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Supplementary Material

This Supplementary Material contains three sections. First we will give some

additional results from the simulation study and the real data analysis in the paper

and then sketch the proof of the asymptotic results given in the paper.

S1 Additional Simulation Results

This section contains some additional simulation results on β̂(t).

∗Equal contribution.
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Figure 1: Simulation results on estimation of β1(t) and β2(t) under the Poisson process with
Λ0(t) = 2t+ 3 and dependent covariates. (a1) - (a4): on estimation of β1(t) and β2(t); (a5) - (a8):
on variance estimation of β̂1(t) and β̂2(t).
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Figure 2: Simulation results on estimation of β1(t) and β2(t) under the Non-Poisson process with
Λ0(t) = 2t+ 3 and dependent covariates. (a1) - (a4): on estimation of β1(t) and β2(t); (a5) - (a8):
on variance estimation of β̂1(t) and β̂2(t).
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Figure 3: Simulation results on estimation of β1(t) and β2(t) under the Poisson process with
Λ0(t) = (sin(4πt) + 4πt)/2 and dependent covariates. (a1) - (a4): on estimation of β1(t) and β2(t);
(a5) - (a8): on variance estimation of β̂1(t) and β̂2(t).
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Figure 4: Simulation results on estimation of β1(t) and β2(t) under the Non-Poisson process with
Λ0(t) = (sin(4πt) + 4πt)/2 and dependent covariates. (a1) - (a4): on estimation of β1(t) and β2(t);
(a5) - (a8): on variance estimation of β̂1(t) and β̂2(t).
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S2 Additional Real Data Analysis Results

This section includes some additional results for the real data analysis with the

number of interior knots being 5 and 7.
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Figure 5: Estimated time-varying effects of the location, education level and the interaction between
them (solid curves) and corresponding pointwise 95% confidence intervals (ribbons) with 5 interior
knots.
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Figure 6: Estimated time-varying effects of the location, education level and the interaction between
them (solid curves) and corresponding pointwise 95% confidence intervals (ribbons) with 7 interior
knots.

S3 The proof of the asymptotic properties

In this section, we will first introduce some additional notation and preliminary

results needed for the proof and then sketch the proofs of the consistency, the rate of
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convergence and the asymptotic normality discussed in Sections S3.2, S3.3 and S3.4,

respectively.

S3.1 The preliminary results

Note that it is not straightforward to study the asymptotic properties of ϑ̂n based

on the sieve estimating equation (2.3). In this part, we will introduce some notation

and show that solving (2.3) is equivalent to maximize pseudo-likelihood function,

ln (ϑ) =
1

n

n∑
i=1

∫ τ

0

Yi(t)
(
Ni(t) log (Λ (t)) +Ni(t)θ

T (t)Vi(t)− exp
(
θT (t)Vi(t)

)
Λ (t)

)
dHi(t)

(S3.1)

with respect to ϑ over Θn = A ×Mn × F . Here, with slight abuse of notation,

θT (t)Vi(t) = γTWi(t) + βT (t)Zi(t) and θ (t) = (γ,β (t)). Let Pn be the empirical

measure and P be the true probability measure. Let Mn (ϑ) = ln (ϑ) = Pnmϑ (V)

and M (ϑ) = Pmϑ (V), where

mϑ (O) =

∫ τ

0

Y (t)
(
N(t) log (Λ (t)) +N(t)θT (t)V(t)− exp

(
θT (t)V(t)

)
Λ (t)

)
dH(t)

and O = (V, H, Y ).

Also, let

Λ̂(t,θ (t)) =

∑n
j=1 Yj(t)Nj(t)dHj (t)∑n

j=1 Yj(t) exp
(
θT (t)Vj(t)

)
dHj (t)

.
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We first show Λ̂(t,θ (t)) maximizes (S3.1) for a fixed θ(t). After some algebra,

Mn (θ,Λ)−Mn

(
θ, Λ̂

)
=

1

n

n∑
i=1

∫ τ

0

Yi(t)Λ̂(t,θ (t)) exp
(
θT (t)Vi(t)

)
×

(
Ni(t)

Λ̂(t,θ (t)) exp
(
θT (t)Vi(t)

) log

(
Λ (t)

Λ̂(t,θ (t))

)
− Λ (t)

Λ̂(t,θ (t))
+ 1

)
dHi(t).

Plug in Λ̂(t,θ (t)), and by Fubini’s theorem, we have

1

n

n∑
i=1

∫ τ

0

Yi(t)Λ̂(t,θ (t)) exp
(
θT (t)Vi(t)

)( Λ (t)

Λ̂(t,θ (t))
− 1

)
dHi(t)

=
1

n

∫ τ

0

(
1− Λ (t)

Λ̂(t,θ (t))

)(
n∑
j=1

Yj(t)Nj(t)dHj (t)

)
n∑
i=1

Yi(t) exp
(
θT (t)Vi(t)

)
dHi(t)∑n

j=1 Yj(t) exp
(
θT (t)Vi(t)

)
dHj (t)

=
1

n

∫ τ

0

n∑
j=1

Yj(t)Nj(t)

(
1− Λ (t)

Λ̂(t,θ (t))

)
dHj (t) .

Therefore, since log (x)− x+ 1 ≤ − (x− 1)2 for all positive x and the equality holds

iff x = 1,

Mn (θ,Λ)−Mn

(
θ, Λ̂

)
=

1

n

n∑
i=1

∫ τ

0

Yi(t)Ni(t)

{
log

(
Λ (t)

Λ̂(t,θ (t))

)
− Λ (t)

Λ̂ (t)
+ 1

}
dHi(t)

≤− 1

n

n∑
i=1

∫ τ

0

Yi(t)Ni(t)

(
Λ (t)

Λ̂(t,θ (t))
− 1

)2

dHi(t)

≤0 .
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This implies Mn (θ,Λ) ≤ Mn

(
θ, Λ̂

)
for any θ. The equality holds iff Λ (t) =

Λ̂(t,θ (t)) at points where
∑n

i=1 Yi(t)Hi(t) jumps. Since ln (ϑ) is only determined

by the value of Λ̂(t,θ (t)) at points where
∑n

i=1 Yi(t)Hi(t) jumps, Λ̂ (t,θ (t)) is the

unique maximizer of ln (θ,Λ) with respect to Λ. Then, to maximize ln
(
θ, Λ̂(t,θ)

)
with respect to θ over A×Mn, by the idea of profile likelihood in Wellner and Zhang

(2007), we need to maximize ln
(
θn, Λ̂(t,θn)

)
with respect to θn. After some algebra,

∂ln

(
θn, Λ̂(t,θn)

)
/∂θn equals the left hand side of (2.3). Obviously, ln

(
θn, Λ̂(t,θn)

)
is convex with respect to θn, implying maximizing ln (ϑ) over A×Mn×F is equiv-

alent to solving (2.3).

After showing the equivalence of solving the estimating equation and maximizing

ln (ϑ), the estimator is actually an M-estimator and its (asymptotic) behavior can be

investigated through mθ (O) with the modern empirical process theory. Moreover,

(S3.1) coincides with the pseudo-likelihood function for panel count data proposed

in Wellner and Zhang (2007) which has been extensively investigated, similar to He

et al. (2017). We can then use many conclusions in the existing literature to facilitate

our theoretical justification.

S3.2 Proof of the consistency

To prove the consistency of θ̂n, we will employ Theorem 3.1 and Remark 3.1 in Chen

(2007). First we will show that ϑ0 is the unique maximizer of M (ϑ). After some
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calculation based on the conditional expectation on V(t), we have

M (ϑ) =

∫
exp

(
θT (t) v(t)

)
Λ (t)

{
log (Λ (t)) + θT (t) v(t)− 1

}
dυ1 (t, v) ,

and therefore

M (ϑ0)−M (ϑ) =

∫
Λ (u) exp

(
θT (u) v(u)

)
h

{
Λ0 (u) exp

(
θT0 (u) v(u)

)
Λ (u) exp

(
θT (u) v(u)

) } dυ1 (t, v) ,

(S3.2)

where h (x) = x log (x) − x + 1. Note that h (x) ≥ 0 for all x > 0 and the equality

holds only when x = 1. Therefore, by similar argument in Wellner and Zhang (2007),

under conditions (C2) and (C8), M (ϑ0) = M (ϑ) if and only if θ (t) = θ0 (t) and

Λ (t) = Λ0 (t) a.e. with respect to µ1. In this manner, ϑ0 is the unique maximizer of

M (ϑ) on µ1.

By the similar arguments used in Wellner and Zhang (2007) and conditions (C1)-

(C5), we can show that Λ̂ (t) is uniformly bounded in probability for t ∈ [0, τ ] by

µ1 ({τ}) > 0 in (C2).

By Helly-Selection Theorem and compactness ofΘn, it follows that ϑ̂n =
(
γ̂, β̂n, Λ̂

)
has a subsequence ϑ̂nk converging to ϑ+ =

(
γ+,β+,Λ+

)
with ϑ+ ∈ Θ. Obviously,

under (C3)-(C6) we have the compactness of Θn as well as the fact that mϑ (O) is

upper semicontinuous in ϑ for almost all O. Furthermore, mϑ ≤ M0 < ∞ with

PM0 (V) < ∞ by (C9). Thus, by Theorem A.1 of Wellner and Zhang (2007), we
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have

lim sup
n→∞

sup
ϑ∈Θn

(Pn −P)mϑ (V) ≤ 0 (S3.3)

almost surely. By the Dominated Convergence Theorem and (C9), M (ϑ) is con-

tinuous in ϑ. By the Corollary 6.21 of Schumaker (2007), there exists a spline

approximation βn0j (t) ∈Mnj to β0j such that

sup
t∈[0,τ ]

|β0j (t)− βn0j (t)| = O
(
K−rn

)
= O

(
n−vr

)
(S3.4)

for j = 1, . . . , p2. Therefore, for any ε > 0, there exists β∗0 ∈Mn such that

M (ϑ0)− ε ≤M (γ0,β
∗
0,Λ0)

with maxj=1,...,p2

∥∥β0j (t)− β∗0j (t)
∥∥
∞ = o (1). Also, by the similar argument in Lu

et al. (2009), we have

Mn (γ0,β
∗
0,Λ0)−M (γ0,β

∗
0,Λ0) = op (1)

and

Mn (γ0,β
∗
0,Λ0) ≤Mn

(
γ̂, β̂n, Λ̂

)
.

Then by (S3.3) and the arguments similar to those used in Lu et al. (2009), we can

show that M (ϑ0) = M
(
ϑ+
)
, implying β+ = β0 and Λ+ = Λ0 a.e. with respect to
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µ1. Since this holds for any convergent subsequence, we conclude that all the limits

of subsequence of ϑ̂nk are ϑ0. Therefore, due to the uniform boundedness of Λ̂ (t)

and Dominated Convergence Theorem, we obtain the weak consistency of ϑ̂n in the

metric d.

S3.3 Proof of the rate of convergence

In (S3.2), since h (x) ≥ (1/4) (x− 1)2 for 0 ≤ x ≤ 5, for θ in a sufficiently small

neighborhood of θ0 and some constant c,

M (ϑ0)−M (ϑ) ≥ 1

4

∫
Λ (u) exp

(
θT (u) v(u)

){Λ0 (u) exp
(
θT0 (u) v(u)

)
Λ (u) exp

(
θT (u) v(u)

) − 1

}2

dυ1 (u, v)

≥ c

∫ {
Λ (u) exp

(
θT (u) v(u)

)
− Λ0 (u) exp

(
θT0 (u) v(u)

)}2
dυ1 (u, v) .

(S3.1)

Note that c used through the paper represents some constant and could be dif-

ferent in different contexts. Let ρ (u, z) = Λ (u) exp
(
βT (u) z (u)

)
and ρ0 (u, z) =

Λ0 (u) exp
(
βT0 (u) z (u)

)
. We also define ρs = tρ + (1− t) ρ0, Λs = sΛ + (1− s) Λ0,

γs = sγ + (1− s)γs, βs = sβ + (1− s)βs, θs = sθ + (1− s)θs for s ∈ (0, 1). Also

let

g (s) = ρs (U,Z) exp
(
γTsW (U)

)
.
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It is easy to see that

Λ (U) exp
(
θT (U)V(U)

)
− Λ0 (U) exp

(
θT0 (U)V(U)

)
= g (1)− g (0) .

By the mean value theorem, there exists 0 ≤ ξ ≤ 1 such that g (1) − g (0) = g′ (ξ)

where

g′ (ξ) = exp
(
γTξ W(U)

){
(ρ− ρ0) (U,Z) + (ξρ+ (1− ξ) ρ0) (U,Z) (γ − γ0)

T W(U)
}

= exp
(
γTξ W(U)

){
(ρ− ρ0) (U,Z)

{
1 + ξ (γ − γ0)

T W(U)
}

+ (ξρ+ (1− ξ) ρ0) (U,Z)
}
.

From (S3.1), we have that, for some constant c > 0,

M (ϑ0)−M (ϑ)

≥c
∫ {

(ρ− ρ0) (u, z)
{

1 + ξ (γ − γ0)
T w(U)

}
+ (ξρ+ (1− ξ) ρ0) (u, z)

}2

dν1 (u, z, w)

=cν1 {g1h+ g2}2 ,

where g1 (U,V) =
(

(γ − γ0)
T W(U)

)
ρ0 (U,Z), g2 (U,Z) = (ρ− ρ0) (U,Z) and h (U,Z) =

1 + ξ (ρ− ρ0) (U,Z) /ρ0 (U,Z). By the similar method in Wellner and Zhang (2007)
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and He et al. (2017), under condition (C12), for some constants c, c1 > 0,

M (ϑ0)−M (ϑ) ≥ cν1 {g1h+ g2}2

≥ c1
{
ν1
(
g21
)

+ ν1
(
g22
)}
.

Similarly, by the mean value theorem and condition (C12), ∃c2 > 0,

ν1
(
g22
)

= ν1
(
(h2g3 + g4)

2)
≥ c2

{
ν1
(
g23
)

+ ν1
(
g24
)}

,

where g3 (U,Z) =
(

(β − β0)
T (U)Z(U)

)
Λ0 (U), g4 (U) = (Λ− Λ0) (U) and h2 (U) =

1+ζ (Λ− Λ0) (U) /Λ0 (U) for some ζ ∈ (0, 1). Therefore, under (C1) and (C8), there

exist some positive constants c3 and c∗3,

M (ϑ0)−M (ϑ) ≥ c3
{
ν1
(
g21
)

+ ν1
(
g23
)

+ ν1
(
g24
)}

≥ c∗3

(
‖γ − γ0‖22 +

∫
‖β (u)− β0 (u)‖22 dµ1 (u) + ‖Λ− Λ0‖2L2(µ1)

)
& d (ϑ0,ϑ) .

Next, we need to find ϕn (δ) such that

E

[
sup

d(ϑ,ϑ0)<δ

√
n |(Pn −P) (mϑ (O)−mϑ0 (O))|

]
≤ cϕn (δ) .
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Let

Fδ = {mϑ (O)−mϑ0 (O) : d (ϑ,ϑ0) ≤ δ} .

From the result of Theorem 2.7.5 of Vaart and Wellner (1996) and Lemma A.2 of Lu

et al. (2009), for any ε ≤ δ, we have

logN[]

(
ε,Fδ, ‖·‖P,B

)
≤ c

(
1

ε
+ (p1 + p2qn) log

(
δ

ε

))
,

where ‖·‖P,B is the Bernstein norm defined as ‖f‖P,B =
{

2P
(
e|f | − 1− |f |

)}1/2 by

Vaart and Wellner (1996, page 324). Similar to the argument in Wellner and Zhang

(2007); Lu et al. (2009), under conditions (C6) and (C10), we have

‖mϑ (O)−mϑ0 (O)‖2P,B ≤ cδ2,

for any mϑ (O) −mϑ0 (O) ∈ Fδ. Therefore, by Lemma 3.4.3 in Vaart and Wellner

(1996), we can show a maximal inequality

E
∥∥√n (Pn −P)

∥∥
Fδ
≤ cJ[]

(
δ,Fδ, ‖·‖P,B

)1 +
J[]

(
δ,Fδ, ‖·‖P,B

)
δ2n1/2
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where

J[]

(
δ,Fδ, ‖·‖P,B

)
=

∫ δ

0

{
1 + logN[]

(
ε,Fδ, ‖·‖P,B

)}1/2

dε

≤ c1q
1/2
n

∫ δ

0

{
1 +

1

ε
+ log

(
δ

ε

)}1/2

dε

≤ q1/2n δ1/2

Thus,

ϕn(δ) = q
1
2
n δ

1
2

(
1 +

q
1/2
n δ1/2

δ2n1/2

)
= q

1
2
n δ

1
2 +

qn
δn1/2

.

It is not hard to show that ϕn(δ)/δ is decreasing in δ and therefore

a2nϕn

(
1

an

)
= a3/2n q1/2n + a3nqnn

−1/2 . n1/2

if an = min
{
n

1−ν
3 , nrν

}
and 0 < ν < 1/2.

Moreover, using the similar argument in Lu et al. (2009), we can showMn

(
ϑ̂n

)
−

Mn (ϑ0) > −Op (n−2rν) ≥ Op (a2n) . Then, by Theorem 3.2.5 of Wellner and Zhang

(2007), we have and (ϑ,ϑ0) = Op (1). If ν is chosen as 1/ (3r + 1), we obtain the

optimal rate nr/(3r+1) because (1− ν)/3 = rν.
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S3.4 Proof of the asymptotic normality

For the proof, we will mainly use the method in He et al. (2017) to derive the

asymptotic normality. Define a sequence of maps Sn mapping a neighborhood of ϑ0,

denoted by U , in the parameter space for ϑ into l∞ (H1 ×H2 ×H3) as

Sn (ϑ) [h1,h2, h3] =
d

dε
ln (γ + εh1,β + εh2,Λ + εh3)|ε=0

=n−1
n∑
i=1

∫ τ

0

Yi(t)

{
Ni(t)

Λ (t)
h3 (t) +Ni(t)

(
hT1Wi(t) + hT2 (t)Zi(t)

)
−
(
hT1Wi(t) + hT2 (t)Zi(t)

)
exp

(
γTWi(t) + βT (t)Zi(t)

)
Λ (t)

− exp
(
γTWi(t) + βTZi(t)

)
h3 (t)

}
dHi(t)

=An1 (ϑ) [h1] + An2 (ϑ) [h2] + An3 (ϑ) [h3]

=Pnψ (ϑ) [h1,h2, h3] ,

where

An1 (ϑ) [h1] = n−1
n∑
i=1

∫ τ

0

Yi(t)h
T
1Wi(t)

{
Ni(t)− exp

(
γTWi(t) + βT (t)Zi(t)

)
Λ (t)

}
dHi(t),

An2 (ϑ) [h2] = n−1
n∑
i=1

∫ τ

0

Yi(t)h
T
2 (t)Zi(t)

{
Ni(t)− exp

(
γTWi(t) + βT (t)Zi(t)

)
Λ (t)

}
dHi(t),
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and

An3 (ϑ) [h3] = n−1
n∑
i=1

∫ τ

0

Yi(t)h3 (t)

{
Ni(t)

Λ (t)
− exp

(
γTWi(t) + βTZi(t)

)}
dHi(t).

Correspondingly, we define the limit map S : U → l∞ (H1 ×H2 ×H3) as

S (ϑ) [h1,h2, h3] = A1 (ϑ) [h1] + A2 (ϑ) [h2] + A3 (ϑ) [h3] ,

where

A1 (ϑ) [h1] = P

∫ τ

0

Y (t)hT1W(t)
{
N(t)− exp

(
γTW(t) + βT (t)Z(t)

)
Λ (t)

}
dH(t),

A2 (ϑ) [h2] = P

∫ τ

0

Y (t)hT2 (t)Z(t)
{
N(t)− exp

(
γTW(t) + βT (t)Z(t)

)
Λ (t)

}
dH(t),

and

A3 (ϑ) [h3] = P

∫ τ

0

Y (t)h3 (t)

{
N(t)

Λ (t)
− exp

(
γTW(t) + βTZ(t)

)}
dH(t).

To derive the asymptotic normality of ϑ̂n, we need to verify the following five

conditions in He et al. (2017).

(a1)
√
n (Sn − S)

(
ϑ̂n

)
−
√
n (Sn − S) (ϑ0) = op (1).

(a2) S (ϑ0) = 0 and Sn
(
ϑ̂n

)
= op

(
n−1/2

)
.
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(a3)
√
n (Sn − S) (θ0) converges in distribution to a tight Gaussian process on l∞ (H1 ×H2 ×H3).

(a4) S (ϑ) is Fréchet-differentiable at ϑ0 denoted by Ṡ (ϑ0).

(a5) S
(
ϑ̂n

)
− S (ϑ0)− Ṡ (ϑ0)

(
ϑ̂n − ϑ0

)
= op

(
n−1/2

)
.

By using similar argument in Lu et al. (2009), it is not hard to show

{ψ (ϑ) [h1,h2, h3]− ψ (ϑ0) [h1,h2, h3] : d (ϑ,ϑ0) < δ, (h1,h2, h3) ∈ H1 ×H2 ×H3}

is a Donkser class for some δ. Therefore,

sup
(h1,h2,h3)∈A×M×F

P
{
ψ
(
ϑ̂n

)
[h1,h2, h3]− ψ (ϑ0) [h1,h2, h3]

}2

→ 0

as d
(
ϑ̂n,ϑ0

)
→ 0 in probability and thus (a1) holds.

For (a2), clearly, S (ϑ0) = 0. For h2 ∈ H2, let h2n be the B-spline function

approximation of h2 with maxj=1,...,p2 ‖h2j − h2nj‖∞ = O (n−νr) by (S3.4). Then we

have Sn
(
ϑ̂n

)
[h1,h2, h3n] = 0. Thus,

Sn

(
ϑ̂n

)
[h1,h2, h3] =

√
nPnψ

(
ϑ̂n

)
[h1,h2, h3]−

√
nPψ

(
ϑ̂n

)
[h1,h2, h3n]

= In1 − In2 + In3 + In4 ,

where

In1 =
√
n (Pn −P)

{
ψ
(
ϑ̂n

)
[h1,h2, h3]− ψ (ϑ0) [h1,h2, h3]

}
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In2 =
√
n (Pn −P)

{
ψ
(
ϑ̂n

)
[h1,h2n, h3]− ψ (ϑ0) [h1,h2n, h3]

}
In3 =

√
nPn {ψ (ϑ0) [h1,h2, h3]− ψ (ϑ0) [h1,h2n, h3]}

and

In4 =
√
nP
{
ψ
(
ϑ̂n

)
[h1,h2, h3]− ψ

(
ϑ̂n

)
[h1,h2n, h3]

}
.

From (a1), we have In1 = op (1) and In2 = op (1). Next we need to show In3 = op (1)

and In4 = op (1). Note that

In3 =
√
n (Pn −P) {ψ (ϑ0) [h1,h2, h3]− ψ (ϑ0) [h1,h2n, h3]}

+
√
nP {ψ (ϑ0) [h1,h2, h3]− ψ (ϑ0) [h1,h2n, h3]}

=In31 + In32.

Similarly to proving (a1), In31 = op (1) and In32 = 0 since S (ϑ0) = 0 for any h2, and

h2n ∈ H2. For In4,

|In4| ≤
√
nd
(
ϑ̂n, θ0

)(
max

j=1,...,p2
‖h2j − h2nj‖∞

)
= Op

(
max

{
n−(1−ν)/3, n−rν

}
n−rv+1/2

)
= op (1)

if 1/ (4r) < ν < 1/2. Thus (a2) holds.
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Condition (a3) holds because H1×H2×H3 is a Donsker class and the functionals

A1 (ϑ) [h1], A2 (ϑ) [h2] and A3 (ϑ) [h3] are bounded Lipschitz functions with respect

to H1 ×H2 ×H3 due to the compactness of H1 ×H2 ×H3.

For (a4), by the smoothness of S (ϑ) the Fréchet differentiability holds and the

derivative of S (ϑ) at ϑ0, denoted by Ṡ (ϑ0) is a map from the space {ϑ− ϑ0 : ϑ ∈ U}

to l∞ (H1 ×H2 ×H3). Now we calculate Ṡ (ϑ0) as

Ṡ (ϑ0) (ϑ− ϑ0) [h1,h2, h3]

=
d

dε
{A1 (ϑ0 + ε (ϑ− ϑ0)) [h1]}|ε=0

+
d

dε
{A2 (ϑ0 + ε (ϑ− ϑ0)) [h1]}|ε=0

+
d

dε
{A3 (ϑ0 + ε (ϑ− ϑ0)) [h1]}|ε=0

=−P

∫ τ

0

Y (t)hT1W(t) exp
(
γTW(t) + βT (t)Z(t)

)
×
{(

(γ − γ0)T W(t) + (β (t)− β0 (t))T Z(t)
)

Λ0 (t) + (Λ (t)− Λ0 (t))
}
dH(t)

−P

∫ τ

0

Y (t)hT2 (t)Z(t) exp
(
γTW(t) + βT (t)Z(t)

)
×
{(

(γ − γ0)T W(t) + (β (t)− β0 (t))T Z(t)
)

Λ0 (t) + (Λ (t)− Λ0 (t))
}
dH(t)

−P

∫ τ

0

Y (t)h3 (t) exp
(
γTW(t) + βTZ(t)

)
×
{

Λ (t)− Λ0 (t)

Λ0 (t)
+ (γ − γ0)T W(t) + (β (t)− β0 (t))T Z(t)

}
dH(t).
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Thus, we have

Ṡ (ϑ0) (ϑ− ϑ0) [h1,h2, h3]

= (γ − γ0)T Q1 (h1,h2, h3)

+

∫ τ

0

(β (t)− β0 (t))T dQ2 (h1,h2, h3) (t)

+

∫ τ

0

(Λ (t)− Λ0 (t)) dQ3 (h1,h2, h3) (t) ,

where

Q1 (h1,h2, h3) = −P
∫ τ

0

W(t)Y (t)
(
hT1W(t)Λ0 (t) + hT2 (t)Z(t)Λ0 (t) + h3 (t)

)
× exp

(
γTW(t) + βT (t)Z(t)

)
dH (t) ,

dQ2 (h1,h2, h3) (t) = −PZ(t)Y (t)
(
hT1W(t)Λ0 (t) + hT2 (t)Z(t)Λ0 (t) + h3 (t)

)
× exp

(
γTW(t) + βT (t)Z(t)

)
dH (t) ,

and

dQ3 (h1,h2, h3) (t) = −P Y (t)

Λ0 (t)

(
hT1W(t)Λ0 (t) + hT2 (t)Z(t)Λ0 (t) + h3 (t)

)
× exp

(
γTW(t) + βT (t)Z(t)

)
dH (t) .
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We can also show Q = (Q1, Q2, Q3) is one-to-one by the similar method in He et al.

(2017).

For (a5), we have

S
(
ϑ̂n

)
− S (ϑ0)− Ṡ (ϑ0)

(
ϑ̂n − ϑ0

)
= Dn1 +Dn2 +Dn3 ,

where

Dn1 = A1

(
ϑ̂n

)
[h1]−

d

dε

{
A1

(
ϑ0 + ε

(
ϑ̂n − ϑ0

))
[h1]

}∣∣∣∣
ε=0

,

Dn2 = A2

(
ϑ̂n

)
[h2]−

d

dε

{
A2

(
ϑ0 + ε

(
ϑ̂n − ϑ0

))
[h2]

}∣∣∣∣
ε=0

,

and

Dn3 = A3

(
ϑ̂n

)
[h3]−

d

dε

{
A3

(
ϑ0 + ε

(
ϑ̂n − ϑ0

))
[h3]
}∣∣∣∣

ε=0

.

It is not hard to see

Dn1 = P

∫ τ

0

Y (t)hT1W(t) exp
(
γT0W(t) + βT0 (t)Z(t)

)
Λ0 (t)

× q1
(

(γ̂ − γ0)T W(t)−
(
β̂n (t)− β0 (t)

)T
Z(t)

)
dH(t),

where q1 (x) = 1− exp (y) (1− y) and q1 (x) ≤ x2 when x is in a neighborhood of 0.
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Thus

Dn1 ≤P
∫ τ

0

Y (t)hT1W(t) exp
(
γT0W(t) + βT0 (t)Z(t)

)
Λ0 (t)

×
{

(γ̂ − γ0)T W(t)−
(
β̂n (t)− β0 (t)

)T
Z(t)

}2

dH(t).

=O
(
d2
(
ϑ̂n,ϑ

))
.

Similarly, we can show Dn2 ≤ O
(
d2
(
ϑ̂n,ϑ

))
and Dn3 ≤ O

(
d2
(
ϑ̂n,ϑ

))
and hence

S
(
ϑ̂n

)
− S (ϑ0)− Ṡ (ϑ0)

(
ϑ̂n − ϑ0

)
≤ O

(
d2
(
ϑ̂n,ϑ

))
.

Since n1/2d2
(
ϑ̂n,ϑ

)
= Op

(
n1/2 max

{
n−2(1−ν)/3, n−2rν

})
= op (1) if 1/ (4r) < v <

1/4, we can conclude that S
(
ϑ̂n

)
−S (ϑ0)− Ṡ (ϑ0)

(
ϑ̂n − ϑ0

)
= op

(
n−1/2

)
and (a5)

holds.

If (a1)-(a5) holds, according to He et al. (2017), we have

−
√
nṠ (ϑ0)

(
ϑ̂n − ϑ0

)
[h1,h2, h3] =

√
n (Sn − S) (ϑ0) [h1,h2, h3] + op (1)

uniformly in h1,h2, h3. For each (h1,h2, h3) ∈ H1 ×H2 ×H3, Q is invertible by the

similar arguement in He et al. (2017). Then there exists (h1,h2, h3) ∈ H1×H2×H3

such that

Q1 (h1,h2, h3) = h1, Q2 (h1,h2, h3) = h2, Q3 (h1,h2, h3) = h3.
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Therefore, we have

(γ̂ − γ0)T h1 +

∫ τ

0

(
β̂n (t)− β0 (t)

)T
dh2 (t) +

∫ τ

0

(
Λ̂ (t)− Λ0 (t)

)
dh3 (t)

=
√
n (Sn − S) (ϑ0) [h1,h2, h3] + op (1)→d N

(
0, σ2

)
,

where σ2 = E [ψ2 (ϑ0) [h1,h2, h3]] because of (a3). To find the asymptotic distri-

bution of γ only, we can find h1, h2 and h3 as a solution of Q2 = 0 and Q3 = 0.

Unfortunately, we cannot find the explicit forms of h1, h2 and h3 as He et al. (2017).

The similar difficulty exists for deriving the asymptotic variance of β(t) too. Hence,

we adopt the ad hoc variance estimation methods in the main body.
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