition Examination Survey from 1992 to 2002, 6,632

urine specimens were collected in the National Health and assayed in Abbott

Laboratories, Abbott Park, Illinois.

Based on the information from the Introduction, we assumed that the sensi-

tivity and specificity are about 92% and 96.5% for screening chlamydia and about

89% and 99% for screening gonorrhea, using urine specimens with LCx assay.

From previous studies we assumed that the individual prevalence of gonorrheal

and chlamydial infections was 0.24% and 2.2%, respectively, and joint prevalence

D-OPTIMALITY OF GROUP TESTING 7

Table 3. Efficiency EFF(k) for different group sizes.

k 1 2 3 4 5 6 7 8

EFF(k) 1.00 3.15 5.27 7.04 8.44 9.49 10.25 10.78

k 9 10 11 12 13 14 15

EFF(k) 11.11 11.30 11.37 11.34 11.24 11.08 10.88

of gonorrhea and chlamydia was 0.01104%. These yield πτ= (0.95535,0.0792,

0.10615, 0.0088, 0.03465, 0.9108, 0.00385, 0.1012, 0.00965, 0.0008, 0.85885, 0.0712,

0.00035, 0.0092, 0.03115, 0.8188).

Suppose a study is planned in order to update the prevalence of the diseases.

Checking the conditions in Theorems 2 and 3, we find that δ1 = 1.111 and

δ2 = 0.095 and max{(p10 + p11)/p00, (p01 + p11)/p00} = 0.0225, the conditions

are satisfied. Fixing the total number of subjects to be 6,632, the D-optimal

group size is found to be kopt = 11 and the optimal number of groups is m = 603.

More explicitly, we present the efficiency EFF(k) in Table 3.

This group testing design not only yields more precise prevalence estimation,

but is also cost effective. Assuming that the cost per test assay is $16, the cost

of $106,112 from individual testing reduces to $9,648 using such a group testing

strategy.

4. Discussion

In the present paper, we derived conditions on group sizes such that group

testing is more efficient than individual testing in simultaneously estimating the

prevalence of two related rare diseases, thereby filling some gaps in the literature.

Given empirical knowledge about these prevalences, and the error rates of the test

assay, the conditions derived provide useful guideline for designing prospective

studies to update the estimation of prevalence. If no prior knowledge is available,

one can take an adaptive approach similar to those in Hughes-Oliver and Swallow

(1994) and Ridout (1995), by first obtaining estimates of the prevalence and error

rates using interim data and then redesigning the study for the remaining group

testing with the updated group size.

Taking a look at the conditions in Theorems 2 and 3, when the diseases are

rare, max
{
p10/p00 + p11/p00, p01/p00 + p11/p00

}
≈ max{p10, p01} + p11, which

is very small. Although there are no closed forms for δ1 and δ2, simulation

studies show that δ̂1 and δ̂2 are most likely large, and are much larger than

max{p10, p01}+ p11, in which case the conditions hold for rare diseases.
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Table 2. Efficiency of group testing compared with individual testing.

the group size k
p 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00

(0.901,0.079,0.019) 1.02 0.83 0.65 0.51 0.40 0.32 0.25 0.20
(0.916,0.079,0.004) 1.64 1.81 1.76 1.62 1.45 1.28 1.11 0.96
(0.931,0.049,0.019) 1.25 1.14 0.97 0.81 0.68 0.57 0.48 0.41
(0.941,0.049,0.009) 1.59 1.70 1.62 1.48 1.32 1.18 1.04 0.92
(0.966,0.014,0.019) 1.99 2.40 2.51 2.45 2.33 2.18 2.03 1.87
(0.971,0.019,0.009) 2.21 2.86 3.14 3.22 3.17 3.07 2.93 2.77
(0.976,0.009,0.014) 2.43 3.38 3.91 4.17 4.25 4.22 4.13 4.00
(0.981,0.009,0.009) 2.69 4.01 4.88 5.42 5.72 5.86 5.88 5.84

(0.896,0.099,0.004) 1.50 1.56 1.45 1.28 1.09 0.92 0.77 0.63
(0.879,0.119,0.001) 1.70 1.93 1.90 1.73 1.52 1.29 1.07 0.87

corresponding group size is the optimal size to be chosen. We also calculated

EFF(k). Table 2 shows the results. It indicates that group testing is more

efficient than individual testing even when the Condition is not satisfied. For

example, when p = (0.971, 0.019, 0.009), the optimal group size is 5 with the

EFF(5) = 3.22.

Both cases reveal the common feature that group testing gains efficiency as

compared to random sampling when the conditions of Theorems 2 and 3 hold.

3.2. An example: Estimation of Chlamydia and Gonorrhea prevalence

Chlamydia is the most common sexually transmitted bacterial infection, af-

fecting 3-4 million people each year in the US. It causes pelvic inflammatory

disease, ectopic pregnancy, and infertility in women, and testicular and prostate

infections, and sterility in men. Gonorrhea is a bacterial infection that often

co-exists with chlamydia.

Due to the low prevalence and the serious consequences of the diseases, a

group testing strategy is deemed desirable to simultaneously assay-test Chlamy-

dia and Gonorrhea. To demonstrate how to choose the group size in such a study

with the methods proposed here, we use data from Datta et al. (2007). In the

National Health and Nutrition Examination Survey from 1992 to 2002, 6,632

urine specimens were collected in the National Health and assayed in Abbott

Laboratories, Abbott Park, Illinois.

Based on the information from the Introduction, we assumed that the sensi-

tivity and specificity are about 92% and 96.5% for screening chlamydia and about

89% and 99% for screening gonorrhea, using urine specimens with LCx assay.

From previous studies we assumed that the individual prevalence of gonorrheal

and chlamydial infections was 0.24% and 2.2%, respectively, and joint prevalence
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Table 3. Efficiency EFF(k) for different group sizes.

k 1 2 3 4 5 6 7 8

EFF(k) 1.00 3.15 5.27 7.04 8.44 9.49 10.25 10.78

k 9 10 11 12 13 14 15

EFF(k) 11.11 11.30 11.37 11.34 11.24 11.08 10.88

of gonorrhea and chlamydia was 0.01104%. These yield πτ= (0.95535,0.0792,

0.10615, 0.0088, 0.03465, 0.9108, 0.00385, 0.1012, 0.00965, 0.0008, 0.85885, 0.0712,

0.00035, 0.0092, 0.03115, 0.8188).

Suppose a study is planned in order to update the prevalence of the diseases.

Checking the conditions in Theorems 2 and 3, we find that δ1 = 1.111 and

δ2 = 0.095 and max{(p10 + p11)/p00, (p01 + p11)/p00} = 0.0225, the conditions

are satisfied. Fixing the total number of subjects to be 6,632, the D-optimal

group size is found to be kopt = 11 and the optimal number of groups is m = 603.

More explicitly, we present the efficiency EFF(k) in Table 3.

This group testing design not only yields more precise prevalence estimation,

but is also cost effective. Assuming that the cost per test assay is $16, the cost

of $106,112 from individual testing reduces to $9,648 using such a group testing

strategy.

4. Discussion

In the present paper, we derived conditions on group sizes such that group

testing is more efficient than individual testing in simultaneously estimating the

prevalence of two related rare diseases, thereby filling some gaps in the literature.

Given empirical knowledge about these prevalences, and the error rates of the test

assay, the conditions derived provide useful guideline for designing prospective

studies to update the estimation of prevalence. If no prior knowledge is available,

one can take an adaptive approach similar to those in Hughes-Oliver and Swallow

(1994) and Ridout (1995), by first obtaining estimates of the prevalence and error

rates using interim data and then redesigning the study for the remaining group

testing with the updated group size.

Taking a look at the conditions in Theorems 2 and 3, when the diseases are

rare, max
{
p10/p00 + p11/p00, p01/p00 + p11/p00

}
≈ max{p10, p01} + p11, which

is very small. Although there are no closed forms for δ1 and δ2, simulation

studies show that δ̂1 and δ̂2 are most likely large, and are much larger than

max{p10, p01}+ p11, in which case the conditions hold for rare diseases.
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Appendix A. Maximum Likelihood Estimates

The maximum likelihood estimate of pab, denoted by p̂ab, a, b ∈ {0, 1} can

be obtained by solving the equations,




ĝ00 = π00
00p

k
00 + π00

10[(p00 + p10)
k − pk00] + π00

01[(p00 + p01)
k − pk00]

+π00
11[1 + pk00 − (p00 + p10)

k − (p00 + p01)
k],

ĝ01 = π01
00p

k
00 + π01

10[(p00 + p10)
k − pk00] + π01

01[(p00 + p01)
k − pk00]

+π01
11[1 + pk00 − (p00 + p10)

k − (p00 + p01)
k],

ĝ10 = π10
00p

k
00 + π10

10[(p00 + p10)
k − pk00] + π10

01[(p00 + p01)
k − pk00]

+π10
11[1 + pk00 − (p00 + p10)

k − (p00 + p01)
k].

Let

A =

������
ĝ00 π

00
10 − π00

11 π
00
01 − π00

11

ĝ01 π
01
10 − π01

11 π
01
01 − π01

11

ĝ10 π
10
10 − π10

11 π
10
01 − π10

11

������
,

B =

������
π00
00 − π00

10 − π00
01 + π00

11 ĝ00 π
00
01 − π00

11

π01
00 − π01

10 − π01
01 + π01

11 ĝ01 π
01
01 − π01

11

π10
00 − π10

10 − π10
10 + π10

11 ĝ10 π
10
01 − π10

11

������
,

C =

������
π00
00 − π00

10 − π00
01 + π00

11 π
00
10 − π00

11 ĝ00
π01
00 − π01

10 − π01
01 + π01

11 π
01
10 − π01

11 ĝ01
π10
00 − π10

10 − π10
10 + π10

11 π
10
10 − π10

11 ĝ10

������
,

D =

������
π00
00 − π00

10 − π00
01 + π00

11 π
00
10 − π00

11 π
00
01 − π00

11

π01
00 − π01

10 − π01
01 + π01

11 π
01
10 − π01

11 π
01
01 − π01

11

π10
00 − π10

10 − π10
10 + π10

11 π
10
10 − π10

11 π
10
01 − π10

11

������
.

Then p̂00 = (A/D)1/k, p̂10 = (B/D)1/k − (A/D)1/k, p̂01 = (C/D)1/k − (A/D)1/k,

and p̂11 = 1− p̂00 − p̂10 − p̂01.
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Appendix B. Derivation of Ig(g)

Using the notation in the main text, we have

gab = πab
abqab + πab

a−bqa−b + πab
ab−qab− + πab

a−b−(1− qab − qa−b − qab−)

= πab
a−b− + (πab

ab − πab
a−b−)qab + (πab

a−b − πab
a−b−)qa−b + (πab

ab− − πab
a−b−)qab− .

The likelihood function is

L(g) = gm00
00 gm10

10 gm01
01 (1− g00 − g10 − g01)

m11

and the log-likelihood function is

l(g) = m00 ln g00 +m10 ln g10 +m01 ln g01 +m11 ln(1− g00 − g10 − g01).

Then,

−E
( ∂2l

∂g2ab

)
= E

[
mab

g2ab
− m11

(1− g00 − g10 − g01)2

]
=

m(gab + g11)

gabg11
,

−E

(
∂2l

∂gab∂gcd

)
= E

[
m11

(1− g00 − g10 − g01)2

]
=

m

g11
, (a, b) ̸= (c, d).

So,

Ig(g) = m




(g00+g11)
g00g11

1
g11

1
g11

1
g11

(g10+g11)
g10g11

1
g11

1
g11

1
g11

(g01+g11)
g01g11


 .

Appendix C. Proof of Theorem 1

Let

ψ1(k, π,p) =
g00g01g10g11

m3k6p2k00(p00 + p10)2k(p00 + p01)2k

=
p2k00

m3k6(p00 + p10)2k(p00 + p01)2k
g00

pk00

g10

pk00

g01

pk00

g11

pk00
.

Then ψ(k, π,p) =

������
π00
00 − π00

11 π
00
10 − π00

11 π
00
01 − π00

11

π10
00 − π10

11 π
10
10 − π10

11 π
10
01 − π10

11

π01
00 − π01

11 π
01
10 − π01

11 π
01
01 − π01

11

������

−2

× ψ1(k, π,p). To show gab

depends on k, we use gab(k) as a surrogate of gab.
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Appendix A. Maximum Likelihood Estimates

The maximum likelihood estimate of pab, denoted by p̂ab, a, b ∈ {0, 1} can

be obtained by solving the equations,




ĝ00 = π00
00p
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10 − π10

11 π
10
01 − π10

11

������
,

B =

������
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������
π00
00 − π00

10 − π00
01 + π00

11 π
00
10 − π00

11 ĝ00
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������
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������
.
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=
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For a, b ∈ {0, 1}, we have

gab(k)

pk00
= πab

00 + πab
10

[(
1 +

p10
p00

)k
− 1

]

+πab
01

[(
1 +

p01
p00

)k
− 1

]
+ πab

11

[
1 + p−k

00 −
(
1 +

p10
p00

)k
−
(
1 +

p01
p00

)k]
,

1 + p−k
00 −

(
1 +

p10
p00

)k
−
(
1 +

p01
p00

)k

= 1 + exp
{
k ln

1

p00

}
− exp

{
k ln

(
1 +

p10
p00

)}
− exp

{
k ln

(
1 +

p01
p00

)}

=

+∞∑
i=1

lni( 1
p00

)− lni(1 + p10
p00

)− lni(1 + p01
p00

)

i!
ki, (C.1)

p2k00
(p00 + p10)2k(p00 + p01)2k

= exp(2(ln(p00)− ln(p10 + p00)− ln(p01 + p00))k)

=

+∞∑
i=0

(2k)i
[
ln p00 − ln(p10 + p00)− ln(p01 + p00)

]i
i!

.

Case 1: p00p11 − p10p01 ≥ 0.

Since xi is a strictly convex function for all i > 1, x ∈ (0,∞), and ln 1/p00 +
ln 1− ln(1 + p10/p00)− ln(1 + p01/p00) ≥ 0, lni 1/p00 + lni 1− lni(1 + p10/p00)−
lni(1 + p01/p00) > 0. So gab(k)/p

k
00 ≥ 0 for a, b ∈ {0, 1}. On the other hand,

when p00p11 − p10p01 ≥ 0, ln p00 − ln(p10 + p00) − ln(p01 + p00) ≥ 0. Hence, we
can rewrite

ψ1(k, π,p) =
1

m3k6

+∞∑
i=0

wik
i =

1

n3k3

+∞∑
i=0

wik
i, wi ≥ 0.

When n is fixed, the second-order partial derivative of ψ1(k, π,p) with re-
spect to k is ∂2ψ1(k)/∂k

2 = (1/n3)
∑+∞

i=0 wi(i − 3)(i − 4)ki−5. As m is fixed,
∂2ψ1(k)/∂k

2 = (1/m3)
∑+∞

i=0 wi(i−6)(i−7)ki−8. Obviously, ∂2ψ1(k, π,p)/∂k
2 ≥

0 since all wi ≥ 0. Therefore, ψ1(k, π,p) is a convex function of k. Thus,
ψ1(k, π,p) is a strictly convex function since wi > 0 as i > 3.

Case 2: p00p11 − p10p01 < 0.

Rewrite gab(k)/p
k
00 as

gab(k)

pk00
= πab

00 +

∞∑
i=1

{
πab
10 ln

i
(
1 +

p10
p00

)
+ πab

01 ln
i
(
1 +

p01
p00

)

+πab
11

[
lni

( 1

p00

)
− lni

(
1 +

p10
p00

)
− lni

(
1 +

p01
p00

)]}ki

i!
.

D-OPTIMALITY OF GROUP TESTING 11

Consider that (a, b) ̸= (1, 1) and write hi(x) = lni(x). For i ≥ 2 and x ∈
(1, 2), the second-order derivative of hi(x) is

h
′′
i (x) =

i

x2
lni−2(x)[i− 1− ln(x)] ≥ 0,

and hi(x) is a convex function. Since 1/p00 + 1 > 1 + p10/p00 + 1 + p01/p00, we

have

hi(
1

p00
) + hi(1) > hi(1 +

p10
p00

) + hi(1 +
p01
p00

),

which is lni(1/p00)− lni(1 + p10/p00)− lni(1 + p01/p00) > 0. Therefore, the coef-

ficient of ki is positive for i ≥ 2. For i = 1, the coefficient of ki is

πab
10 ln

(
1+

p10
p00

)
+πab

01 ln
(
1+

p01
p00

)
+πab

11

[
ln
( 1

p00

)
− ln

(
1 +

p10
p00

)
− ln

(
1 +

p01
p00

)]
.

When (a, b) ̸= (1, 1), we have πab
10 + πab

01 > πab
11 and verify that the coefficient of

ki is positive for all i ≥ 1.

If

S1(k) =
1

m3k6
g00

pk00

g10

pk00

g01

pk00
and S2(k) =

p2k00
(p00 + p10)2k(p00 + p01)2k

g11

pk00
,

then ψ1(k, π,p) = S1(k)S2(k). Following the proof in Case 1, S1(k) is a convex

function. We proceed to verify that S2(k) is also a positive convex function.

As is derived above,

g11

pk00
= π11

00 +

∞∑
i=1

{
π11
10 ln

i
(
1 +

p10
p00

)
+ π11

01 ln
i
(
1 +

p01
p00

)

+π11
11

[
lni

( 1

p00

)
− lni

(
1 +

p10
p00

)
− lni

(
1 +

p01
p00

)]}ki

i!
.

Write
g11

pk00
− π11

00 =

∞∑
i=1

αik
i,

the result of Case 1 gives αi > 0 for i ≥ 2.

By the Condition, max{π11
10, π

11
01} < π11

11, so we have

α1 < [max{π11
10, π

11
01} − π11

11] ln(
(p00 + p10)(p00 + p01)

p00
) < 0.

For k = 1, g11/p00 − π11
00 reduces to

g11
p00

− π11
00 = π11

01

p01
p00

+ π11
10

p10
p00

+ π11
11

p11
p00

> 0.
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For a, b ∈ {0, 1}, we have

gab(k)

pk00
= πab

00 + πab
10

[(
1 +

p10
p00

)k
− 1

]

+πab
01

[(
1 +

p01
p00

)k
− 1

]
+ πab

11

[
1 + p−k

00 −
(
1 +

p10
p00

)k
−
(
1 +

p01
p00

)k]
,

1 + p−k
00 −

(
1 +

p10
p00

)k
−
(
1 +

p01
p00

)k

= 1 + exp
{
k ln

1

p00

}
− exp

{
k ln

(
1 +

p10
p00

)}
− exp

{
k ln

(
1 +

p01
p00

)}

=

+∞∑
i=1

lni( 1
p00

)− lni(1 + p10
p00

)− lni(1 + p01
p00

)

i!
ki, (C.1)

p2k00
(p00 + p10)2k(p00 + p01)2k

= exp(2(ln(p00)− ln(p10 + p00)− ln(p01 + p00))k)

=

+∞∑
i=0

(2k)i
[
ln p00 − ln(p10 + p00)− ln(p01 + p00)

]i
i!

.

Case 1: p00p11 − p10p01 ≥ 0.

Since xi is a strictly convex function for all i > 1, x ∈ (0,∞), and ln 1/p00 +
ln 1− ln(1 + p10/p00)− ln(1 + p01/p00) ≥ 0, lni 1/p00 + lni 1− lni(1 + p10/p00)−
lni(1 + p01/p00) > 0. So gab(k)/p

k
00 ≥ 0 for a, b ∈ {0, 1}. On the other hand,

when p00p11 − p10p01 ≥ 0, ln p00 − ln(p10 + p00) − ln(p01 + p00) ≥ 0. Hence, we
can rewrite

ψ1(k, π,p) =
1

m3k6

+∞∑
i=0

wik
i =

1

n3k3

+∞∑
i=0

wik
i, wi ≥ 0.

When n is fixed, the second-order partial derivative of ψ1(k, π,p) with re-
spect to k is ∂2ψ1(k)/∂k

2 = (1/n3)
∑+∞

i=0 wi(i − 3)(i − 4)ki−5. As m is fixed,
∂2ψ1(k)/∂k

2 = (1/m3)
∑+∞

i=0 wi(i−6)(i−7)ki−8. Obviously, ∂2ψ1(k, π,p)/∂k
2 ≥

0 since all wi ≥ 0. Therefore, ψ1(k, π,p) is a convex function of k. Thus,
ψ1(k, π,p) is a strictly convex function since wi > 0 as i > 3.

Case 2: p00p11 − p10p01 < 0.

Rewrite gab(k)/p
k
00 as

gab(k)

pk00
= πab

00 +

∞∑
i=1

{
πab
10 ln

i
(
1 +

p10
p00

)
+ πab

01 ln
i
(
1 +

p01
p00

)

+πab
11

[
lni

( 1

p00

)
− lni

(
1 +

p10
p00

)
− lni

(
1 +

p01
p00

)]}ki

i!
.

D-OPTIMALITY OF GROUP TESTING 11

Consider that (a, b) ̸= (1, 1) and write hi(x) = lni(x). For i ≥ 2 and x ∈
(1, 2), the second-order derivative of hi(x) is

h
′′
i (x) =

i

x2
lni−2(x)[i− 1− ln(x)] ≥ 0,

and hi(x) is a convex function. Since 1/p00 + 1 > 1 + p10/p00 + 1 + p01/p00, we

have

hi(
1

p00
) + hi(1) > hi(1 +

p10
p00

) + hi(1 +
p01
p00

),

which is lni(1/p00)− lni(1 + p10/p00)− lni(1 + p01/p00) > 0. Therefore, the coef-

ficient of ki is positive for i ≥ 2. For i = 1, the coefficient of ki is

πab
10 ln

(
1+

p10
p00

)
+πab

01 ln
(
1+

p01
p00

)
+πab

11

[
ln
( 1

p00

)
− ln

(
1 +

p10
p00

)
− ln

(
1 +

p01
p00

)]
.

When (a, b) ̸= (1, 1), we have πab
10 + πab

01 > πab
11 and verify that the coefficient of

ki is positive for all i ≥ 1.

If

S1(k) =
1

m3k6
g00

pk00

g10

pk00

g01

pk00
and S2(k) =

p2k00
(p00 + p10)2k(p00 + p01)2k

g11

pk00
,

then ψ1(k, π,p) = S1(k)S2(k). Following the proof in Case 1, S1(k) is a convex

function. We proceed to verify that S2(k) is also a positive convex function.

As is derived above,

g11

pk00
= π11

00 +

∞∑
i=1

{
π11
10 ln

i
(
1 +

p10
p00

)
+ π11

01 ln
i
(
1 +

p01
p00

)

+π11
11

[
lni

( 1

p00

)
− lni

(
1 +

p10
p00

)
− lni

(
1 +

p01
p00

)]}ki

i!
.

Write
g11

pk00
− π11

00 =

∞∑
i=1

αik
i,

the result of Case 1 gives αi > 0 for i ≥ 2.

By the Condition, max{π11
10, π

11
01} < π11

11, so we have

α1 < [max{π11
10, π

11
01} − π11

11] ln(
(p00 + p10)(p00 + p01)

p00
) < 0.

For k = 1, g11/p00 − π11
00 reduces to

g11
p00

− π11
00 = π11

01

p01
p00

+ π11
10

p10
p00

+ π11
11

p11
p00

> 0.
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Then we obtain
∑∞

i=1 αi = g11/p
k
00 − π11

00 > 0. Let ϕ = p200/((p00 + p10)
2(p00

+p01)
2), and rewrite S2(k) as

S2(k) =
p2k00

(p00 + p10)2k(p00 + p01)2k
g11

pk00

= ϕk
[
π11
00 +

∞∑
i=1

αik
i
]
= π11

00ϕ
k +

∞∑
i=1

αiϕ
kki.

The second-order derivative of S2(k) is

S
′′
2 (k)=ϕk

[
π11
00 ln

2 ϕ+α1(k ln
2 ϕ+2 lnϕ)+

∞∑
i=2

αik
i−2(k2 ln2 ϕ+2ik lnϕ+i(i− 1))

]
.

Since ϕ = p200/[(p00 + p10)
2(p00 + p01)

2], we have − lnϕ = 2 ln(1 + (p01p10
−p00p11)/p00). As we know, if x ∈ [0, 1), then 2 ln(1 + x) ∈ (x, 2x). Therefore,

− lnϕ ∈ (
p01p10 − p00p11

p00
, 2

p01p10 − p00p11
p00

),

lnϕ ∈ (−2
p01p10 − p00p11

p00
,−p01p10 − p00p11

p00
).

Since group testing is usually used for rare traits, it is reasonable to assume

max{p01, p10} < 0.05 and p00 ≥ 0.9, and then lnϕ > −0.00556.

In group testing, it is reasonable to assume the maximum tolerate group size

kmax < 100, so k ln2 ϕ + 2 lnϕ = lnϕ(k lnϕ + 2) < 0 and k2 ln2 ϕ + 2ik lnϕ +

i(i − 1)) > 0, ∀i ≥ 2. Then we have α1(k ln
2 ϕ + 2 lnϕ) > 0. The second-order

derivative of S2(k) is

S
′′
2 (k) = ϕk

[
π11
00 ln

2 ϕ+α1(k ln
2 ϕ+2 lnϕ)+

∞∑
i=2

αik
i−2(k2 ln2 ϕ+2ik lnϕ+i(i−1))

]

> 0.

Therefore, S2(k) is a convex function. If ki,opt = argminkSi(k), since ψ1(k, π,p) =

S1(k)S2(k), the optimum group size belongs to the interval [min{k1,opt, k2,opt},
max{k1,opt, k2,opt}]. The proof is completed.

Appendix D. Proof of Theorem 2 and 3

Since

ψ(k, π,p) ∝ ψ1(k, π,p) =
g00g01g10g11

m3k6p2k00(p00 + p10)2k(p00 + p01)2k

=
p2k00

m3k6(p00 + p10)2k(p00 + p01)2k
g00

pk00

g10

pk00

g01

pk00

g11

pk00
,

D-OPTIMALITY OF GROUP TESTING 13

ψ(1, π,p) > ψ(2, π,p) is equivalent to ψ1(1, π,p) > ψ1(2, π,p).

Using the notation in the main text, for any given δ ∈ (max
{
p10/p00 +

p11/p00, p01/p00 + p11/p00
}
, 1) and a, b ∈ {0, 1}, let hab(λ) = ξabδ

2 + ηab(2 −
λ)δ − ζab(λ − 1). Then hab(λ) = 0 has a solution in λ. Denote it by λab where

λab = (ξabδ
2 + 2ηabδ + ζab)/(ηabδ + ζab), a, b ∈ {0, 1}. Because hab(λ) is a strictly

decreasing function of λ and hab(1) > 0, λab > 1.

Let

f1(δ) =
p200

26(p00 + p10)2(p00 + p01)2

∏
a,b∈{0,1}

λab(δ)

and

f2(δ) =
p200

23(p00 + p10)2(p00 + p01)2

∏
a,b∈{0,1}

λab(δ).

Since λab(δ) > 0 and

∂λab(δ)

∂δ
=
2ξabδ + 2ηab
ηabδ + ζab

−ηab
ξabδ

2 + 2ηabδ + ζab

(ηabδ + ζab)
2 =

ξabηabδ
2 + 2ξabζabδ + ηabζab

(ηabδ + ζab)
2 >0,

fj(δ) is an increasing function of δ, and goes to p200/(2
6(p00 + p10)

2(p00 + p01)
2)

as δ → 0+, to +∞ as δ → +∞, j = 1, 2. The equation fj(δ) = 1 has a unique

solution for δ, denote it by δj , j = 1, 2.

After some algebras, we have

gab|k=2

p200
= πab

00 + πab
10

[(
1 +

p10
p00

)2
− 1

]
+ πab

01

[(
1 +

p01
p00

)2
− 1

]

+πab
11

[
1 +

(
1 +

p01
p00

+
p10
p00

+
p11
p00

)2
−
(
1 +

p10
p00

)2
−
(
1 +

p01
p00

)2]

= πab
00 + 2πab

10

p10
p00

+ 2πab
01

p01
p00

+ 2πab
11

p11
p00

+ πab
10(

p10
p00

)2 + πab
01(

p01
p00

)2

+πab
11

[
2
p01 + p11

p00

p10 + p11
p00

− (
p11
p00

)2
]
,

gab|k=2

p200
− λab

gab|k=1

p00

= (2− λab)

[
πab
10

p10
p00

+ πab
01

p01
p00

+ πab
11

p11
p00

]
+ πab

10(
p10
p00

)2 + πab
01(

p01
p00

)2

+πab
11

[
2
p01 + p11

p00

p10 + p11
p00

− (
p11
p00

)2
]
− (λab − 1)πab

00.

Then,
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Then we obtain
∑∞

i=1 αi = g11/p
k
00 − π11

00 > 0. Let ϕ = p200/((p00 + p10)
2(p00

+p01)
2), and rewrite S2(k) as

S2(k) =
p2k00

(p00 + p10)2k(p00 + p01)2k
g11

pk00

= ϕk
[
π11
00 +

∞∑
i=1

αik
i
]
= π11

00ϕ
k +

∞∑
i=1

αiϕ
kki.

The second-order derivative of S2(k) is

S
′′
2 (k)=ϕk

[
π11
00 ln

2 ϕ+α1(k ln
2 ϕ+2 lnϕ)+

∞∑
i=2

αik
i−2(k2 ln2 ϕ+2ik lnϕ+i(i− 1))

]
.

Since ϕ = p200/[(p00 + p10)
2(p00 + p01)

2], we have − lnϕ = 2 ln(1 + (p01p10
−p00p11)/p00). As we know, if x ∈ [0, 1), then 2 ln(1 + x) ∈ (x, 2x). Therefore,

− lnϕ ∈ (
p01p10 − p00p11

p00
, 2

p01p10 − p00p11
p00

),

lnϕ ∈ (−2
p01p10 − p00p11

p00
,−p01p10 − p00p11

p00
).

Since group testing is usually used for rare traits, it is reasonable to assume

max{p01, p10} < 0.05 and p00 ≥ 0.9, and then lnϕ > −0.00556.

In group testing, it is reasonable to assume the maximum tolerate group size

kmax < 100, so k ln2 ϕ + 2 lnϕ = lnϕ(k lnϕ + 2) < 0 and k2 ln2 ϕ + 2ik lnϕ +

i(i − 1)) > 0, ∀i ≥ 2. Then we have α1(k ln
2 ϕ + 2 lnϕ) > 0. The second-order

derivative of S2(k) is

S
′′
2 (k) = ϕk

[
π11
00 ln

2 ϕ+α1(k ln
2 ϕ+2 lnϕ)+

∞∑
i=2

αik
i−2(k2 ln2 ϕ+2ik lnϕ+i(i−1))

]

> 0.

Therefore, S2(k) is a convex function. If ki,opt = argminkSi(k), since ψ1(k, π,p) =

S1(k)S2(k), the optimum group size belongs to the interval [min{k1,opt, k2,opt},
max{k1,opt, k2,opt}]. The proof is completed.

Appendix D. Proof of Theorem 2 and 3

Since

ψ(k, π,p) ∝ ψ1(k, π,p) =
g00g01g10g11

m3k6p2k00(p00 + p10)2k(p00 + p01)2k

=
p2k00

m3k6(p00 + p10)2k(p00 + p01)2k
g00

pk00

g10

pk00

g01

pk00

g11

pk00
,

D-OPTIMALITY OF GROUP TESTING 13

ψ(1, π,p) > ψ(2, π,p) is equivalent to ψ1(1, π,p) > ψ1(2, π,p).

Using the notation in the main text, for any given δ ∈ (max
{
p10/p00 +

p11/p00, p01/p00 + p11/p00
}
, 1) and a, b ∈ {0, 1}, let hab(λ) = ξabδ

2 + ηab(2 −
λ)δ − ζab(λ − 1). Then hab(λ) = 0 has a solution in λ. Denote it by λab where

λab = (ξabδ
2 + 2ηabδ + ζab)/(ηabδ + ζab), a, b ∈ {0, 1}. Because hab(λ) is a strictly

decreasing function of λ and hab(1) > 0, λab > 1.

Let

f1(δ) =
p200

26(p00 + p10)2(p00 + p01)2

∏
a,b∈{0,1}

λab(δ)

and

f2(δ) =
p200

23(p00 + p10)2(p00 + p01)2

∏
a,b∈{0,1}

λab(δ).

Since λab(δ) > 0 and

∂λab(δ)

∂δ
=
2ξabδ + 2ηab
ηabδ + ζab

−ηab
ξabδ

2 + 2ηabδ + ζab

(ηabδ + ζab)
2 =

ξabηabδ
2 + 2ξabζabδ + ηabζab

(ηabδ + ζab)
2 >0,

fj(δ) is an increasing function of δ, and goes to p200/(2
6(p00 + p10)

2(p00 + p01)
2)

as δ → 0+, to +∞ as δ → +∞, j = 1, 2. The equation fj(δ) = 1 has a unique

solution for δ, denote it by δj , j = 1, 2.

After some algebras, we have

gab|k=2

p200
= πab

00 + πab
10

[(
1 +

p10
p00

)2
− 1

]
+ πab

01

[(
1 +

p01
p00

)2
− 1

]

+πab
11

[
1 +

(
1 +

p01
p00

+
p10
p00

+
p11
p00

)2
−
(
1 +

p10
p00

)2
−
(
1 +

p01
p00

)2]

= πab
00 + 2πab

10

p10
p00

+ 2πab
01

p01
p00

+ 2πab
11

p11
p00

+ πab
10(

p10
p00

)2 + πab
01(

p01
p00

)2

+πab
11

[
2
p01 + p11

p00

p10 + p11
p00

− (
p11
p00

)2
]
,

gab|k=2

p200
− λab

gab|k=1

p00

= (2− λab)

[
πab
10

p10
p00

+ πab
01

p01
p00

+ πab
11

p11
p00

]
+ πab

10(
p10
p00

)2 + πab
01(

p01
p00

)2

+πab
11

[
2
p01 + p11

p00

p10 + p11
p00

− (
p11
p00

)2
]
− (λab − 1)πab

00.

Then,
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g00|k=2

p200
− λ00

g00|k=1

p00
< ξ00δ

2 + η00δ(2− λ00)− ζ00(λ00 − 1) = 0.

g10|k=2

p200
− λ10

g10|k=1

p00
< ξ10δ

2 + η10δ(2− λ10)− ζ10(λ10 − 1) = 0.

g01|k=2

p200
− λ01

g01|k=1

p00
< ξ01δ

2 + η01δ(2− λ01)− ζ01(λ01 − 1) = 0.

g11|k=2

p200
− λ11

g11|k=1

p00
< ξ11δ

2 + η11δ(2− λ11)− ζ11(λ11 − 1) = 0.

So, gab|k=2/p
2
00 < λabgab|k=1/p00, a, b ∈ {0, 1}.

When m is fixed,

ψ1(2, π,p) < ψ1(1, π,p)
p200

26(p00 + p10)2(p00 + p01)2

∏
a,b∈{0,1}

λab(δ1) = ψ1(1, π,p).

When n is fixed,

ψ1(2, π,p) < ψ1(1, π,p)
p200

23(p00 + p10)2(p00 + p01)2

∏
a,b∈{0,1}

λab(δ2) = ψ1(1, π,p).

This completes the proofs.
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g00|k=2

p200
− λ00

g00|k=1

p00
< ξ00δ

2 + η00δ(2− λ00)− ζ00(λ00 − 1) = 0.

g10|k=2

p200
− λ10

g10|k=1

p00
< ξ10δ

2 + η10δ(2− λ10)− ζ10(λ10 − 1) = 0.

g01|k=2

p200
− λ01

g01|k=1

p00
< ξ01δ

2 + η01δ(2− λ01)− ζ01(λ01 − 1) = 0.

g11|k=2

p200
− λ11

g11|k=1

p00
< ξ11δ

2 + η11δ(2− λ11)− ζ11(λ11 − 1) = 0.

So, gab|k=2/p
2
00 < λabgab|k=1/p00, a, b ∈ {0, 1}.

When m is fixed,

ψ1(2, π,p) < ψ1(1, π,p)
p200

26(p00 + p10)2(p00 + p01)2

∏
a,b∈{0,1}

λab(δ1) = ψ1(1, π,p).

When n is fixed,

ψ1(2, π,p) < ψ1(1, π,p)
p200

23(p00 + p10)2(p00 + p01)2

∏
a,b∈{0,1}

λab(δ2) = ψ1(1, π,p).

This completes the proofs.
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