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Abstract: We propose a new modeling and estimation approach that selects an

optimal treatment regime by constructing a robust estimating equation. The

method is protected against a misspecification of the propensity score model, the

outcome regression model for the nontreated group, and the potential nonmonotonic

treatment difference model. Our method also allows residual errors to depend on

the covariates. We include a single index structure to facilitate the nonparametric

estimation of the treatment difference. We then identify the optimal treatment

by maximizing the value function. We also establish the theoretical properties of

the treatment assignment strategy. Lastly, we demonstrate the performance and

effectiveness of our proposed estimators using extensive simulation studies and an

analysis of a real data set from a study on the effect of maternal smoking on baby

birth weight.
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1. Introduction

Individuals sometimes respond differently to the same treatment, owing to

between-person heterogeneity. Factors that contribute to such heterogeneity

include genetic risk factors, age, and individual-specific environmental exposures.

Thus, when different treatment options are available, we need to be able to

select the best treatment regime specific to a particular individual, which is

one of the goals of precision medicine. Precision medicine aims to determine

a strategic assignment of treatments to patients according to their characteristics

and medical history. This goal can be achieved by using an individualized

treatment rule (ITR), that is, a deterministic function of subject-specific factors

that are responsible for patients’ heterogeneous responses to a treatment. The

optimal ITR maximizes the expected clinical outcome of interest under the ITR.

Furthermore, an optimal dynamic treatment regime usually consists of a set of

sequential decision rules applied at a set of decision points. There have recently

been significant research developments on estimating optimal treatment regimes.

In this work, we focus on estimating an individualized treatment regime at a
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single decision time point.

Two popular model-based methods used to derive optimal dynamic treatment

regimes are quality learning (Q-learning) and advantage learning (A-learning). Q-

learning (Watkins (1989); Watkins and Dayan (1992); Nahum-Shani et al. (2012);

Zhao, Kosorok and Zeng (2009); Zhao et al. (2011); Murphy (2005); Qian and

Murphy (2011); Song et al. (2015); Goldberg and Kosorok (2012); Chakraborty,

Murphy and Strecher (2010)) is built on a postulated regression outcome model

for the outcome of interest, and is implemented using a backward induction

fitting procedure. This approach was initially proposed by Watkins (1989), with a

detailed proof of convergence later provided by Watkins and Dayan (1992). The

performance of the optimal treatment decision rule obtained using Q-learning

depends on the outcome model being specified correctly. A-learning (Murphy

(2003); Blatt, Murphy and Zhu (2004); Robins (2004); Orellana, Rotnitzky and

Robins (2010); Liang, Lu and Song (2018)) maximizes estimating equations to

estimate the contrast functions, using the estimated probability of an observed

treatment assignment, given patient information, at each decision point (i.e.,

treatment propensity scores). Thus, the performance of the optimal treatment

decision rule obtained using A-learning relies on having a suitable treatment

assignment model.

Another approach, known as the model-free or policy (value) search method

(Zhang et al. (2012a,b); Zhao et al. (2012); Jiang et al. (2017a,b)), directly derives

and maximizes a consistent estimator for the value function over a prespecified

class of treatment regimes indexed by a finite-dimensional parameter, or over a

class of nonparametric treatment regimes. For example, Zhang et al. (2012b)

formulated an inverse propensity score weighted (IPW) estimator and a doubly

robust augmented IPW estimator for a value function with a single decision

time point. Later, Zhang et al. (2013) extended this idea to value functions

with more than one decision point. Zhang et al. (2012a) and Zhao et al. (2012)

recast the original problem of finding the optimal treatment regime as a weighted

classification problem. The former obtains the optimal treatment regime by

minimizing the expected weighted misclassification error, whereas latter uses an

outcome-weighted support vector machine. Other relevant works include those of

Robins (2004), Foster, Taylor and Ruberg (2011), Zhao et al. (2013), Matsouaka,

Li and Cai (2014), Song et al. (2017), Bai et al. (2017), Fan et al. (2017), Shi

et al. (2018), and Huang and Yang (2020).

Here, we propose a new modeling and estimation method that can be used to

determine the optimal treatment regime at a decision time point, combining the

advantages of Q-learning, A-learning, and the model-free approach. In addition,

our model has the advantage that it assumes only that the treatment difference

is a smooth function of an index of the covariates, without requiring the smooth

function to be monotonic. This is practically important. For example, for a

patient with heart disease, low blood pressure and high blood pressure can both
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increase the risk of a heart attack, resulting in a possible nonmonotonic treatment

difference model. Another example is the relationship between BMI and health

risks, where underweight and obese individuals both have increased risks of a

range of health measures. Our model also allows the model error to be dependent

on the covariates, which is important in practice. Furthermore, we consider a

multi-robust estimating equation to protect against a misspecified propensity

score function, treatment difference model, or outcome regression model for the

nontreated group. Benefiting from the smoothness of the treatment difference

function, our treatment regime identification rate is Op(n
−2/5), which is faster

than the existing rate of Op(n
−1/3) (Fan et al. (2017)), where the treatment

difference function is assumed to be monotonic.

The remainder of the paper is organized as follows. In Section 2, we introduce

the estimation procedure and the algorithm for our proposed method. Section

3 provides the asymptotic properties of the proposed estimators for β and the

treatment difference function Q(·). In Section 4, we summarize the finite-sample

performance of the estimators for different designs, including well-specified and

misspecified models. In Section 5, we demonstrate our method by analyzing a

data set on baby birth weight, where the research interest is to investigate whether

maternal smoking during pregnancy affects birth weight. Section 6 concludes the

paper.

2. Model and Estimation

We consider the following treatment difference model :

Yi1 − Yi0 = Q(βTXi) + εi, (2.1)

where Yi1 is the potential outcome for individual i if a treatment is received, Yi0 is

the potential outcome for individual i if no treatment is received, Xi ∈ Rdβ is the

set of covariates, the treatment difference function Q(·) is an unknown smooth

function, and E(ε | X) = 0, where ε is the model error. Here, β ∈ Rdβ is a vector

of unknown parameters and dβ is the dimension of β. Let Ai be the treatment

indicator. Our estimation is performed under the following two assumptions,

commonly assumed in the literature.

Assumption 1. (Stable unit treatment value assumption) Yi = Yi1Ai + Yi0(1 −
Ai).

Assumption 2. (No-unmeasured-confounders assumption) Ai ⊥ (Yi1, Yi0) | Xi.

For the identifiability of β, we require β to have the form β = (1,βT
L)T,

where the lower sub-vector is an arbitrary vector of length dβ − 1. If Yi1 and Yi0
are both available, we can estimate β by simultaneously solving

∑n
i=1{Yi1−Yi0−

Q̃(βTXi)}{XLi−E(XLi | βTXi)} = 0 and
∑n

j=1Kh (βTXj − βTXi) (Yj1−Yj0−
ci) = 0, for i = 1, . . . , n. Here, XL represents the sub-vector of X formed by its
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lower dβ − 1 components and Q̃(βTXi) = ci. Note that we use Q̃(βTXi) instead

of ci in the first equation to emphasize that it is an estimate of the function

Q(·) evaluated at βTXi, for i = 1, . . . , n. Note that Kh(·) = K(·/h)/h, where

K(·) is a kernel function and h is a bandwidth. However, because we observe

only Yi, we can consider an IPW-based estimator (Robins, Rotnitzky and Zhao

(1994)) and modify the above equations to
∑n

i=1[AiYi/π(Xi) − (1 − Ai)Yi/{1 −
π(Xi)} − Q̃(βTXi)] ×{XLi − E(XLi | βTXi)} = 0 and

∑n
i=1Kh(βTXi − βTXj)

[AiYi/π(Xi)− (1−Ai)Yi/{1−π(Xi)}−cj] = 0, for j = 1, . . . , n, where π(Xi) is a

known propensity score model. To protect against a misspecified π(Xi), we adopt

the models µ(Xi,α) = E(Yi0 | Xi) and π(Xi,γ) = P (Ai = 1 | Xi), and estimate

β by modifying the above equations to the following doubly robust augmented

version (Robins, Rotnitzky and Zhao (1994)):

n∑
i=1

[
{Ai − π(Xi, γ̂)}{Yi − µ(Xi, α̂)}

π(Xi, γ̂){1− π(Xi, γ̂)}
+

{
1− Ai

π(Xi, γ̂)

}
Q̃(βTXi)

]
(2.2)

×
{
XLi − E(XLi | βTXi)

}
= 0,

and

n∑
i=1

Kh

(
βTXi − βTXj

) [{Ai − π(Xi, γ̂)}{Yi − µ(Xi, α̂)}
π(Xi, γ̂){1− π(Xi, γ̂)}

− Ai
π(Xi, γ̂)

cj

]
= 0,

for j = 1, . . . , n. This relation can be equivalently written as

Q̃(βTXj,β, α̂, γ̂) = (2.3)∑n
i=1Kh(βTXi−βTXj){Ai−π(Xi, γ̂)}{Yi−µ(Xi, α̂)}/[π(Xi, γ̂){1−π(Xi, γ̂)}]∑n

i=1Kh(βTXi−βTXj)Ai/π(Xi, γ̂)
.

The β estimator based on (2.2) is doubly robust with respect to π(X,γ) and

µ(X,α). Following the literature, we consider the parametric models π(X,γ)

and µ(X,α), for simplicity.

Proposition 1. Under the model in (2.1), as long as one of π(x,γ) and µ(x,α)

is correct, then the estimator for β is consistent. In addition, to estimate β,

we can use a working model for the Q(·) function that may differ from the true

treatment difference function if both π(x,γ) and µ(x,α) are specified correctly.

Note that in Proposition 1, we do not require the values of γ and α to be

known. Instead, γ and α are unknown parameters. As long as one of the models

in π(x,γ) and µ(x,α) is specified correctly, the conclusion of Proposition 1 holds.

Note too that γ̂ can be obtained based on the data (Xi, Ai), for i = 1, . . . , n, using,

for example, a maximum likelihood estimator (MLE). Similarly, µ(X,α) = E(Yi |
Xi, Ai = 0), and hence α̂ can be obtained based on the data (Xi, Yi) for i where

Ai = 0, by, for example, solving generalized estimating equations (GEEs). When
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solving (2.2) to obtain β̂, the choice of bandwidth h is flexible and can be any

positive number, as long as n−1/2 << h << n−1/4. However, once we obtain

β̂, we estimate Q(·) using an optimal bandwidth of order n−1/5, which can be

obtained using cross-validation. We now describe the algorithm of the estimation

procedure in detail.

Algorithm 1

Step 1. Obtain the estimate of γ, γ̂, using MLE based on the data (Xi, Ai), for
i = 1, . . . , n.

Step 2. Extract the observations with Ai = 0. Denote the subset of observations
corresponding to Ai = 0 as (Xi, Y

0
i ), for i = 1, . . . , n0. Use this subset to compute

the estimator of α, α̂, by solving the GEEs
∑n0

i=1 W(Xi,α){Y 0
i − µ(Xi,α)} = 0,

where W(Xi,α) is an arbitrary dα × 1 matrix of functions of covariates Xi, the
parameter α ∈ Rdα , and dα is the dimension of α.

Step 3. Plug γ̂ and α̂ into (2.3) and obtain Q̃(βTXj ,β, α̂, γ̂).

Step 4. Plug γ̂, α̂, and Q̃(βTXi,β, α̂, γ̂) into (2.2) and solve (2.2) to obtain β̂L.
Step 5. Select a bandwidth hopt.

Step 6. Obtain Q̂(·, β̂, α̂, γ̂) from (2.3), while plugging in γ̂, α̂, β̂, and hopt.

In step 5, to estimate Q(·), we need a suitable bandwidth, which we select

using leave-one-out cross-validation method. Specifically, we estimate Q(·) by

Q̃−j(β̂
TXj, β̂, α̂, γ̂)

=
n∑

i=1,i6=j

Kh(β̂TXi − β̂TXj){Ai − π(Xi, γ̂)}{Yi − µ(Xi, α̂)}
[π(Xi, γ̂){1− π(Xi, γ̂)}]/ n∑

i=1,i6=j

Kh(β̂TXi − β̂TXj)Ai
π(Xi, γ̂)

,

where Q̃−j(·) denotes the estimator with the jth observation left out. Then,

we calculate the leave-one-out cross-validated prediction MSE as CV(h) =

n−1
∑n

i=1[{Ai−π(Xi, γ̂)}{Yi−µ(Xi, α̂)}/π(Xi, γ̂){1−π(Xi, γ̂)}−AiQ̃−i(β̂TXi,

β̂, α̂, γ̂)/π(Xi, γ̂)]2, and choose h as the minimizer of CV(h).

Considering that Q(βTX) may be a nonmonotonic function, we denote all

regions where Q(βTX) > 0 as the treatment region; that is, we assign treatment

1 to an individual if and only if Q(βTX) > 0. Obviously, this maximizes the

value function, leading to the optimal treatment regime. Specifically, the value

function V {Q(·),β} = E[Yi1I{Q(βTXi) > 0} + Yi0I{Q(βTXi) ≤ 0}] under our

identification strategy. Therefore, even if Q(βTX) has multiple roots, we can

still identify the optimal treatment regimes. Note that Q(βTX) > 0 simplifies

to βTX > 0 if Q(βTX) is monotone. Therefore, our strategy Q(βTX) > 0

accommodates both monotone and nonmonotone functions. Thus, once we obtain

Q̂(·, β̂, α̂, γ̂) and β̂, we directly identify the optimal treatment regime by assigning

treatment 1 if and only if Q̂(β̂TX) > 0. We can further estimate the subsequent



382 GHOSH ET AL.

maximum value function as

V̂ {Q̂(·), β̂, α̂, γ̂} =

n−1
n∑
i=1

[AiI{Q̂(β̂TXi, β̂, α̂, γ̂)>0}+(1−Ai)I{Q̂(β̂TXi, β̂, α̂, γ̂)≤0}]Yi
π(Xi, γ̂)I{Q̂(β̂TXi, β̂, α̂, γ̂)>0}+{1−π(Xi, γ̂)}I{Q̂(β̂TXi, β̂, α̂, γ̂)≤0}

+n−1
n∑
i=1

{π(Xi, γ̂)−Ai}
[
µ(Xi, α̂) + Q̂(β̂TXi, β̂, α̂, γ̂)

π(Xi, γ̂)
I{Q̂(β̂TXi, β̂, α̂, γ̂)>0}

− µ(Xi, α̂)

1− π(Xi, γ̂)
I{Q̂(β̂TXi, β̂, α̂, γ̂) ≤ 0}

]

= n−1
n∑
i=1

 [Ai+(1−2Ai)I{Q̂(β̂TXi, β̂, α̂, γ̂)≤0}]Yi
π(Xi, γ̂)+{1−2π(Xi, γ̂)}I{Q̂(β̂TXi, β̂, α̂, γ̂)≤0}

+{π(Xi, γ̂)−Ai}

×

[µ(Xi, α̂) + Q̂(β̂TXi, β̂, α̂, γ̂)

− {2µ(Xi, α̂) + Q̂(β̂TXi, β̂, α̂, γ̂)}I{Q̂(β̂TXi, β̂, α̂, γ̂) ≤ 0}]

π(Xi, γ̂) + {1− 2π(Xi, γ̂)}I{Q̂(β̂TXi, β̂, α̂, γ̂) ≤ 0}

 , (2.4)

which is a consistent estimator of the true value function V {Q(·),β}.

3. Theoretical Properties

We now study the theoretical properties of the proposed estimators. For no-

tational simplicity, define W(γ) ≡ E (∂2log[π(X,γ)A{1− π(X,γ)}1−A]/∂γ∂γT),

φγ(Xi, Ai,γ) ≡ W(γ)−1∂log [π(xi,γ)Ai{1− π(xi,γ)}1−Ai ] /∂γ, and φα(Xi,

Ai, Yi,α) ≡ [E {W(X,α)D(X,α)}]−1 W(Xi,α)(1− Ai) {Yi − µ(Xi,α)} , where

W(Xi,α) is an arbitrary weight matrix and D(X,α) = ∂µ(X,α)/∂αT.

Throughout this paper, a⊗2 = aaT.

Proposition 2. Write the conditional distribution of A given X as π(x,γ)a

{1−π(x,γ)}1−a. Regardless of whether π(X,γ) is the true propensity score model,

there exists γ0 such that the MLE γ̂ satisfies
√
n(γ̂ − γ0) = n−1/2

∑n
i=1 φγ(Xi,

Ai,γ) + op(1). Hence,
√
n(γ̂ − γ0)→ N{0,W(γ0)

−1B(γ0)W(γ0)
−1} in distribu-

tion when n→∞, where B(γ0) ≡ E{φγ(Xi, Ai,γ0)
⊗2}.

Specifically, when the model π(x,γ) is correct, γ0 is the true parameter value

that yields π0(x) = π(x,γ0), and the covariance matrix simplifies to the inverse of

Fisher’s information matrix I(γ0), which is I(γ0) = −W(γ0)
−1. When the model

π(x,γ) is incorrect, γ0 is the parameter vector that minimizes the Kullback–

Leibler distance E{log([π0(X)A{1− π0(X)}1−A]/[π(X,γ)A{1− π(X,γ)}1−A])}.

Proposition 3. Regardless of whether µ(X,α) is the true model, let α̂ be the

estimator that solves the estimating equation
∑n0

i=1 W(Xi,α){Y 0
i −µ(Xi,α)} = 0.

Then,
√
n0(α̂−α0) = n

−1/2
0

∑n0

i=1 φα(Xi, Ai, Yi,α0) +op(1) = n
−1/2
0

∑n
i=1 φα(Xi,
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Ai, Yi,α0) + op(1). Hence,
√
n0(α̂ − α0) → N(0,Vα) in distribution when n →

∞, where Vα = [E{W(X,α0)D(X,α0)}]−1 × E{W(X,α0)v(X)W(X,α0)
T}

([E{W(X,α0)D(X,α0)}]−1)T, and v(X) is the conditional variance of Y given

X. When the model µ(X,α) is specified correctly, α0 satisfies µ0(X) = µ(X,α0),

where µ0(x) is the true mean outcome under A = 0. However, when the model

µ(X,α) is specified incorrectly, α0 satisfies E[W(Xi,α0){Y 0
i − µ(Xi,α0)}] = 0.

The results in Propositions 2 and 3 follow directly from the findings of White

(1982) and Yi and Reid (2010); hence, we omit detailed proofs. We develop

the asymptotic properties of the estimators β̂ and Q̂(·, β̂, α̂, γ̂), the root of

Q̂(·, β̂, α̂, γ̂), and V̂ {Q̂(·), β̂, α̂, γ̂} under the following conditions.

Regularity Conditions:

(C1) The true parameter value β0 belongs to a compact set Ω.

(C2) The univariate kernel K(·) is symmetric, has compact support, and is

Lipschitz-continuous on its support. It satisfies
∫
K(u)du = 1,

∫
uK(u)du =

0, 0 6=
∫
u2K(u)du <∞.

(C3) The probability density function of βTX, denoted by f(βTx), is bounded

away from zero and ∞.

(C4) E(X | βTx)f(βTx) and Q(βTx) are twice differentiable, and their second

derivatives and f(βTx) are locally Lipschitz-continuous and bounded.

(C5) The bandwidth h = O(n−κ), for 1/8 < κ < 1/2.

(C6) The treatment assignment probability satisfies c < π0(x) < 1 − c, where c

is a small positive constant.

(C7) The true treatment responses, µ0(x) for the nontreated group and µ1(x) for

the treated group are bounded by a constant C.

(C8) The true treatment effect function Q(βT
0 x) has roots r1, . . . , rK , for K <∞.

In addition, Q′(rk) 6= 0, for all k = 1, . . . ,K.

Conditions (C1)–(C5) are standard conditions that ensure a sufficient

convergence rate of the nonparametric estimators. Condition (C6) is also

routinely assumed to exclude weights near zero and one. Condition (C7) is very

mild, and is usually satisfied in practice. Condition (C8) allows roots for the

function Q(·), and is also very mild.

Lemma 1. Under Conditions (C2), (C3), and (C4), at any β ∈ Ω and for any

function H(Xj, Aj, Yj) such that E {H(Xj, Aj, Yj) | βTXj} is twice differentiable,

we have
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E
{
H(Xj, Aj, Yj)Kh(βTXj − βTx)

}
− E

{
H(Xj, Aj, Yj) | βTx

}
f(βTx)

=
∂2

(∂βTx)2
[E
{
H(Xj, Aj, Yj) | βTx

}
f(βTx)]

h2

2

∫
z2K(z)dz + o(h2),

var

{
n−1

n∑
j=1

H(Xj, Aj, Yj)Kh(βTXj − βTx)

}

= (nh)−1E{H2(Xj, Aj, Yj) | βTx}f(βTx)

∫
K2(z)dz +O(n−1).

Lemma 2. Assume the regularity Conditions (C1)–(C5) hold. Then, at any β ∈
Ω, the kernel estimator Q̃(βTx,β,α0,γ0) satisfies Q̃(βTx,β,α0,γ0)−Q(βTx) =

Op{h2 + (nh)−1/2}.

Note that the convergence rate of Q̃(βTx,β,α0,γ0) is slower than
√
n,

whereas γ̂ and α̂ have a
√
n convergence rate. Thus, estimating Q̃(βTx,β, α̂, γ̂),

which is based on α̂ and γ̂ instead of α0 and γ0, respectively does not change

the results in Lemma 2.

Theorem 1. Assume β̂L solves (2.2). Then, under the regularity conditions

(C1)–(C5), β̂L satisfies
√
n(β̂L − βL0) → N{0,B−1V1(B

−1)T} in distribution

as n → ∞, where V1 ≡ E[{φβ(Xi, Yi, Ai,β0,α0,γ0) + Bγφγ(Xi, Ai,γ0) +

Bαφα(Xi, Ai, Yi,α0)}⊗2]. Detailed expressions for B, Bγ, Bα, and φβ(Xi, Yi,

Ai,β0,α0,γ0) are provided in Section S1 of the Supplementary Material.

The first term in the variance expression V1 captures the variability of

estimating different functions, the second term captures the variability in

estimating β due to the estimation of γ, and the third term captures the same

induced by α̂.

Lemma 3. Assume the regularity Conditions (C1)–(C5) hold. Then, the kernel

estimator obtained from Step 6, Q̂(β̂Tx, β̂, α̂, γ̂), satisfies

bias{Q̂(β̂Tx, β̂, α̂, γ̂)}

= h2
opt

{
Q′(βT

0 x)d[E{π0(Xj)/π(Xj,γ0) | βT
0 x}f(βT

0 x)]/d(βT
0 x)

f(βT
0 x)E{π0(Xj)/π(Xj,γ0) | βT

0 x}
+
Q′′(βT

0 x)

2

}
×
∫
z2K(z)dz + o(h2

opt + n−1/2h
−1/2
opt ),

and

var{Q̂(β̂Tx, β̂, α̂, γ̂)}

=
1

nhopt

(
E

[
π0(Xj)

π2(Xj,γ0)
{Y1j − µ(Xj,α0)}2 | βT

0 x

]
+ E

[
1− π0(Xj)

{1− π(Xj,γ0)}2
{Y0j − µ(Xj,α0)}2 | βT

0 x

]
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−Q2(βT
0 x)E

{
π0(Xj)

π2(Xj,γ0)
| βT

0 x

}
− 2Q(βT

0 x)E

[
π0(Xj)

π2(Xj,γ0)
{µ0(Xj)− µ(Xj,α0)} | βT

0 x

])
× 1

f(βT
0 x)

[
E

{
π0(Xj)

π(Xj,γ0)
| βT

0 x

}]−2 ∫
K2(z)dz +O(n−1).

Here, for a generic function r(·), r′(·) and r′′(·) are its first and second

derivatives, respectively.

Theorem 2. Let Q(z0) = 0 and Q̂(ẑ, β̂, α̂, γ̂) = 0. Then, as n → ∞, under

the regularity Conditions (C1)–(C5), ẑ → z0 at the rate n−2/5. Specifically, the

leading term of the bias of ẑ is

−h2
opt

{
d[E{π0(X)/π(X,γ0) | βT

0 X = z0}f(z0)]/d(z0)

E{π0(X)/π(X,γ0) | βT
0 X = z0}f(z0)

+
Q′′(z0)

2Q′(z0)

}∫
z2K(z)dz,

and the leading term of the variance of ẑ is

1

nhopt

(
E

[
π0(X)

π2(X,γ0)
{Y1 − µ(X,α0)}2 | βT

0 X = z0

]
+E

[
1− π0(X)

{1− π(X,γ0)}2
{Y0 − µ(X,α0)}2 | βT

0 X = z0

])
× 1

f(z0)Q′(z0)2

[
E

{
π0(X)

π(X,γ0)
| βT

0 X = z0

}]−2 ∫
K2(z)dz.

Theorem 2 indicates that our treatment region identification rate is

Op(n
−2/5), which is better than the classical rate Op(n

−1/3) (Fan et al. (2017)).

This is because of the smoothness assumption made in Condition (C4).

Theorem 3. Under the regularity Conditions (C1)–(C8), the optimal value

function estimator given in (2.4) satisfies n1/2[V̂ {Q̂(·), β̂, α̂, γ̂}−V {Q(·),β0}]→
N(0, σ2) in distribution when n→∞, where σ2 = E[−UT

βB
−1{φβ(Xi, Yi, Ai,β0,

α0,γ0) + Bγφγ(Xi, Ai,γ0) + Bαφα(Xi, Ai, Yi,α0)} + UT
αφα(Xi, Ai, Yi,α0) +

UT
γφγ(Xi, Ai,γ0) + vQ{Xi, Ai, Yi,β0,α0,γ0, Q(·)}+ v0(Xi, Ai, Yi)]

2. Detailed ex-

pressions for B, Bγ, Bα, Uα, Uγ, φβ(Xi, Yi, Ai,β0,α0,γ0), vQ{Xi, Ai, Yi,β0,α0,

γ0, Q(·)}, and v0(Xi, Ai, Yi) are provided in Section S1 of the Supplementary

Material.

We can understand the first term in σ2 as the variability in the value function

due to β. The second term is related to the variability induced by α. The third

term captures the variability due to the γ estimation. The fourth term measures

the variability in the value function induced by estimating the treatment effect

function. Lastly, the fifth term captures the variability in the value function

inherited from the variability of the covariates.
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4. Simulations

We conduct simulation studies to compare the performance of the estimators

discussed in Section 2. To demonstrate the robustness of the proposed estimators,

we consider scenarios in which either π(X,γ) or µ(X,α) is misspecified. We use

a sample size of n = 500, with 1,000 replicates.

4.1. Simulation 1

Our first simulation follows similar designs to those in Fan et al. (2017),

which require the monotonicity of Q(·). We set dβ = 4 and generate the covariate

vector Xi from a multivariate normal distribution with zero mean and identity

covariance matrix. We generate the treatment indicator Ai from a Bernoulli

distribution with probability π0(Xi) = 0.5. The response variables are formed

from Yi = µ0(Xi)+AiQ0(β
T
0 Xi)+εi, where εi is generated from a centered normal

distribution with variance 0.25. Here, Q0(β
T
0 x) = 2βT

0 x and µ0(x) = 1 + αT
0 x,

where α0 = (1,−1, 1, 1)T and β0 = (1, 1,−1, 1)T.

To illustrate the robustness of our method, we consider four cases for the

estimation. In Case I, we use the constant treatment probability model and

a linear model for µ(x,α) in the implementation, both of which are specified

correctly. In Case II, we use a constant model for µ(x,α), which is a misspecified

model, while keeping the treatment probability π unchanged. In Case III, we fix

π at 0.4, and use the same µ model as in Case I. Thus, µ is specified correctly,

whereas π is misspecified. Lastly, in Case IV, both models are misspecified by

using the same model for µ as in Case II and setting π as in Case III.

We follow the algorithm described in Section 2, where we use the Epanech-

nikov kernel in the nonparametric implementation, and use the bandwidth

cσn−1/3 to estimate β, where σ2 is the estimated variance of βTx and c is a

constant between 7 and 7.5 in step 3.

From the results summarized in Table 1, in the first three cases, our

estimation for β yields a small bias. In contrast, for Case IV, when both π(x) and

µ(x,α) are misspecified, the estimation for β is biased. In terms of inference, the

estimated standard deviations based on the asymptotic properties match closely

with the empirical variability of the estimators, and the 95% confidence intervals

have coverage close to the nominal level in the first three cases. Interestingly, the

value function estimator and the root of Q(·) perform well in all cases. Figure 1

further shows that the 95% confidence interval for Q(·) includes the true function

Q0(·).

4.2. Simulation 2

In our second simulation study, we examine the performance of our estimators

in the presence of nonmonotonic function Q0(·) and heteroscedastic error

variance. When generating the data, the true treatment difference function is
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Table 1. Simulation 1. Q0(βT
0 x) = 2βT

0 x and µ0(x) = 1 + αT
0 x. Case I: µ(·) and π(·)

are specified correctly; Case II: µ(·) is misspecified; Case III: π(·) is misspecified; Case
IV: both models are misspecified. For the different cases, we also compute the mean
of the estimated sd based on asymptotics (ŝd), empirical coverage obtained with 95%
confidence intervals based on these estimated sd (cvg), and mean squared error (mse).

Results for β and value function V

Case parameters True Estimate sd ŝd cvg MSE

I

β2 1 0.9960 0.0567 0.0563 95.1% 0.0032

β3 -1 -0.9953 0.0563 0.0559 95.3% 0.0032

β4 1 0.9941 0.0559 0.0549 94.4% 0.0032

V 2.5958 2.5955 0.1453 0.1458 97.2% 0.0211

II

β2 1 1.0256 0.1598 0.2033 93.4% 0.0262

β3 -1 -1.0252 0.1561 0.1982 93.7% 0.0250

β4 1 1.0068 0.1361 0.1913 94.6% 0.0186

V 2.5958 2.6083 0.1926 0.1702 96.2% 0.0373

III

β2 1 1.0049 0.0468 0.0470 95.3% 0.0022

β3 -1 -1.0044 0.0470 0.0473 95.2% 0.0022

β4 1 1.0032 0.0482 0.0464 94.7% 0.0023

V 2.5958 2.6176 0.1476 0.1471 96.9% 0.0223

IV

β2 1 0.7494 0.1106 0.0940 41.3% 0.0751

β3 -1 -0.7485 0.1073 0.0919 42.1% 0.0748

β4 1 1.0243 0.0901 0.0939 95.8% 0.0087

V 2.5958 2.6401 0.1665 0.1655 96.4% 0.0297

Results for the root of Q0(t) = 2t

Case true mean bias ˆbias sd ŝd cvg MSE

I 0 0.0023 0.0023 -0.0013 0.0641 0.0663 96.6% 0.0041

II 0 -0.0004 -0.0004 -0.0001 0.1703 0.1693 93.7% 0.0290

III 0 0.0015 0.0015 -0.0004 0.0589 0.0594 95.7% 0.0035

IV 0 -0.0080 -0.0080 0.0044 0.1242 0.1225 93.2% 0.0155

Q0(β
T
0 xi) = (βT

0 xi)
2−2, µ0(x) = 1+sin(αT

10x)+0.5(αT
20x)2, and the errors satisfy

εi ∼ N (0, log{(βT
0 xi)

2 + 1}). Here, β0 = (1, 1,−1, 1)T, α10 = (1,−1, 1, 1)T, and

α20 = (1, 0,−1, 0)T. All other aspects of the simulation setting are identical to

those in Simulation 1.

Despite the heteroscedasticity and nonmonotone treatment difference func-

tion, similar to Simulation 1, we consider four cases to demonstrate the robustness

of our estimator. In Case I, we use correctly specified models for both π and

µ(x,α). In Case II, we misspecify the µ(x,α) model as a linear model. In

Case III, we misspecify π as 0.4. Finally, in Case IV, both µ(x,α) and π are

misspecified.
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Figure 1. Simulation 1. Mean, median, and 95% confidence band of the estimators of
Q0(t) = 2t, when (I) µ(·) and π(·) are both correct (top-left), (II) µ(·) is misspecified
and π(·) is correct (top-right), (III) π(·) is misspecified and µ(·) is correct (bottom-left),
and (IV) both µ(·) and π(·) are misspecified (bottom-right).

We use the same nonparametric estimation procedures as we did in Simula-

tion 1 to implement the algorithm in Section 2. The results in Table 2 show that

despite the nonmonotonic function Q0(·) and a heteroscedastic error variance, the

estimations for the parameters β, the value function, and the two roots of Q0(·)
yield very small bias in the first three cases. In addition, the estimated standard

deviations are close to the empirical standard deviations, and the confidence

intervals are close to the nominal coverage levels. As expected, the estimation

of β in Case IV does not perform well, although the performance of the value

function and the two roots of Q(·) show a certain robustness, even in Case IV. In

Figure 2, note that the 95% confidence interval for Q(·) includes the true Q0(·)
function in all four cases.

4.3. Simulation 3

In the previous simulation settings, we considered a constant true propensity

score. We now consider a nonconstant propensity score, which better reflects the

situation in observational studies. Specifically, we let π(Xi) = exp(γT
0 Xi)/{1 +

exp(γT
0 Xi)}, where γ0 = (0.1, 0,−0.1, 0)T. Furthermore consider Q0(β

T
0 xi) =

(βT
0 xi) + sin(βT

0 xi) and generate the other data as in Simulation 2.

To show the robustness of our method, we consider four cases, similar to

Simulation 2. In Case I, we use correctly specified models for both π(x,γ) and

µ(x,α). In Case II, we misspecify the µ(x,α) model as a linear model, while

keeping the treatment probability model π(X,γ) unchanged. In Case III, we use
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Table 2. Simulation 2. Q0(βT
0 x) = (βT

0 x)2 − 2 and µ0(x) = 1 + sin(αT
10x) + 0.5(αT

20x)2,
when the error variance is heteroscedastic. See also the caption of Table 1.

Results for β and value function V

Case parameters True Estimate sd ŝd cvg MSE

I

β2 1 1.0364 0.0646 0.0911 93.5% 0.0055

β3 -1 -1.0368 0.0653 0.0911 93.1% 0.0056

β4 1 1.0330 0.0646 0.0893 92.9% 0.0053

V 4.7166 4.6415 0.2843 0.2970 94.9% 0.0864

II

β2 1 1.0398 0.1124 0.1384 92.8% 0.0142

β3 -1 -1.0341 0.1062 0.1320 94.0% 0.0124

β4 1 1.0411 0.1166 0.1385 93.2% 0.0153

V 4.7166 4.6160 0.3095 0.3053 94.4% 0.1059

III

β2 1 1.0295 0.0618 0.0833 92.6% 0.0047

β3 -1 -1.0300 0.0640 0.0830 93.6% 0.0050

β4 1 1.0262 0.0629 0.0826 94.2% 0.0046

V 4.7166 4.7024 0.2967 0.3052 95.9% 0.0882

IV

β2 1 0.9549 0.0894 0.0990 86.4% 0.0100

β3 -1 -1.0283 0.0865 0.1020 92.0% 0.0083

β4 1 0.9563 0.0910 0.1007 89.4% 0.0102

V 4.7166 4.7518 0.3122 0.3174 96.1% 0.0987

Results for the two roots of Q0(t) = t2 − 2

Case true mean bias ˆbias sd ŝd cvg MSE

I
-1.4142 -1.4469 -0.0327 -0.0109 0.1498 0.1120 93.2% 0.0235

1.4142 1.4480 0.0338 0.0047 0.1259 0.1108 93.7% 0.0170

II
-1.4142 -1.4482 -0.0340 -0.0144 0.2096 0.1943 94.7% 0.0451

1.4142 1.4408 0.0266 0.1191 0.1854 0.1830 95.2% 0.0351

III
-1.4142 -1.4423 -0.0281 -0.0170 0.1104 0.1033 93.1% 0.0130

1.4142 1.4436 0.0294 0.0113 0.1112 0.1019 93.3% 0.0132

IV
-1.4142 -1.4087 0.0056 -0.0180 0.1585 0.1745 97.4% 0.0252

1.4142 1.4363 0.0221 -0.0145 0.1497 0.1662 97.5% 0.0229

a constant model for π(x,γ), which is misspecified, and use the same model for

µ(X,α) as in Case I. Finally, in Case IV, both models are misspecified by using

the same model for µ(X,α) as in Case II and considering π(X,γ) as in Case III.

We follow the algorithm described in Section 2 and summarize the results in

Table 3. Despite the heteroscedastic error and nonconstant propensity score

model, in the first three cases, the estimations for the parameters β, value

function V , and the root of the treatment difference function yield a small bias.

In addition, the estimated standard deviations are still close to the empirical

version of the estimators, and the confidence intervals have coverage close to the

nominal levels. Interestingly, the estimator of the root of Q(·) performs well, even
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Figure 2. Simulation 2. Mean, median, and 95% confidence band of the estimators of
Q0(t) = t2 − 2 with heteroscedastic error variance. See also the caption of Figure 1.

− − − −

− − − −

Figure 3. Simulation 3. Mean, median, and 95% confidence band of the estimators of
Q0(t) = t + sin(t) with a nonconstant propensity score model and heteroscedastic error
variance. See also the caption of Figure 1.

in Case IV. In Figure 3, note that the 95% confidence interval for Q(·) includes

the true Q0(·) function in all four cases.
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Table 3. Simulation 3. Q0(βT
0 x) = (βT

0 x) + sin(βT
0 x), π0(x) = exp(γT

0 X)/{1 +
exp(γT

0 X)}, and µ0(x) = 1 + sin(αT
10x) + 0.5(αT

20x)2. See also the caption of Table
1.

Results for β and value function V

Case parameters True Estimate sd ŝd cvg MSE

I

β2 1 1.0100 0.1197 0.1603 93.2% 0.0144

β3 -1 -1.0093 0.1177 0.1625 93.5% 0.0139

β4 1 1.0120 0.1227 0.1640 93.3% 0.0152

V 3.0533 3.0345 0.1254 0.1287 95.7% 0.0161

II

β2 1 1.0418 0.1742 0.1896 93.9% 0.0321

β3 -1 -0.9983 0.1696 0.2087 93.0% 0.0287

β4 1 1.0467 0.1749 0.1866 93.1% 0.0327

V 3.0533 2.9907 0.1157 0.1359 95.5% 0.0173

III

β2 1 1.0220 0.1278 0.1757 92.4% 0.0168

β3 -1 -1.0170 0.1243 0.1755 93.2% 0.0157

β4 1 1.0168 0.1276 0.1765 93.7% 0.0165

V 3.0533 3.0440 0.1440 0.1203 95.0% 0.0208

IV

β2 1 1.0512 0.2019 0.1727 80.5% 0.0434

β3 -1 -1.0083 0.1976 0.1929 82.7% 0.0391

β4 1 1.0575 0.2094 0.1837 82.6% 0.0472

V 3.0533 2.9647 0.1402 0.1406 90.6% 0.0275

Results for the root of Q0(t) = t+ sin(t)

Case true mean bias ˆbias sd ŝd cvg MSE

I 0 0.0271 0.0271 0.0147 0.0795 0.0767 93.8% 0.0070

II 0 0.0105 0.0105 0.0179 0.1564 0.1669 97.2% 0.0245

III 0 0.0078 0.0078 -0.0013 0.0769 0.0823 96.2% 0.0059

IV 0 0.0089 0.0089 0.0186 0.1726 0.1650 97.3% 0.0299

4.4. Simulation 4

Here, we consider a nonconstant propensity score model similar to that in

Simulation 3, and generate the other data as in Simulation 2. Thus, we consider

a nonconstant propensity score model with a nonmonotonic treatment difference

function and a heteroscedastic error variance in this simulation.

Similarly to Simulation 3, we consider four cases and demonstrate the

robustness of our estimators. The results summarized in Table 4 show that

the estimations for the parameters β, value function, V , and root of the

treatment difference function result in a small bias in the first three cases,

as expected. Furthermore, the estimated standard deviations are close to the

empirical standard deviations, and the confidence intervals are close to the

nominal coverage levels. Interestingly, the estimation and inference of β, V , and

the two roots perform well in Case IV. In Figure 4, the 95% confidence interval
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Table 4. Simulation 4. Q0(βT
0 x) = (βT

0 x)2− 2, π0(x) = exp(γT
0 X)/{1 + exp(γT

0 X)} and
µ0(x) = 1 + sin(αT

10x) + 0.5(αT
20x)2. See also the caption of Table 1.

Results for β and value function V

Case parameters True Estimate sd ŝd cvg MSE

I

β2 1 1.0316 0.0659 0.0870 92.7% 0.0053

β3 -1 -1.0346 0.0644 0.0890 92.8% 0.0053

β4 1 1.0346 0.0635 0.0874 93.9% 0.0052

V 4.7166 4.6549 0.3035 0.3294 96.3% 0.0959

II

β2 1 1.0236 0.1117 0.1377 93.4% 0.0130

β3 -1 -1.0186 0.1111 0.1362 93.6% 0.0127

β4 1 1.0173 0.1143 0.1349 92.9% 0.0133

V 4.7166 4.6134 0.2952 0.3269 96.3% 0.0977

III

β2 1 1.0361 0.0637 0.0889 93.0% 0.0054

β3 -1 -1.0343 0.0637 0.0895 95.0% 0.0052

β4 1 1.0327 0.0642 0.0877 94.0% 0.0052

V 4.7166 4.6381 0.2930 0.3020 95.8% 0.0920

IV

β2 1 1.0396 0.1219 0.1368 93.5% 0.0164

β3 -1 -1.0245 0.1103 0.1321 94.0% 0.0128

β4 1 1.0343 0.1215 0.1371 92.3% 0.0159

V 4.7166 4.6004 0.2905 0.3056 94.2% 0.0979

Results for the two roots of Q0(t) = t2 − 2

Case true mean bias ˆbias sd ŝd cvg MSE

I
-1.4142 -1.4268 -0.0126 -0.0199 0.1201 0.1085 95.3% 0.0146

1.4142 1.4556 0.0414 0.0238 0.1115 0.1172 94.8% 0.0142

II
-1.4142 -1.3810 0.0331 0.0368 0.1811 0.1885 94.4% 0.0339

1.4142 1.4553 0.0411 0.0086 0.1792 0.1835 93.2% 0.0338

III
-1.4142 -1.4410 -0.0268 -0.0159 0.1221 0.1169 93.2% 0.0156

1.4142 1.4554 0.0412 0.0137 0.1160 0.1206 93.6% 0.0151

IV
-1.4142 -1.3941 0.0201 -0.0065 0.1905 0.1950 94.9% 0.0367

1.4142 1.4508 0.0366 -0.0080 0.1769 0.1885 95.9% 0.0326

for Q(·) includes the true Q0(·) function in all four cases.

For comparison, we also implement the methods in Fan et al. (2017)

for all simulations. The results are summarized in Tables S.3 to S.8 in the

Supplementary Material, and show that when the monotonicity assumption is

violated, the methods of Fan et al. (2017) deteriorate and perform worse than

our proposed method. We also provide additional simulation studies in the

Supplementary Material, and implement two machine learning methods (Zhang

et al. (2015); Zhao et al. (2012)); the results are reported in Tables S.9 and S.10

in the Supplementary Material.
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Figure 4. Simulation 4. Mean, median, and 95% confidence band of the estimators of
Q0(t) = t2 − 2 with a nonconstant propensity score model and heteroscedastic error
variance. See also the caption of Figure 1.

5. Real-Data Application

In this section, we apply our proposed method to data from a study of

the effect of smoking during pregnancy on a baby’s birth weight. The primary

outcome is birth weight (in grams) of singleton births in Pennsylvania, USA

(Almond, Chay and Lee (2005)). This study aims to determine whether pregnant

women should stop smoking to ensure a healthy birth in terms of the baby’s

birth-weight. We consider a subset of 1,394 unmarried mothers. The data

set contains data on the maternal smoking habit during pregnancy, which is

treated as treatmentAi (1 =Non-smoking, 0 =Smoking). The covariates observed

are mother’s age (mage), an indicator variable for alcohol consumption during

pregnancy (alcohol), an indicator variable of previous birth in which the infant

died (deadkids), mother’s education (medu), father’s education (fedu), number

of prenatal care visits (nprenatal), months since last birth (monthslb), mother’s

race (mrace), and an indicator variable for the first born child (fbaby).

To estimate the propensity score, mean outcome model for the nontreated

group, and treatment difference function, we first normalize all the continuous

covariates. We use the expit model π(X,γ) to describe the propensity score, and

use an MLE to estimate γ. In addition, we consider a linear model for the mean

outcome model for the nontreatment group µ(X,α), and solve GEE to obtain α̂.

Lastly, we estimate the treatment difference model Q(βTX) using the proposed

method.
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Table 5. Birth-weight study analysis: Results for β and value function V with 95% CI.

parameters Estimate ŝd Confidence interval

β2 (alcohol) 0.2965 0.4842 (−0.6525, 1.2455)

β3 (deadkids) 0.3406 0.0233 (0.2950, 0.3862)

β4 (medu) -0.1972 0.0073 (−0.2116,−0.1828)

β5 (fedu) -0.0947 0.0005 (−0.0957,−0.0938)

β6 (nprenatal) 0.2822 0.0061 (0.2703, 0.2941)

β7 (monthslb) 0.0183 0.0002 (0.0178, 0.0188)

β8 (mrace) 3.0882 0.3753 (2.3527, 3.8237)

β9 (fbaby) -1.8505 0.4267 (−2.6868,−1.0143)

Value function 3274.9 25.439 (3225.1, 3324.8)

To implement the algorithm described in Section 2, we use the quartic kernel

in the nonparametric implementation to estimate β with bandwidth cσn−1/3,

where σ2 is the estimated variance of βTX and c = 0.05.

For identifiability purposes, we fix the coefficient of the first covariate (here,

mage) to be one and estimate the remaining eight coefficients. The estimated

parameters in β, their standard errors, and the value function are summarized in

Table 5. From the 95% confidence interval for β, we conclude that all covariates

are significant, except for the indicator variable for alcohol consumption. We

provide the estimated treatment difference model, Q̂(β̂TX), in Figure 5. Here,

the covariate alcohol is included when estimating Q̂(β̂TX). The results show a

higher baby birth weight for mothers who did not smoke during pregnancy, once

Q̂(β̂TX) is greater than zero. We further construct the 95% confidence band

for the difference function Q(t), based on 500 bootstrap samples, by resampling

the residuals. The results from the CAL and CAL-DR methods of Fan et al.

(2017) are summarized in Table 6. Here, neither CAL nor CAL-DR detect any

significant covariates. Furthermore, the variability when estimating the value

function using CAL or CAL-DR is higher than when using the proposed method.

In addition, the 95% confidence intervals computed by the CAL and CAL-DR

methods include the estimated value function obtained by our method.

Remark 1. We also performed an analysis after excluding the covariate alcohol,

and observed that the estimated function Q̂(β̂TX) does not change much.

However, excluding alcohol influences the estimated confidence band. This

suggests that we need to be more careful with variable selection and when

performing inference post variable selection. This is beyond the scope of this

study, and so is left to future research.
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Figure 5. Data analysis. The estimated treatment difference model, Q̂(β̂Tx), its median,
and 95% confidence bands based on the data set of low baby birth weights.

Table 6. Application to birth-weight study using the CAL and CAL-DR methods.

parameters Estimate ŝd Confidence interval

CAL estimates for β and value function V for the real data analysis.

β2 (alcohol) -0.0223 7.0207 (−13.783, 13.738)

β3 (deadkids) 0.2088 5.9428 (−11.439, 11.857)

β4 (medu) -0.1998 0.6850 (−1.5424, 1.1428)

β5 (fedu) -0.0902 0.2929 (−0.6643, 0.4838)

β6 (nprenatal) 0.2966 0.5499 (−0.7812, 1.3743)

β7 (monthslb) 0.0192 0.1653 (−0.3048, 0.3431)

β8 (mrace) 3.1975 7.1149 (−10.747, 17.142)

β9 (fbaby) -2.0682 3.8728 (−9.6587, 5.5222)

Value function 3244.4 30.345 (3185.0, 3303.9)

CAL-DR estimates for β and value function V for the real data analysis.

β2 (alcohol) -0.1111 1.7382 (−3.5179, 3.2958)

β3 (deadkids) 0.2589 0.9554 (−1.6136, 2.1314)

β4 (medu) -0.2058 0.3147 (−0.8226, 0.4109)

β5 (fedu) -0.0815 0.1545 (−0.3843, 0.2213)

β6 (nprenatal) 0.2759 0.2782 (−0.2693, 0.8212)

β7 (monthslb) 0.0183 0.0383 (−0.0568, 0.0933)

β8 (mrace) 3.2234 2.4674 (−1.6127, 8.0594)

β9 (fbaby) -2.0459 1.7858 (−5.5460, 1.4542)

Value function 3241.9 30.243 (3182.6, 3301.2)

6. Discussion

We have proposed a robust method for estimating the optimal treatment

regimes for a single decision time point under weak conditions; that is, our

treatment difference model Q(·) does not need to be monotonic and we require
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only that E(ε | X) = 0. Our method enjoys protection against a misspecification

of either the propensity score model or the outcome regression model for the

nontreated group or the nonmonotonic treatment difference model. We use a

nonparametric kernel-based estimator to obtain the treatment difference model,

and show that the treatment identification rate is Op(n
−2/5). Our simulation

studies demonstrate the superior performance of the proposed method under

various scenarios.

Regardless of whether the true treatment difference function Q(·) has single

or multiple roots, our procedure always identifies the region {x : Q̂(β̂Tx) >

0} as the treatment region. When Q̂(·) has multiple roots, the corresponding

treatment region is the union of several intervals for β̂Tx. In practice, this does

not cause problem, because when new patients enter with a covariate x0, we

simply evaluate Q̂(β̂Tx0) to determine whether they should receive the treatment.

We consider parametric models for the propensity score function and the mean

outcome model for the nontreated group. One can also use semiparametric or

nonparametric methods to obtain these two functions. For example, one can use

the semiparametric estimation procedure of Ma and Zhu (2013) to estimate the

propensity score and the mean outcome model for the nontreated group to obtain

n1/2-consistent estimators for γ and α. The treatment identification rate remains

unchanged.

Many extensions of this work are interesting and worth pursuing. For

example, we may consider multiple treatment decision times, while incorporating

the usual backward induction to obtain the optimal dynamic treatment regimes.

We may also consider multiple treatment choices sharing the same index. These

topics are left to future research.

Supplementary Material

The online Supplementary Material contains proofs for Proposition 1, Lemma

1–3, and Theorems 1–3.
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