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Abstract: Diversity arises as a significant concept in many scientific fields, and
particularly in ecology. The relationships between diversity indices and species
accumulation functions are investigated. Nonparametric methods are illustrated
with ecological examples.
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1. Introduction

Conservation of diversity is an important problem in biological sciences (e.g.,

Colwell and Coddington (1994)). Diversity also arises as a significant concept

in the physical and social sciences (e.g., Patil and Taillie (1982)). Consider a

community consisting of c distinct species labeled by i = 1, . . . , c, with πi ∈

(0, .5) being the abundance of species i. Many diversity indices are used in

ecology, paleobiology, entomology and genetics, etc. (e.g., Magurran (1988)),

among which the most familiar ones are the number of species c, the Shannon

index −
∑c

i=1 πi log πi, and the Simpson index
∑c

i=1 π
2
i . For several theoretical

reasons, Patil and Taillie (1982) proposed, for h ≥ −1,

∆(h) =

c∑

i=1

πir(πi;h), (1)

where r(π;h) = h−1(1−πh) for h 6= 0, and r(π; 0) = − log π. Note that ∆(−1) =

c−1, ∆(0) = −
∑c

i=1 πi log πi, and ∆(1) = 1−
∑c

i=1 π
2
i are special cases of ∆(h),

and the equivalent number E(h) = {1 − h∆(h)}−1/h (e.g., MacArthur (1965))

and the entropy log E(h) (Renyi (1961)) are transformations of ∆(h).

In order to quantify diversity, one needs to sample individuals from the

community. The numbers of detected individuals from the species can be modeled

as a multinomial sample with index c and probabilities πi. The expected number

of species being detected in a sample of m individuals is

A(m) =

c∑

i=1

{
1 − (1 − πi)

m
}
, m = 0, 1, . . . . (2)
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When the number of detected individuals from species i is modeled as a Pois-

son process with rate λi (e.g., Norris and Pollock (1998) and Mao (2004)), the

expected number of species detected during the interval [0, t] is

a(t) =
c∑

i=1

{1 − exp(−λit)}, t ≥ 0. (3)

If Θ(λ) = c−1
∑c

i=1 I(λi ≤ λ), with I(·) being the indicator function, or if the λi

are assumed to arise as a random sample from Θ, then

a(t) = c

∫
(1 − e−λt) dΘ(λ), t ≥ 0. (4)

Both A(m) and a(t) are called species accumulation functions.

The curves (m,A(m)) and (t, a(t)) provide information to assess the efficacy

and completeness of sampling projects and predict the number of new species to

be discovered in the future (e.g., Good and Toulmin (1956), Efron and Thisted

(1976), de Caprariis, Lindemann and Collins (1976), Soberón and Llorente (1993),

Colwell and Coddington (1994), Solow and Polasky (1999) and Shen, Chao and

Lin (2003)).

Let Yi denote the number of individuals from species i in a sample of size

s =
∑c

i=1 Yi. This sample is considered to have been taken during the interval

[0, 1]. Let nx =
∑c

i=1 I(Yi = x), n =
∑c

i=1 I(Yi > 0) and D = max{x : nx >

0}. Based on {nx}
D
x=1, the estimation of A(m) was studied by Hurlbert (1971),

Smith and Grassle (1977), Solow and Polasky (1999) and Shen, Chao and Lin

(2003), that of a(t) by Good and Toulmin (1956), Efron and Thisted (1976) and

Boneh, Boneh and Caron (1998), of ∆(0) by Zahl (1977) and Chao and Shen

(2003), and of c = ∆(−1) + 1 by Chao (1984) among others (see Bunge and

Fitzpatrick (1993)).

It will be shown that ∆(h) is a function of the A(m), leading to an approx-

imation δ(h) to ∆(h) in the Poisson model. Besides the representations in (1),

(2), (3) and (4), alternative representations of A(m), ∆(h) and a(t), and sev-

eral representations of δ(h), will be constructed. Nonparametric estimators arise

from these representations, among which some are new and others correspond to

known estimators with new interpretations.

The article is organized as follows. In Section 2, new representations are

introduced for the species accumulation functions and the diversity indices. Es-

timation methods are discussed in Section 3. Examples are investigated and a

simulation study is reported in Section 4.
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2. The Multinomial And Poisson Models

In the multinomial model, define a distribution G(ν) by

G(ν) = c−1
c∑

i=1

I(πi/(1 − πi) ≤ ν), ν ∈ (0,∞),

with generalized moments µx =
∫
νx · c(1 + ν)−sdG(ν). The distribution G(ν) is

nonidentifiable because only finitely many µx are identifiable,

E(nx) =

c∑

i=1

(
s

x

)
πx

i (1 − πi)
s−x =

(
s

x

)
µx, x = 1, 2, . . . , s,

where
(
α
β

)
= (β!)−1

∏β−1
k=0(α− k) for a real α and an integer β ≥ 0.

Note that A(m) with m ∈ {x}s
x=1 and ∆(h) with h ∈ {x}s−1

x=1 are identifiable,

and that A(m) with m > s and ∆(h) with h ∈ [−1,∞)\{x}s−1
x=1 have an additive

decomposition into nonidentifiable and identifiable components.

Proposition 1. Both A(m) and ∆(h) are functions of the µx, with

A(m) =
∞∑

x=1

{(
s

x

)
−

(
s−m

x

)}
µx, (5)

∆(h) =






h−1
∞∑

m=2

(−1)m
(
h+ 1

m

)
A(m) − 1 (h 6= 0)

∞∑

m=2

A(m)

m(m− 1)
− 1 (h = 0).

(6)

The Yi can be understood as a random sample from gΘ(x) =
∫
e−λλx/(x!)

dΘ(λ), x = 0, 1, . . . . Let dQ(λ) = (1 − e−λ)dΘ(λ)/
∫

(1 − e−λ)dΘ(λ). Condi-

tioning on n, those Yi > 0 arise as a random sample from fQ(x) =
∫
λx/{(eλ −

1)x!} dQ(λ), x = 1, 2, . . . (e.g., Mao (2004)). fQ(x) =
∫
λx/{(eλ − 1)x!} dQ(λ),

x = 1, 2, . . . . Note that gΘ(x) and fQ(x) are generalized moments of Θ and Q

respectively. The fQ(x) are identifiable and Q is completely determined by fQ.

Norris and Pollock (1998) considered estimating Θ and c simultaneously, which

is computationally expensive. A much simpler approach is to estimate Q, e.g.,

by the nonparametric maximum likelihood estimator (MLE) Q̂ (Lindsay (1983)

and Mao (2004)).

Q̂ = argmax
{ D∑

x=1

nx log fQ(x) : allQ
}
.
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Let θ = E(s). The expected number of individuals sampled up to the time
t = m/θ is m, implying that a(m/θ) ≈ A(m) and δ(h) ≈ ∆(h), where

δ(h) =






h−1
∞∑

m=2

(−1)m
(
h+ 1

m

)
a
(m
θ

)
− 1 (h 6= 0)

∞∑

m=2

a(m
θ )

m(m− 1)
− 1 (h = 0).

(7)

Proposition 2. Both a(t) and δ(h) are functions of the µx, δ(h) is a function

in the λi, and (δ(h) + 1)/a(1) and a(t)/a(1) are functionals of Q, with

a(t) =

∞∑

x=1

{
1 − (1 − t)x

}
cgΘ(x), (8)

a(t) = a(1)

∫
1 − e−λt

1 − e−λ
dQ(λ), (9)

δ(h) =
c∑

i=1

γ(λi, h, θ) − 1, (10)

δ(h) = a(1)

∫
γ(λ, h, θ)

1 − e−λ
dQ(λ) − 1, (11)

γ(λ, h, θ) =

{
(1 + h−1)(1 − e−

λ

θ ) − h−1(1 − e−
λ

θ )h+1 (h 6= 0)

(1 − e−
λ

θ ){1 − log(1 − e−
λ

θ )} (h = 0).

Both A(m) in (2) and ∆(h) in (1) can be written as
∑c

i=1 ϕ(πi), and a(t) in
(3) and δ(h)+1 in (10) can be written as

∑c
i=1 ψ(λi). Let Ω = {i : Yi > 0} denote

the random index set of detected species. Because E{I(Yi > 0)} = 1−(1−πi)
s in

the multinomial model, and E{I(Yi > 0)} = 1− exp(−λi) in the Poisson model,
we can write

∑c
i=1 ϕ(πi) and

∑c
i=1 ψ(λi) as

c∑

i=1

ϕ(πi) =

c∑

i=1

ϕ(πi)
E{I(Yi > 0)}

1 − (1 − πi)s
= E

{∑

i∈Ω

ϕ(πi)

1 − (1 − πi)s

}
, (12)

c∑

i=1

ψ(λi) =
c∑

i=1

ψ(λi)
E{I(Yi > 0)}

1 − exp(−λi)
= E

{∑

i∈Ω

ψ(λi)

1 − exp(−λi)

}
. (13)

3. Inference

3.1. Abundance plug-in estimation

Consider estimators λ̂(x) and π̂(x) given Yi = x for λi and πi, respectively.
The MLEs for λi and πi are λ̂ML(Yi) and π̂ML(Yi) respectively, where λ̂ML(x) =
x, π̂ML(x) = s−1x, x ≥ 0.
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When Θ is treated as a prior, the posterior mean of λ given x is

λ(x) ≡ E{λ|x} = (x+ 1)gΘ(x+ 1)g−1
Θ (x) = (x+ 1)fQ(x+ 1)f−1

Q (x),

where fQ(0) = gΘ(0)/{1−gΘ(0)} is the odds of the probability of a species being

undetected. Given the nonparametic MLE Q̂ for Q, as πi = λi/
∑c

k=1 λk and s

estimates
∑c

k=1 λk, the nonparametric empirical Bayes estimators (EBEs) for λi

and πi are λ̂EB(Yi) and π̂EB(Yi) respectively, where

λ̂EB(x) =
(x+ 1)f bQ

(x+ 1)

f bQ
(x)

, π̂EB(x) =
(x+ 1)f bQ

(x+ 1)

sf bQ
(x)

, x ≥ 0.

In terms of risk, EBEs are better than MLEs in a setting of estimating a collection

of parameters simultaneously (Lehmann and Casella (1998, p.272)).

The sample coverage is
∑c

i=1 πiI(Yi > 0), for which a nonparametric EBE is

1−n1/s (Good (1953)). Chao and Shen (2003) considered an estimator π̂SC(Yi)

for πi, when Yi > 0, as a hybrid of EBE and MLE, where π̂SC(x) = (1 −

n1/s)π̂ML(x) = (1 − n1/s)x/s, x ≥ 1.

One might consider plugging estimators for πi and λi into A(m) in (2),

∆(h) in (1), a(t) in (3) and δ(h) in (10), e.g., an estimator for ∆(0) given by

∆̂ML(0) = −
∑c

i=1 π̂ML(x) log π̂ML(x) = −
∑D

x=1 nxx/s log(x/s). If π̂ML(x) and

λ̂ML(x) are used, then the estimators for ∆(h) and δ(h) are infinity for h < 0

and a substantial bias can exist in the estimators for A(m), a(t), ∆(h) and

δ(h) with h ≥ 0. Zahl (1977) gave a jackknifed version ∆̂JM (0) of ∆̂ML(0).

There are other bias-corrected versions that depend on an estimator for c (e.g.,

Boneh, Boneh and Caron (1998)) and should not be used, because they can vary

dramatically when different estimators for c are used.

Because of (12) and (13), it is unnecessary to consider estimators for πi or

λi when Yi = 0. Given appropriate estimators π̂(Yi) and λ̂(Yi) for πi and λi,

respectively, with i ∈ Ω, the Horvitz-Thompson plug-in estimators are

∑

i∈Ω

ϕ(π̂(Yi))

1 − (1 − π̂(Yi))s
,

∑

i∈Ω

ψ(λ̂(Yi))

1 − exp(−λ̂(Yi))
.

Specifically, the following are estimators for A(m), ∆(h), a(t) and δ(h),

Â(m) =

D∑

x=1

nx
1 − (1 − π̂(x))m

1 − (1 − π̂(x))s
, ∆̂(h) =

D∑

x=1

nx
π̂(x)r(π̂(x);h)

1 − (1 − π̂(x))s
,

â(t) =
D∑

x=1

nx
1 − exp(−λ̂(x)t)

1 − exp(−λ̂(x))
, δ̂(h) =

D∑

x=1

nx
γ(λ̂(x), h, s)

1 − exp(−λ̂(x))
− 1.
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We write ÂEB(m) and ∆̂EB(h) if π̂(x) = π̂EB(x), ÂSC(m) and ∆̂SC(h) if
π̂(x) = π̂SC(x), and âEB(t) and δ̂EB(h) if λ̂(x) = λ̂EB(x). Note that ∆̂SC(0)

was proposed in Chao and Shen (2003), while Shen, Chao and Lin (2003) gave

an estimator for A(m) that is fully derived from the sample coverage approach.

3.2. Moment plug-in estimation

In the multinomial model, when 1 ≤ m ≤ s, since E(nx) =
(

s
x

)
µx one can

replace µx with its estimator
(

s
x

)−1
nx to obtain an estimator Ǎ(m) for A(m),

Ǎ(m) = n−

s−m∑

x=1

(
s−m

x

)(
s

x

)−1

nx.

This estimator was originally found in Hurlbert (1971). It is a minimum variance
unbiased estimator for A(m) (Smith and Grassle (1977)) and is a U -statistic

(Mao, Colwell and Chang (2005)). There is an unbiased estimator for ∆(h) when

h ∈ {x}s−1
x=1, e.g.,

∑c
i=1 π

2
i = 1−∆(1) estimated by

∑s
x=1 x(x− 1)nx/{s(s− 1)}.

There is neither an unbiased estimator for A(m) with m > s, nor an unbiased

estimator for ∆(h) with h ∈ [−1,∞)\{x}s−1
x=1. For m > s, truncating the series

in (5) at x = s yields a biased estimator Ǎ(m) for A(m),

Ǎ(m) =

s∑

x=1

{
1 −

(
s−m

x

)(
s

x

)−1}
nx =

D∑

x=1

{
1 −

(
s−m

x

)(
s

x

)−1}
nx.

In the Poisson model, one can replace cgΘ(x) in (8) with nx to obtain

ǎ(t) =

D∑

x=1

{
1 − (1 − t)x

}
nx =

D∑

x=1

{
1 − (1 − t)x

}
nx.

The estimator ǎ(t) for t > 1 was proposed in Good and Toulmin (1956).
Although both A(m) and a(t) are monotonic in m or t, neither Ǎ(m) nor

ǎ(t) is necessarily monotonic. The estimator Ǎ(m) for m ≤ 2s, and approaching

2s, can be huge if D and s are comparable. Neither Ǎ(m) for m > 2s nor ǎ(t)
for t > 2 is reliable. When m and t go to infinity, Ǎ(m) and ǎ(t) must diverge

to infinity or minus infinity, depending on D being odd or even.

3.3. Distribution plug-in estimation

The estimators ã(t) for a(t) in (9) and δ̃(h) for δ(h) in (11) are defined by

ã(t) = n

∫
(1 − e−λt)/(1 − e−λ) dQ̂(λ),

δ̃(h) = n

∫
γ(λ, h, s)/(1 − e−λ) dQ̂(λ) − 1.
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Although Q is over λ ∈ (0,∞), Q̂ might have a support point at or close to

zero. When Q = ωQξ + (1 − ω)Q−ξ with Qξ degenerate at ξ, a(t) is approxi-

mately linearly increasing in t as ξ approaches zero. When Q is degenerate at

λ, limλ→0 δ(h)/a(1) = ∞ for h ∈ (−1, 0]. If Q̂ has a support point near zero,

then ã(t) for large t or δ̃(h) for h ≤ 0 can be unreliable. The quality of the

distribution plug-in estimators can be improved if extra information about Q is

available, e.g., λ ∈ [ǫ,∞) for some ǫ > 0, or one uses a penalized nonparametric

MLE for Q (e.g., the minimum AIC estimator).

3.4. Confidence intervals

A bootstrap method can be used to construct confidence intervals following

Mao et al. (2005). The variance of Ǎ(m) can be calculated (Good and Toulmin

(1956)), and with the normality assumption, confidence intervals can be con-

structed for A(m) and ∆(h). The variance of the estimator ǎ(t) is

̺2(t) =

∞∑

x=1

{1 − (1 − t)x}2cgΘ(x) − c−1a2(t) <

∞∑

x=1

{1 − (1 − t)x}2cgΘ(x).

Asymptotically, ǎ(t) is a normal random variable with mean a(t) and variance

̺2(t). Constructing asymptotic confidence intervals for a(t) requires an estimator

for c. A conservative choice uses the upper bound to ̺2(t).

4. Numerical studies

4.1. Examples

Table 1 presents two datasets: bird concerning n = 72 bird species among

s = 645 birds (Norris and Pollock (1998)), and bivalve concerning n = 102

bivalve families among s = 748 species (Siegel and German (1982)). The esti-

mates π̂SC(x) and π̂EB(x) are shown in Figure 1. The estimates ∆̂SC(−1) + 1,

∆̂EB(−1)+1, δ̂EB(−1)+1 and δ̃(−1)+1 are given, respectively, by 81.21, 75.96,

75.98, 77.24 in bird and 120.16, 114.75, 114.77, 123.17 in bivalve.

Table 1. The nonzero known nx in two examples.

bird x 1 2 3 4 5 6 7 8 9 10 12 13

nx 11 12 10 6 2 5 1 3 2 4 1 1
x 14 15 16 18 25 29 30 32 39 44 53 54

nx 1 2 1 2 1 1 1 1 1 1 1 1

bivalve x 1 2 3 4 5 6 7 8 9 12 13 14

nx 24 16 9 9 6 6 6 5 2 1 4 2

x 15 16 17 20 22 29 35 55 99

nx 1 1 3 1 1 2 1 1 1
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Figure 1. The estimates π̂SC(x) (solid) and π̂EB(x) (dashed) in bird (top)

and bivalve (bottom). The right panels are close-ups of the left ones.

Let N(m) = A(m + 1) − A(m) with Ň(m) = Ǎ(m + 1) − Ǎ(m). Although

N(m) > 0 and N(m+ 1)/N(m) < 1, and 2s = 1, 290 in bird and 2s = 1, 496 in

bivalve, Ň(1, 041) < 0 in bird and Ň(1, 322)/Ň (1, 321) > 1 in bivalve. Let

ǫ(m) be the relative difference between ã(m/s) and ÂEB(m), âEB(m/s), ǎ(m/s)

and Ǎ(m) (e.g., ǫ(m) = Ǎ(m)/ã(m/s) − 1), which are given by, respectively,

100 × max{|ǫ(m)| : m ∈ [1, 1041]} = 2.04, 1.94, 0.14, 1.82 (bird),

100 × max{|ǫ(m)| : m ∈ [1, 1322]} = 3.39, 3.38, 1.28, 1.78 (bivalve).

Let η(h) be the relative difference between δ̃(h) and ∆̂SC(h), ∆̂EB(h) or δ̂EB(h)

(e.g., η(h) = δ̂EB(h)/δ̃(h) − 1). Figure 2 presents δ̃(h) and η(h).

The 95% asymptotic confidence intervals from ǎ(m/s) and 95% bootstrap

confidence intervals for A(m) from ã(m/s) are shown in Figure 3, where c is

replaced with ĉ = n + n2
1/(2n2) (Chao (1984)). Figure 4 presents six estimates

with 95% bootstrap confidence intervals for ∆(0). The 95% bootstrap confidence

limits are the 2.5% and 97.5% quantiles of 200 estimates.
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4.2. A simulation study

Consider three synthetic abundance models M1, M2 and M3. In M1 and

M2, πi = 1/(i
∑c

k=1 1/k) for i = 1, 2, . . . , c, with c = 100 (M1) or c = 200 (M2),

and sample sizes of s1 = 100 and s2 = 200. In M3, c = 7, 407, πi = π(k) with

105 × π(k) = 9.40, 76.76, 254.09, 421.33 and 925.80, and
∑c

i=1 I(πi = π(k)) =

7, 058, 329, 6, 12 and 2 for k = 1, 2, 3, 4, 5, with sample size of s1 = 1, 000

and s2 = 2, 500. Results concerning ∆(0) and A(m) at m = 2s, m = 2.5s and

m = 3s are reported. Given Mj and si, B = 200 samples are taken. Tables 2

and 3 present β (bias) and σ (root mean square error) for estimators of A(m)

and ∆(0), respectively, where for a parameter φ and its estimates φ̂k,

β = B−1
B∑

k=1

(φ̂k − φ), σ =
{
B−1

B∑

k=1

(φ̂k − φ)2
} 1

2

.

The estimator ã(m/s) has the smallest |β| and is better than, or at least com-

parable to, other estimators for A(m) in terms of σ. While δ̃(0), ∆̂ML(0) and

∆̂JM(0) might have a substantial bias, ∆̂SC(0), ∆̂EB(0) and δ̂EB(0) have com-

parable performance. Bias is dominant for ∆̂ML(0) and ∆̂JM(0) in M3. Note

that ∆̂SC(0) is the best in M1 and M2 and ∆̂EB(0) is the best in M3.
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Table 2. The bias β and root mean square error σ of ã(m/s), âEB(m/s)
and ÂEB(m) for A(m) in three synthetic models for m = 2s, m = 2.5s and
m = 3s.

m = 2s m = 2.5s m = 3s
β σ β σ β σ

M1 s1 ã 0.3 7.7 0.9 10.3 1.8 13.2
âEB −2.3 7.6 −3.8 9.8 −5.3 12.0

ÂEB −2.4 7.6 −3.8 9.8 −5.3 12.0

s2 ã 0.3 8.1 1.3 10.8 2.5 13.7

âEB −3.4 8.1 −5.0 10.1 −6.3 11.9

ÂEB −3.5 8.1 −5.0 10.1 −6.4 11.9

M2 s1 ã 0.5 8.8 0.9 11.4 1.5 14.4

âEB −2.6 9.1 −4.7 11.9 −7.2 14.9

ÂEB −2.6 9.1 −4.8 11.9 −7.3 15.0
s2 ã 1.2 9.9 2.0 13.2 3.2 17.1

âEB −3.9 10.0 −7.1 13.6 −10.5 17.3

ÂEB −4.0 10.1 −7.2 13.6 −10.6 17.4

M3 s1 ã −4.1 33.3 −7.4 48.5 −11.6 67.6

âEB −29.7 44.7 −58.7 75.0 −97.1 114.8

ÂEB −29.7 44.7 −58.8 75.0 −97.2 114.8

s2 ã 1.6 52.5 9.6 77.2 24.1 111.5
âEB −96.3 109.1 −177.9 190.8 −273.3 286.9

ÂEB −96.4 109.1 −178.0 190.9 −273.4 287.0

Table 3. The bias β and root mean square error σ of ∆̂ML(0), ∆̂JM (0),
∆̂SC(0), ∆̂EB(0), δ̂EB(0), and δ̃(0) for ∆(0) in three synthetic models.

∆̂ML(0) ∆̂JM (0) ∆̂SC(0) ∆̂EB(0) δ̂EB(0) δ̃(0)

M1 s1 β −0.462 −0.127 −0.063 −0.076 −0.144 0.412

σ 0.484 0.216 0.181 0.207 0.245 1.048

s2 β −0.274 −0.047 0.010 −0.060 −0.148 0.205

σ 0.292 0.125 0.113 0.133 0.200 0.569

M2 s1 β −0.702 −0.279 −0.194 −0.141 −0.201 0.674

σ 0.718 0.339 0.278 0.261 0.303 1.432
s2 β −0.436 −0.117 −0.045 −0.074 −0.135 0.442

σ 0.450 0.172 0.128 0.153 0.193 0.904

M3 s1 β −1.806 −1.021 −0.553 −0.377 −0.387 0.846

σ 1.806 1.022 0.560 0.389 0.398 1.843

s2 β −1.146 −0.497 −0.372 −0.226 −0.241 0.400

σ 1.146 0.497 0.374 0.230 0.246 1.032

5. Discussion

Several methods can provide useful estimators for A(m) with m ≤ s and
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a(t) with t ≤ 1. Because it is easy to calculate ǎ(t) and its variance, ǎ(t) is

recommended. For small or moderate t (e.g., t ∈ [0, 3]), ã(t) is a useful estimator

for a(t). While ∆̂SC(0) (Chao and Shen (2003)) is a useful estimator for ∆(0),

∆̂EB(0) and δ̂EB(0) are new competitors. In addition, the number of species,

the Shannon index, and the Simpson index can be derived from the inter-specific

encounter theory (Hurlbert (1971)), which also yields 1+
∑c

i=1 π
2
i log(πi)/(1−πi)

(Patil and Taillie (1982)). Good (1953) considered D(u, v) =
∑c

i=1 π
u
i (− log πi)

v

for u, v = 0, 1, . . . , whose domain is extended by Baczkowski, Joanes and Shamia

(1998). The proposed methods can be applied to these indices.

Appendix. Proofs of Propositions

To show Proposition 1, write A(m) =
∑c

i=1

{
1 − (1 − πi)

m
}

in (2) as

c∑

i=1

{
1 −

(
1 +

πi

1 − πi

)−m}
=

∫ {
(1 + ν)s − (1 + ν)s−m

}
c(1 + ν)−sdG(ν)

=

∫ ∞∑

x=0

{(
s

x

)
−

(
s−m

x

)}
νxc(1 + ν)−sdG(ν)

=

∞∑

x=1

{(
s

x

)
−

(
s−m

x

)}
µx.

For h 6∈ {0,−1}, as
∑∞

m=0(−1)m
(h+1

m

)
= 0, write 1 − h∆(h) =

∑c
i=1 π

h+1
i as

c∑

i=1

{
1 − (1 − πi)

}h+1
=

c∑

i=1

∞∑

m=0

(−1)m
(
h+ 1

m

)
(1 − πi)

m

= c

∞∑

m=0

(−1)m
(
h+ 1

m

)
−

∞∑

m=0

(−1)m
(
h+ 1

m

) c∑

i=1

{1 − (1 − πi)
m}

= 1 − h∆(h) = −

∞∑

m=0

(−1)m
(
h+ 1

m

)
A(m)

= h+ 1 −
∞∑

m=2

(−1)m
(
h+ 1

m

)
A(m).

For h = 0, as limh↓0 h
−1

(h+1
m

)
= (−1)m−2/{m(m − 1)}, write

∆(0) + 1 = lim
h↓0

∆(h) + 1 = lim
h↓0

∞∑

m=2

(−1)mh−1

(
h+ 1

m

)
A(m)

=

∞∑

m=2

A(m)

m(m− 1)
.
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For Proposition 2, it is clear that the conclusions that concern a(t) hold. To

show (11) for h 6= 0, write h(δ(h) + 1)/a(1) as

h
δ(h) + 1

a(1)
=

∞∑

m=2

(−1)m
(
h+ 1

m

)∫
(1 − e−λm/θ)(1 − e−λ)−1 dQ(λ)

=

∫
∞∑

m=0

(h+1
m

)
(−1)m −

∞∑
m=0

(h+1
m

)
(−e−

λ

θ )m −
(h+1

1

)
(−1) +

(h+1
1

)
(−e−

λ

θ )

1 − e−λ
dQ(λ)

=

∫
(h+ 1)(1 − e−

λ

θ ) − (1 − e−
λ

θ )h+1

1 − e−λ
dQ(λ).

The case with h = 0 in (11) holds by letting h go to zero, and (10) holds due to

the relationship between Q and Θ, and Θ(λ) = c−1
∑c

i=1 I(λi ≤ λ).
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