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STRONG CONSISTENCY OF LEAST SQUARES
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WHEN THE ERROR VARIANCE IS INFINITE
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Abstract: Let Yi = x′
iβ + ei, 1 ≤ i ≤ n, Sn =

∑n

i=1
xix

′
i. Suppose that the random

errors e1, e2, . . . are i.i.d., with a common distribution F belonging to the class

Fr = {F :
∫ ∞
−∞ xdF = 0, 0 <

∫ ∞
−∞ |x|rdF < ∞} for some r ∈ [1, 2). In this paper

we obtain a sufficient condition for the strong consistency of the Least Sequares

Estimate (LSE) β̂n of β. The condition is necessary in the following sense: If the

condition is not satisfied, then for some F ∈ Fr, β̂n rails to converge a.s. to β.
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1. Introduction and Main Results

Consider the linear model

Yi = x′
iβ + ei, 1 ≤ i ≤ n, n ≥ 1. (1.1)

In this paper we assume that x1, x2, . . . are known non-random p-vectors, and
ei is the random error in the ith observation, i = 1, 2, . . . The LSE of β will be
denoted by β̂n.

Many statisticians have considered the problem of strong consistency of β̂n.
In earlier days the problem was studied under the assumption that the ei possess a
finite variance. This case was finally solved in an important paper of Lai, Robbins
and Wei (1979) in which they showed that if e1, e2, . . . are i.i.d., Ee1 = 0 and
0 < Ee2

1 < ∞, a sufficient condition for the strong consistency of β̂n is that

S−1
n =

( n∑
i=1

xix
′
i

)−1 → 0, as n → ∞. (1.2)

Since the necessity of (1.2) was earlier proved by Drygas (1976), (1.2) is both
necessary and sufficient. Later, a number of authors considered the case where
ei does not have a finite variance. A standard formulation is as follows: e1, e2, . . .

are i.i.d. with a common distribution F belonging to the family

Fr =
{
F :

∫ ∞

−∞
xdF = 0, 0 <

∫ ∞

−∞
|x|rdF < ∞

}
, 1 ≤ r < 2. (1.3)
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Under this condition Chen (1981) showed that for general p, if S−1
n = O(n−(2−r)/r

(log n)−a) for some a > 1 and some additional conditions are met, then β̂n → β

a.s.. Almost at the same time Chen, Lai and Wei (1981) showed that strong
consistency holds under the condition S−1

n = O(n−(2−r)/r(log n)−2/r−ε) for some
ε > 0. In his unpublished doctoral dissertation, Zhu (1989) made an essential
improvement: for general p the condition S−1

n = O(n−(2−r)/r) is already suffi-
cient for β̂n → β a.s.. This conditon, though far weaker the earlier-mentioned
conditions, is still not the best (see Remark 2 below). The best condition for the
case of p = 1 was obtained by Chen, Zhu and Fang (1996) as a by-product of a
more general result. The purpose of this paper is to give a solution for general p.

Assume that S−1
i exists for large i. Write ai = S−1

i xi. For small i such that
S−1

i does not exist, ai can be defined arbitrarily. Define

N(K) = #{i : i ≥ 1, ‖ai‖ ≥ K−1}.

Let {(n, 1), . . . , (n, n)} be a permutation of {1, 2, . . . , n} satisfying ‖a(n,1)‖ ≥
· · · ≥ ‖a(n,n)‖. Put

V (n, j) = S−1
n

n∑
i=1

xiI(‖ai‖ ≥ ‖a(n,j)‖), 1 ≤ j ≤ n,

V (n) = max
1≤j≤n

‖V (n, j)‖.

Now we can formulate the main result of this paper.

Theorem. Suppose in model (1.1) that the e1, e2, . . . are i.i.d., with a common
distribution F belonging to Fr. Then a sufficient condition for the strong consis-
tency of β̂n is:

For 1 < r < 2 : (1, 2) holds and N(K) = O(Kr) as K → ∞. (1.4)

For r = 1 : (1.2) holds N(K) = O(K) and V (n) = O(1). (1.5)

The condition is also necessary in the following sense: if (1.3) and (1.4) are not
satisfied, then for some F ∈ Fr, β̂n fails to converge to β almost surely.

Remark 1. Consider model (1.1). Assume that the random errors e1, e2, . . .

are i.i.d., and F is their common distribution. As mentioned earlier, for F ∈ F2

the necessary and sufficient condition for the strong consistency of β̂n is that
S−1

n → 0. This is true for every F ∈ F2, and we may simply say that the
condition S−1

n → 0 is a necessary and sufficient condition for the class F2.
For 1 ≤ r < 2 the situation is more complicated. The above theorem does

not imply that the condition Cr ≡ “(1.3) or (1.4)” is a necessary and sufficient
condition for the class Fr. For according to the above theorem, when condition
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Cr is not satisfied, we can only assert that there exists at least one F ∈ Fr such
that if F is the common distribution of the eis, then “β̂n → β a.s.” does not
hold.

Can we find a condition Dr(involving only {xi}) which is a necessary and
sufficient condition for the strong consistency of β̂n for the whole class Fr? Evi-
dently this is impossible. For since F2 ⊂ Fr for any r ∈ [1, 2), if such a condition
Dr exists, it must be (1.2). But according to our theorem, (1.2) alone is evidently
not sufficient: A simple example shows that the condition N(K) = O(Kr) is not
a consequence of (1.2).

The meaning of our theorem can also be understood in the following way:
if one wants a condition depending solely upon {xi} which is sufficient for the
strong consistency of β̂n for the whole class Fr, then the condition stated in the
theorem is the best possible.

Remark 2. A simple example shows that Zhu’s (1989) condition S−1
n =

O(n−(2−r)/r) is stronger than ours. Consider model (1.1) in which β is one-
dimensional and

xi =

{
1, when i = 21, 22, 23, . . .

0, otherwise.
(1.6)

Then Sn = O(log n) and Zhu’s condition fails. We cannot assert from Zhu’s
theorem that β̂n → β, a.s., but β̂n → β a.s. according to Kolmogorov’s strong
law of large numbers.

On the other hand it is easy to verify that sequence (1.5) satisfies (1.2)-(1.4).
So the strong consistency of β̂n follows from our theorem.

2. The Necessity of (1.2)

This follows directly from the following lemma of Chen (1981): if {e1, e2, . . .}
is a sequence of independent random variables containing no asymptotically de-
generate subsequence (i.e. a subsequence {eni} such that eni − ci → 0 in pr.
for some constant sequence {ci}), and {cni, 1 ≤ i ≤ n, n ≥ 1} is an array of
constants, then

∑n
i=1 cniei → 0 in pr. entails

∑n
i=1 c2

ni → 0.

3. The Necessity of N(K) = O(Kr)

For a matrix A = (aij), define the matrix norm |A| = maxi,j |aij |. Then it
can easily be shown that |S−1

n Sn−1| = O(1). If S−1
n → 0, then

lim
i→∞

ai = 0, max
1≤i≤n

‖S−1
n xi‖ → 0.

Remember ai = S−1
i xi. Now suppose N(K) is not O(Kr). We shall find a

sequence {e1, e2, . . .} of i.i.d. r.v′.s with common distribution belonging to the
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family Fr such that

S−1
n

n∑
i=1

xiei 	→ 0, a.s. (3.1)

We can find a sequence of positive integers n1 < n2 < · · · such that N(nk)/nr
k →

∞ as k → ∞. Therefore there exists {pk, k ≥ 1}, such that

pk > 0,
∞∑

k=1

pk = 1,
∞∑

k=1

nr
kpk < ∞, and

∞∑
k=1

pkN(nk) = ∞.

Let {e1, e2, . . .} be an i.i.d. sequence with a common distribution F :

P (e1 = nk) = p(e1 = −nk) = pk/2, k ≥ 1.

Then F belongs to Fr. Since an → 0, we can rearrange {‖ai‖, i ≥ 1} in a
decreasing order: ‖a(1)‖ ≥ ‖a(2)‖ ≥ · · ·. Note that {(1), (2), . . .} is a permutation
of {1, 2, . . .} and, by definition of N(K), it follows that {|e1| ≥ ‖a(i)‖−1} ⇒
{N(|e1|) ≥ (i)}.

Therefore

∞ =
∞∑

k=1

pkN(nk) = E(N(|e1|)) =
∞∑
i=1

P (N(|e1|) ≥ i) =
∞∑
i=1

P (N(|e1|) ≥ (i))

≥
∞∑
i=1

P (|e1| ≥ ‖a(i)‖−1) =
∞∑
i=1

P (|e1| ≥ ‖ai‖−1) =
∞∑
i=1

P (‖aiei‖ ≥ 1), (3.2)

which entails P (‖aiei‖ ≥ 1, i.o.) = 1. Then (3.1) is proved and hence the necessity
of N(K) = O(Kr) follows.

4. Sufficiency: 1 < r < 2

Lemma 1. Let ai be defined as earlier. The convergence of
∑∞

i=1 aiei entails
S−1

n

∑n
i=1 xiei → 0.

Proof. Write To = 0, Tj =
∑j

i=1 aiei, and T =
∑∞

i=1 aiei. We have

∣∣∣S−1
n

n∑
i=1

xiei

∣∣∣ =
∣∣∣S−1

n

n∑
j=1

xjx
′
j(Tn − Tj−1)

∣∣∣ =
∣∣∣S−1

n

n∑
j=1

xjx
′
j(Tn − T − (Tj−1 − T ))

∣∣∣

≤ |Tn − T | +
k∑

j=1

δjn|Tj−1 − T | +
n∑

j=k+1

δjn|Tj−1 − T |, (4.1)

where δjn = x′
jS

−1
n xj and k is a large integer for which |Tn − T | and |Tl − T | are

small for l > k. Since δjn → 0 for fixed j (which follows from S−1
n → 0), and∑n

j=1 δjn = p, each term in the right hand side of (4.1) can be made arbitrarily
small, and the lemma follows.
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Now fix j ∈ {1, . . . , p}. Denote by di the jth component of ai. Define
e′i = eiI(|ei| < |di|−1). To prove the strong consistency of β̂n, by Lemma 1 we
need only show

∞∑
i=1

die
′
i converges a.s.. (4.2)

Then, applying Kolmogorov’s three series theorem, we need to verify∑
i

P (|eidi| ≥ 1) < ∞, (4.3)

∑
i

EdieiI[|eidi|<1] converges , (4.4)

∑
i

Ed2
i e

2
i I[|eidi|<1] < ∞. (4.5)

Since

P (|eidi| ≥ 1) = P (|ei| ≥ |di|−1) = P (|ei|I(|ei| ≥ |di|−1) ≥ |di|−1)
≥ |di|E(|ei|I(|ei| ≥ |di|−1)),

the proof of (4.3) follows from the argument below for (4.4). Also, the proof of
(4.5) is similar to (4.4). So we proceed with (4.4). Let qi = P (i − 1 ≤ |e1| < i),
i = 1, 2, . . . Since Eei = 0, we have Ee′i = −E(eiI(|ei| ≥ |di|−1)). If k − 1 ≤
|di|−1 < k, we have

E|die
′
i| ≤ |di|E|eiI(|ei| ≥ |di|−1)| ≤ (k − 1)−1

∞∑
j=k−1

jqj, k ≥ 2.

Further, noticing that #{i : i ≥ 1, k− 1 < |di|−1 ≤ k} = Ñ(k)− Ñ(k− 1), where
Ñ(k) = #{i : i ≥ 1, |di|−1 ≤ k}, we have

∞∑
i=1

|Edie
′
i| ≤ Ñ(1) sup

i≥1
|di|E|e1| +

∞∑
k=2

(Ñ(k) − Ñ(k − 1))(k − 1)−1
∞∑

j=k−1

jqj

≡ J1 + J2. (4.6)

Since an → 0, J1 remains bounded as n → ∞. On the other hand, we have

J2 =
∞∑

j=1

j−1Ñ(j + 1)jqj −
∞∑

j=1

Ñ(1)jqj +
∞∑

j=1

( j∑
k=2

Ñ(k)((k − 1)−1−k−1)
)
jqj

−H1 − H2 + H3.

From Ñ(j + 1) ≤ c(j + 1)r (for some c) and E|e1|r < ∞, it follows that H1 < ∞.
Likewise for H2. As for H3, Ñ(k) = O(kr), (k−1)−1−k−1 = O(k−2), and r > 1,
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so
∑j

k=2 Ñ(k)((k − 1)−1 − k−1) = O(jr−1) and H3 < ∞ follows from the fact
that E|e1|r < ∞. Summing up, and noticing (4.6), we have (4.4), concluding
this part of the proof.

5. Sufficiency: r = 1

The above argument breaks down for the case r = 1, since in this case we
can only get H3 = O(log n) and not O(1). This is the reason for imposing the
additional condition V (n) = O(1).

Under the condition V (n) = O(1), apply the arguments in Section 4 to the
sequence {ei − EeiI[|ei|<‖ai‖−1]} to set

S−1
n

n∑
i=1

xi(e′′i − Ee′′i ) → 0, a.s. ( where, e′′i = eiI(|ei| < ‖ai‖−1)). (5.1)

Therefore we need only show

S−1
n

n∑
i=1

xiEe′′i → 0. (5.2)

To this end, define

ti =
∫
‖a(n,i)‖−1≤|x|<‖a(n,i+1)‖−1

xdF, 1 ≤ i ≤ n,

with the convention ‖a(n,n+1)‖−1 = ∞. We have

−E(S−1
n

n∑
i=1

xie
′′
i ) = S−1

n

n∑
i=1

x(n, i)
∫
|x|≥‖a(n,i)‖−1

xdF

= S−1
n

n∑
i=1

x(n,i)

n∑
j=i

tj = S−1
n

n∑
j=1

tj

j∑
i=1

x(n,i).

Two cases are possible: the first case is ‖a(n,j)‖ = ‖a(n,j+1)‖. Then tj = 0
and tjS

−1
n

∑j
i=1 x(n,i) = tjV (n, j). The second case is ‖a(n,j)‖ > ‖a(n,j+1)‖.

Then we have S−1
n

∑j
i=1 x(n,i) = V (n, j) by definition. Hence we always have

tjS
−1
n

∑j
i=1 x(n,i) = tjV (n, j). It follows that

−E(S−1
n

n∑
i=1

xie
′′
i ) =

n∑
j=1

tjV (n, j) =
h∑

j=1

tjV (n, j) +
n∑

j=h+1

tjV (n, j) ≡ J1 + J2,

(5.3)
where h is fixed. Without loss of generality assume xi 	= 0 for all i ≥ 1, and if S−1

i

does not exist choose ai 	= 0. Then ai 	= 0 for all i ≥ 1. Since limn→∞ an = 0,
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we have limn→∞(n, i) = (i). Hence, considering S−1
n → 0, we have

lim sup
n→∞

‖V (n, j)‖ ≤ lim sup
n→∞

j′∑
i=1

‖S−1
n x(i)‖ = 0, (5.4)

where j′ = max(l : ‖a(l)‖ = ‖a(j)‖). From (5.4) we get limn→∞ J1 = 0 for fixed
h. Further, by assumption (1.4), ‖V (n, j)‖ ≤ V (n) = O(1). Hence

‖J2‖ ≤ O(1)
n∑

j=h+1

tj ≤ O(1)
∫
|x|≥‖a(n,h+1)‖−1

|x|dF → O(1)
∫
|x|≥‖a(h+1)‖−1

|x|dF.

The last integral can be made arbitrarily small by cloosing h large enough. Sum-
ming up and noticing (5.3), we obtain (5.1). The result in (5.2) can be proved
similarly (and without the assumption V (n) = O(1)).

6. The Necessity of V (n) = O(1) for r = 1

Suppose that β̂n is strongly consistent, so (3.1) holds. From Section 2 and
Section 3, we have S−1

n → 0 and N(K) = O(K). As pointed out at the end of
Section 5, these two facts entail (5.2). Therefore S−1

n

∑n
i=1 xi(e′′i −Ee′′i ) → 0, a.s..

These two facts, together with (3.1), entail S−1
n

∑n
i=1 xie

′′
i → 0, a.s.. Summing

up, we get

S−1
n

n∑
i=1

xiEe′′i → 0. (6.1)

Therefore to prove the necessity of the condition V (n) = O(1) we have to show
that, if V (n) is not bounded, we can construct a sequence of i.i.d. random vari-
ables {ei} with Ee1 = 0 such that (6.1) is not true. This can be done as in
Section 2 of Chen (1995); the details are omitted.
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