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S1. Proof of Lemma 1

Proof. Part (i) immediately follows from Lemma 2 (i) equation (25) in (Cai and Liu| (2011)).

To prove part (ii), we need to bound the three terms on the right side of the following

inequality,
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By the marginal sub-Gaussian distribution assumption in assumption (C1), we have that
(k)y (k) (k)2 (k) : : i
(XY, p; )° has mean 6" and finite Orlicz ¢ /5-norm (see, e.g., Adamczak et al.

(2011))). Thus we can apply equation (3.6) of Adamczak et al.| (2011), i.e
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with t = (Cy/3)v/nlogp for a large enough constant Cy > 0 depending on Mj,n,b and M
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We have used the assumption logp = o(n'/?) in assumption (C2) to make sure & < /2,

only to obtain that,
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By applying equation (1) in supplement of (Cai and Liu/ (2011)), we obtain that,
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In addition, by a similar truncation argument as that in the proof of Lemma 2 in |Cai and

Liu| (2011) and equation (7) therein, we obtain that by picking a large enough Cy > 0,
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We complete the proof by combining (S1.1))-(S1.4)) with a union bound argument.

S2. Proof of Lemma 2

Proof. 1t is easy to check that E(]:Ij(k)) =0 and Var(H](k)) = 1. The marginal sub-Gaussian
distribution assumption in assumption (C1) implies that H j(k) has finite Orlicz ¢y-norm (i.e.,
sub-exponential distribution with finite constants). Therefore, (H J(»k))2 —11is centered random

variable with finite Orlicz 9, o-norm. Note that H J(»k) are independent for k € [K]|. The result

follows from equation (3.6) of Adamczak et al.| (2011)). O
S3. Proof of Lemma 3

Proof. Note that ¥ — H® = VXD Ry ®

E(y/nY®) =0, var(y/n 7;“) = var(y/nY®) = 1, and both \/ﬁ)?](k) and /nY*®) are sub-

. By assumption (C1), we have that E(\/HXJ(I“)) =

Gaussian with bounded constants. Therefore, the first equation follows from Bernstein
inequality (e.g., Definition 5.13 in [Vershynin| (2010))) applied to centered sub-exponential
variable \/nX ;k) -/nY ®) noting Oj(k) > 79 by assumption (C1). The second equation follows
from the first one, log® p = o(n), and a Bernstein inequality (e.g., Corollary 5.17 in [Vershynin

(2010))) applied to the sum of centered sub-exponential variables H ](k). H
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