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Abstract: In mixed longitudinal studies, a group of subjects enter the study at dif-

ferent ages (cross-sectional) and are followed for successive years (longitudinal). In

the context of such studies, we consider nonparametric covariance estimation with

samples of noisy and partially observed functional trajectories. The proposed algo-

rithm is based on a noniterative sequential-aggregation scheme with only basic ma-

trix operations and closed-form solutions in each step. The good performance of the

proposed method is supported by both theory and numerical experiments. We also

apply the proposed procedure to a study on the working memory of midlife women,

based on data from the Study of Women’s Health Across the Nation (SWAN).

Key words and phrases: Consistency, covariance estimation, cross-sectional, func-

tional data, longitudinal studies, partial trajectories.

1. Introduction

A mixed longitudinal study is a mixture of a longitudinal and a cross-sectional

study (Berger (1986); Helms (1992)). Suppose the researchers intend to study

the social and cognitive development of children aged four to twelve. In an ideal

longitudinal design, a group of four-year-old children will be recruited and fol-

lowed over eight successive years. In a mixed longitudinal design, one can recruit

a group of children between the ages of four and eight, and then follow them for

four years (within a typical funding period). Because the age requirement is more

flexible at recruitment, this type of mixed longitudinal design results in shorter

completion times and potentially larger group sizes. However, this type of mixed

longitudinal design also brings new challenges for statistical analysis, because the

trajectory is only partially observed for each subject.

Specifically, we consider a data example from the Study of Women’s Health

Across the Nation (SWAN). The SWAN is a community-based, longitudinal study
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Figure 1. Left: For each of the 2,016 subjects, measurements were between age x and
x + 5, for some x ∈ [48, 58]. Right: The design plots for covariance G(s, t), that is, the
assembled pairs of (tij , til), for 1 ≤ i ≤ n, 1 ≤ j < l ≤ ni. The pooled pairs do not fill
the entire domain T 2 because there are no measurements available for pairs of (tij , til)
whenever |j − l| > 5.

of midlife women. Women aged between 42 and 52 years were enrolled around

1996/97, and followed annually thereafter. Currently, SWAN data up to the 10th

follow up visit are available in a publicly accessible repository managed by the

ICPSR, at http://www.icpsr.umich.edu/icpsrweb/ICPSR/series/00253. Al-

though enormous studies have examined cognitive functioning in midlife, few are

longitudinal, and most are based on three or fewer cognition assessments (Karla-

mangla et al. (2017)). As a result, there are insufficient studies on within-person

longitudinal decline in cognitive performance in those under 60 years of age (Hed-

den and Gabrieli (2004); Rönnlund et al. (2005)). In contrast, the SWAN data

contain more follow-ups and a wider age range, providing a good opportunity for

a longer-term study of women’s midlife health. In particular, we focus on working

memory measurements available from Visits six to ten. By pooling the subjects,

the age range under consideration is a span of 15 years: T = [48, 62]. However,

given its mixed longitudinal design, the longitudinal follow-ups of each subject

in the SWAN only capture a piece of the chronological aging trajectory, and the

shape might have a complex interaction with age (Rönnlund et al. (2005); Fuh

et al. (2006)). As shown in the left panel of Figure 1, the measurements for each

subject are only a subset within a period of at most five years. Traditional para-

metric models, such as linear mixed models (with age as a between-subject effect,

and the time of follow-up as a within-subject effect), often assume a linear trend

over time. However, the individual chronological aging trajectories of working

http://www.icpsr.umich.edu/icpsrweb/ICPSR/series/00253
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memory might have a complex shape. For example, working memory might im-

prove first and then decline, and the age when working memory starts to decline

varies among subjects. Therefore, we believe that nonparametric models, such

as a functional principal component analysis, may reveal interesting features.

We consider a mixed longitudinal design for n subjects, where for each subject

k, measurements are obtained at times tkj , for k = 1, . . . , n and j = 1, . . . , nk.

We use the notation

Xk(tkj) = Zk(tkj) + εkj , tkj ∈ T , (1.1)

where εkj are zero mean independent and identically distributed (i.i.d.) measure-

ment errors that are uncorrelated with all other random components and satisfy

var(εkj) = σ2. Here, Z(t), for t ∈ T , is assumed to be a square-integrable random

process with mean and covariance functions µ(t) and G(s, t) = Cov(Z(s), Z(t)).

In a mixed longitudinal design, the observed time points {tkj}j=1,...,nk
for each

subject k are restricted to a subject-specific partial domain. As shown in the

right panel of Figure 1, we do not have within-subject correlation information

for any two points that are more than five years apart in the SWAN data ex-

ample. To apply a functional data approach for mixed longitudinal studies, the

main methodological challenge is to nonparametrically estimate the covariance

structure G of the underlying process.

Estimating the mean and covariance functions plays a fundamentally im-

portant role in a functional data analysis. Useful tools, such as a functional

principal component analysis, often rely on a consistent covariance function esti-

mation (Yao et al. (2005); Hall and Hosseini-Nasab (2006); Li and Hsing (2010)).

For conventional functional data, where the pooled design (right panel of Figure

1) for the covariance is complete, various methods based on kernel smoothing

and splines have been proposed (e.g., Rice and Silverman (1991); Yao et al.

(2005); Peng and Paul (2009); Xiao et al. (2013)). In a study in which the covari-

ance information is incomplete, Fan et al. (2007) considered a semiparametric

covariance estimation, where the variance function G(t, t) = σ2(t) is modeled

non-parametrically under smoothness conditions, while the off-diagonal correla-

tion structures are assumed to have a parametric form ρ(s, t, θ). However, this

problem differs from the banded covariance estimation considered in studies such

as Bickel and Levina (2008), Cai et al. (2010), Cai and Yuan (2012), Cai, Ren and

Zhou (2016), and the references therein, because there is no bandable covariance

structure in our scenario, and the design pairs are only within a banded area.

We propose estimating the covariance suing a sequential-aggregation scheme
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(see Section 2). The proposed algorithm is noniterative, with closed-form solu-

tions and only basic matrix operations (such as matrix multiplication and sin-

gular value decomposition (SVD)) in each step. We prove that under moderate

conditions (see Section 3), the proposed method consistently recovers the non-

parametric covariance structure using data within a banded area. A key step of

the proposed procedure is solving the orthogonal Procrustes or Wahba problem

(Wahba (1965)), that is, finding a rotation matrix to best align two sets of points

in two different Euclidean coordinate systems. This problem was first motivated

by satellite attitude determination, then later applied to many other applications.

To theoretically analyze the procedure, we introduce a new error bound for the

solution to Wahba problem (Lemma 1). In the theoretical analysis, we intro-

duce a series of technical tools on perturbation inequalities of singular subspaces,

including Lemmas 3, 5, 7, and 8, which may be of independent interest.

Fragmentary functional observations have been studied under other model-

ing assumptions; see, for example, Delaigle and Hall (2013) and Delaigle and Hall

(2016). Descary and Panaretos (2018) and Kneip and Liebl (2017) consider co-

variance estimation and reconstruction from fragmentary functional observations

using an optimization framework. The implementations of both works involve

iterations. In particular, Descary and Panaretos (2018) formulates the problem

as a nonconvex optimization that aims to minimize the error within the observ-

able diagonal band under a rank constraint. In contrast, we introduce a novel

sequential-aggregation approach that provides explicit solutions and new insights

into the covariance estimation problem. We also include numerical comparisons

with the method of Descary and Panaretos (2018) in the simulation section. In

addition, this problem is related to several recent works on high-dimensional

covariance estimation with missing values. For example, Loh and Wainwright

(2012) and Lounici (2014) consider a linear regression or covariance matrix es-

timation, where the observations are missing randomly with a fixed rate. In

contrast, Kolar and Xing (2012) and Cai and Zhang (2016) consider a more

general setting that allows a nonrandom missing pattern, but still requires that

each pair of covariates simultaneously appear in a sufficient number of samples.

The problem discussed in this paper is distinct from these existing settings, be-

cause a large portion of the covariate pairs will never appear in the same sample

(such as the pairs between the earlier and latest observations in the longitudinal

studies), by the nature of the design. Bishop and Byron (2014) studied a simi-

lar sequential-aggregation scheme for matrix completion. However, they mainly

consider the completion of high-dimensional low-rank positive semidefinite ma-

trices in a deterministic setting, whereas we provide a statistical guarantee for
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covariance estimation from partially observed noisy functional data.

The rest of this paper is organized as follows. The methodology and algo-

rithm are described in Section 2, followed by theoretical analyses in Section 3. In

Section 4, we present a series of numerical experiments, including the application

to the SWAN data. Section 5 concludes the paper. The proofs are collected in

the Supplementary Materials.

2. Covariance Estimation for Mixed Longitudinal Design

We briefly introduce the notation that will be used throughout the paper.

For a matrix A ∈ Rp1×p2 or bivariate function G, let {σ1(A), σ2(A), . . .} and

{σ1(G), σ2(G), . . .} be singular values in nonincreasing order. We adapt the R

syntax to indicate matrices/functions restricted to the subsets of indices/domains:

if A ∈ Rp1×p2 , and a ≤ b and c ≤ d are four positive integers, we use A[a:b,c:d] to

denote the submatrix of A formed by its ath to bth rows and cth to dth columns.

Here, “:” alone represents the entire index set, so A[:,1:r] and A[a:b,:] represent the

first r columns of A and the {a, . . . , b}th rows of A, respectively; similarly, G[T1,T2]

represents a functionG with domain T1×T2. Let L(T ) be the Lebesgue measure of

any domain T . Let ‖A‖F and ‖A‖ be the matrix Frobenius norm and operator

norm, respectively: ‖A‖F = (
∑

i,j A
2
ij)

1/2 = (
∑

i σ
2
i (A))1/2, ‖A‖ = σmax(A).

Denote Ir×r as the r-by-r identity matrix, and Op,r = {V : V >V = Ir×r} as the

set of all p-by-r matrices with orthonormal columns. In particular, the set of

all r-by-r orthogonal matrices can be denoted as Or = Or,r. Denote ‖G‖HS =(∫∫
|G(s1, s2)|2ds1s2

)1/2
as the Hilbert–Schmidt norm of the bivariate function

G. Finally, we use C,C0, C1, c, c0, . . . to represent generic constants, the exact

values of which may vary from line to line.

Suppose T is the entire period of interest. Consider an equally spaced grid

of time points T = {t1, . . . , tp} on the time domain T . In a mixed-longitudinal

design, suppose Tk is the observational period for subject k, and we observe

Xk(Tk) in the contiguous band of the domain Tk:

Tk ⊆ T ,
L(Tk)
L(T )

= δ, Tk ⊆ T ∩ Tk = {t1, . . . , tp} ∩ Tk, k = 1, . . . , n.

Here, the fraction of observation δ is assumed to be a constant between zero

and one and Tk might not be consecutive, owing to missing values. If Tk is

complete with no missing values, the number of observations is d, with δ =

d/p. Suppose the signal-noise decomposition (1.1) holds for each observation:

Xk(tkj) = Zk(tkj) + εkj . Let Σ0 denote the p×p discretized version of covariance
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G, that is, the (i, j)th entry of Σ0 is equal to Cov(Z(ti), Z(tj)) = G(ti, tj). We

estimate G using the discretized version Σ0. Suppose G has approximate rank r.

Then, we also have Σ0 ≈ AA>, where A ∈ Rp×r can be regarded as the factors

of Σ0.

We consider a sequential-aggregation-based algorithm. We first divide T
into a series of overlapping sub-domains, then obtain estimates of A on each

sub-domain. Next, we aggregate all estimates on the sub-intervals into a full

estimate of A. Here, a crucial rotation operation is involved in the aggregation

step to ensure that the estimates of A on each sub-domain are aligned. Finally,

we obtain an estimate of Σ0 from ÃÃ>, where Ã is an estimate of A up to a

rotation. Then, G is recovered using a standard interpolation technique. The

steps are as follows; see Figure 2. For any sub-index set I ⊆ {1, . . . , p}, we use

the notation T (I) = {ti : i ∈ I} and (Xk)I = Xk(T (I)).

Step 1 For a chosen band parameter b and an increment parameter a satisfying

1 ≤ a ≤ b− r ≤ b ≤ d, we construct the following sub-index set:

Il = {(l − 1)a+ 1, . . . , {(l − 1)a+ b} ∧ p} , l = 1, . . . , lmax. (2.1)

Here, lmax = 1 + d(p− b)/ae is the total number of sub-index sets. Each Il
except the last one contains b indices, and the last one contains at most b

indices.

Step 2 For l = 1, . . . , lmax, we search for all samples that have full observations

in Il, and denote the set of such samples as Jl:

Jl = {1 ≤ k ≤ n : T (Il) ⊆ Tk} .

Then, the sample covariance matrix for the indices in Il is calculated as

Σ̂l ∈ R|Il|×|Il|, Σ̂l =
1

n∗l

∑
k∈Jl

(
(Xk)Il − X̄Il

) (
(Xk)Il − X̄Il

)>
,

n∗l = |Jl|, X̄Il =
1

n∗l

∑
k∈Jl

(Xk)Il .

(2.2)

Step 2′ As an alternative to using only subjects that have full observations in Il,

we can use all data available for the pair (Il(i), Il(j)) when computing Σ̂l,[ij].

This scheme is preferred to Step 2 when large portions of subjects have

missing values; that is, Xk(Tk) are not complete consecutive observations

(see Theorem 1 and Remark 4): Σ̂l ∈ R|Il|×|Il|, X̄Il ∈ R|Il|,
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(a) Step 1. Construction of Il, l = 1, . . . , lmax

(b) Step 2 and 3. Construction of Σ̂l and Âl, for l = 1, . . . , lmax

(c) Step 4. Rotate Âl via Ôl

(d) Steps 5 and 6. Aggregate Âl to Ã and calculate Σ̂0 = ÃÃ>

Figure 2. Illustration of the procedure.
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Σ̂l,[ij] =

∑
k:T (Il(i)),T (Il(j))∈Tk

(
(Xk)Il(i) − X̄Il(i)

) (
(Xk)Il(j) − X̄Il(j)

)
(n∗)i,j,l

,

n∗i,j,l = |{k : T (Il(i)), T (Il(j)) ∈ Tk}| ,

X̄Il(i) =

∑
k:T (Il(i)),T (Il(j))∈Tk

(Xk)Il(i)

n∗i,l
, n∗i,l = |{k : T (Il(i)) ∈ Tk}| .

(2.3)

Step 3 Evaluate the eigenvalue decomposition and the rank-r truncation of Σ̂l as

Σ̂l = ÛlD̂lÛ
>
l , Σ̂

(r)
l = Ûl,[:,1:r]D̂l,[1:r,1:r]Û

>
l,[:,1:r]. (2.4)

Then, for l = 1, . . . , lmax, we evaluate σ̂2
l = ((1/|Il| − r)

∑|Il|
i=r+1 D̂l,[i,i]) ∨ 0

as the sample variance of the noise and

Âl = Ul,[:,1:r]

{
(Dl,[1:r,1:r] − σ̂2

l · Ir×r) ∨ 0
}1/2 ∈ R|Il|×r (2.5)

as the estimate of A on the sub-domain Il. Here, Ir×r is the r-by-r identity

matrix. By these calculations, we expect that ÂlÂ
>
l ≈ Σ0,l = (Σ0)[Il,Il].

Step 4 We construct a suitable right rotation on Âl so that all the pieces can

be aligned. Specifically, we first let Ô1 = Ir×r, and then calculate Ôl+1

sequentially as

Ôl+1 = argmin
O∈Or

∥∥∥(Âl)[(a+1):b,:]Ôl − (Âl+1)[1:(b−a),:]O
∥∥∥2

F
, l = 1, . . . , lmax − 1.

(2.6)

Here, the row indices of (Âl)[(a+1):b,:] and (Âl+1)[1:(b−a),:] both correspond to

[la+ 1, (l− 1)a+ b] ⊆ {1, . . . , p}. Note that (2.6) is actually the orthogonal

Procrustes or Wahba problem (Wahba (1965)), which can be solved using

Ôl+1 = Ũ Ṽ >, where Ũ Σ̃Ṽ > = (Âl+1)>[1:(b−a),:](Âl)[(a+1):b,:]Ôl is the SVD.

(2.7)

Step 5 In this step, we aggregate all pieces ÂlÔl into one complete factor Ã ∈
Rp×r. For convenience of notation, we “frame” the |Il|-by-r matrix Âl to its

original p-by-r factor scale, Â∗l ∈ Rp×r, Â∗l,[Il,:] = ÂlÔl, and Â∗l,[Icl ,:]
= 0. For

1 ≤ i ≤ p and 1 ≤ j ≤ r, we calculate

Ã[i,j] =

∑
l:i∈Il Â

∗
l,[i,j]

|{l : i ∈ Il}|
. (2.8)
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Step 6 After the sequential aggregation, we estimate Σ0 using

Σ̂0 = ÃÃ> ∈ Rp×p, (2.9)

then linear interpolate between grid points to obtain Ĝ (Press et al. (1992,

Chap. 3.6)). Some smoothing instead of linear interpolation might be useful

in data applications for smoother results and better visualization.

Computation and Tuning Parameters: In summary, the proposed algorithm

is noniterative, and uses only basic matrix calculations, such as matrix multipli-

cations and SVD, which can be implemented efficiently. The algorithm takes

input as a, b, and the rank r. According to our simulation studies in Section 4,

the performance of the method is not sensitive to the selection of a and b. In

our numerical implementation, we suggest selecting b to be slightly smaller than

bandwidth d, and selecting a to be a small increment (in practice a = 0.1 × d
usually provides a good enough result). In the following, we describe the random

sub-sampling cross-validation method (Picard and Cook (1984)) used to select

the rank r.

We first randomly split n observations {Xk(Tk)}nk=1 into training and testing

groups of sizes n1 ≈ (K − 1)n/K and n2 ≈ n/K, respectively, T times. For the

tth split, let J
(t)
train and J

(t)
test be the index sets for the training and testing groups,

respectively. For each r ∈ {1, . . . , b− a}, we apply the proposed procedure to the

training dataset {Xk(Tk)}k∈J(t)
train

, and denote the outcome as Σ̂(t)(r). Then, we

calculate the sample covariance matrix Σ̂
(t)
test ∈ Rp×p based on the samples from

the testing group,

(Σ̂
(t)
test)[i,j] =
∑

k∈J(t)
test

Tk3T (i),T (j)

(Xik − X̄i)(Xjk − X̄j)

/∑
k∈J(t)

test

Tk3T (i),T (j)

1, if
∑

k∈J(t)
test

Tk3T (i),T (j)

1 ≥ n0,

NA, otherwise,

where n0 is the lower threshold when evaluating the testing sample covariance

matrix. Then, we evaluate the prediction error as

E(r) =

T∑
t=1

∑
(Σ̂

(t)
test)[i,j] 6=NA

(
(Σ̂(t)(r))[i,j] − (Σ̂test)[i,j]

)2
.

Here, to improve accuracy, we only evaluate the prediction errors on those (i, j)
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pairs where (Σ̂test)[i,j] is evaluated based on at least n0 samples. Finally, we

choose r̂ = arg min1≤r≤b−aE(r), and apply the proposed procedure with r̂ to

obtain the final estimator Σ̂0. In our simulations, we use K = 5, T = 10, and

n0 = 4; other cross-validation methods are expected to yield similar results.

In practice, we propose using the cross-validation method, because this usu-

ally prevents under-selection. We observed a slight over-selection of r in our

simulations, but this is not a problem in a covariance estimation because the

components (eigenvalues) beyond r are all assumed to be very small. In Section

4, we examine the numerical performance of the proposed procedure based on

cross-validation and the effect of the tuning parameters.

3. Theoretical Analysis

Before presenting the main theoretical results, we first introduce the following

assumptions.

Assumption 1. There is a positive integer r such that the eigenvalues of G

satisfy λ1(G) ≥ · · · ≥ λr(G) > λr+1(G) ≥ · · · ≥ 0. Let G(r) be the best rank-

r approximation for G and G−(r) = G − G(r). We also assume ‖G‖HS < ∞,

‖G(−r)‖HS ≤ C/
√
n∗, where n∗ is the effective sample size, defined in Theorem

1.

The rank r is allowed to increase slowly as n and p grow. The (approximate)

reduced-rank covariance structure is explored by James et al. (2000) and Peng and

Paul (2009) for sparse functional data, where only a few irregularly (randomly)

spaced observations are available on each subject. They view the rank restriction

as a form of regularization to avoid over-parametrization. The same reasoning

applies to our scenario, because only a fraction of the trajectories are observed

for each subject.

Assumption 2. For any contiguous subdomain T̃ ⊆ T , we define G
(r)

[T̃ ,T̃ ]
= G(r)(

s, t)s∈T̃ ,t∈T̃ . There exists a constant 0 < κ < δ, such that γ = maxL(T̃ )/L(T )≥κ

{tr(G)L(T̃ )/L(T )/λr(G
(r)

[T̃ ,T̃ ]
)} satisfies γ = o((n∗)1/2).

Intuitively speaking, this assumption imposes a lower bound of C/γ on the

rth eigenvalues of G[T̃ ,T̃ ]. It essentially ensures that G restricted on different

contiguous subdomain [T̃ , T̃ ] is nonsingular, so that being able to estimate G

using only segments of the functional observations is possible. As a counter-

example, if G has two “spikes” in the sense that only G[0:0.2,0:0.2] and G[0.8:1,0.8:1]

have significant amplitudes, while G[0.2:0.8,0.2:0.8] is zero, then the estimation of
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the cross-covariance parts G[0:0.2,0.8:1] and G[0.8:1,0:0.2] is impossible when one can

only observe functional segments of length no more than 0.6. In addition, γ is

allowed to increase moderately as n and p grow. Note that γ ≥ r, and in the

scenarios in which γ/r is big, the method using complete observations only (step

2) is better than step 2′.

Assumption 3. Assume X satisfies the moment condition supt E|X(t)|4 ≤ C.

Assumption 4. There exists L > 0, such that |G(s, t)−G(s′, t′)| ≤ Lmax(|s−
s′|, |t− t′|), for all s, s′, t, t′ ∈ T .

Because we use sample covariance approach and interpolate between ob-

served grid points, the Lipschitz condition is almost necessary. It is easy to

satisfy because we work with a finite domain T , and it is weaker than the second

differentiable conditions usually used in smoothing methods.

We can now state the main results of this study.

Theorem 1. Suppose Assumptions 1–4 hold. We take b = βp, a = αp for some

constants 0 < α < β ≤ δ < 1. Assume β − α ≥ κ ≥ 2r/p (κ and r were defined

in the assumptions), n ≥ Cp, and p ≥ Cγ. Then, the proposed procedure yields

E‖Ĝ−G‖HS = O

(√
γ2

n∗
+ p−1

)
. (3.1)

Here, n∗ = minl n
∗
l and n∗l is defined in (2.2). If we use complete samples to

calculate Σ̂l using (2.2) of Step 2; n∗ = mini,j,l n
∗
i,j,l and n∗i,j,l is defined in (2.3)

if we use both complete and incomplete samples to calculate Σ̂l using (2.3) of Step

2′.

Remark 1. The first error term in (3.1) is due to estimating errors of the dis-

cretized covariance Σ0. The second error term p−1 is from the linear interpolation

of the discretized Σ0.

Remark 2. Theorem 1 provides theoretical guarantees for the proposed pro-

cedure under general mixed longitudinal designs (conditional on Tk), where the

effective sample size, n∗, is driven by the minimum number of samples that cover

each sub-interval Il. In a balanced design, where Tk ⊆ T ({wk, . . . , wk + d− 1}),
with wk evenly chosen from {1, . . . , p − d + 1}, for k = 1, . . . , n, the boundary

sub-intervals I1 and Ilmax
have less effective sample sizes than those of middle

ones, which yield a higher estimation error for the boundary part of G. To over-

come this bottleneck, we recommend a boundary-enriched design: beyond the

balanced design, as mentioned above, we include na = cn additional ones with
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Tk = T ({1, . . . , d}) or T ({p − d + 1, . . . , p}) for a small constant 0 ≤ c ≤ 1.

Alternatively, one can apply an extended-domain design: for each k = 1, . . . , n,

Tk = T ({wk, . . . , wk + d − 1}) ∪ T ({1, . . . , p}), with wk uniformly chosen from

{(2 − d), . . . , p}. Under both the boundary-enriched and the extended-domain

designs, the result of Theorem 1 yields (3.1).

Remark 3. (Proof sketch of Theorem 1). After introducing some notation, we

develop error bounds for Âl (the outcome of Step 3), Ôl (the outcome of Step 4),

Ã (the outcome of Step 5), Σ̂0, and the final estimator Ĝ (the outcome of Step 6).

In particular, Step 4 of the proposed procedure involves solving the orthogonal

Procrustes problem (or Wahba problem) (2.6). To derive the error bound of Ôl
from the error bound of Âl, we introduce 1, which provides a theoretical guarantee

for the solution of (2.6). In addition, Lemma 1 is stronger than previous results

(cf., (Bishop and Byron, 2014, Lemma 16)), which may be of independent interest.

Lemma 1. (Perturbation bound for Wahba problem). Suppose A1, A2, A ∈ Rm×r,
O1, O2 ∈ Or, ‖A1−AO1‖F ≤ a1, ‖A2−AO2‖F ≤ a2, and σr(A) ≥ λ. Suppose Ô

is the solution to Wahba problem,

Ô = argmin
O∈Or

‖A2O −A1‖F ,

or equivalently, Ô = UV > if A>2 A1 = UΣV > is the SVD.

Then, Ô satisfies ∥∥∥Ô −O>2 O1

∥∥∥
F
≤ 2(a1 + a2)

λ
. (3.2)

Proposition 1 provides a sharper convergence rate when Step 2 is applied

(with only complete pieces) and the random scores are sub-Gaussian distributed.

Proposition 1. Suppose Z(t) = µ(t) +
∑

k≥1 ξkφk(t) is the Karhunen–Loève

decomposition, where {φk(t)}k≥1 is the fixed eigenfunction and {ξk}≥1 are random

scores. In addition to the assumptions of Theorem 1, we further assume the

normalized leading r scores, ξ̃ = {ξk/λ
1/2
k (G)}rk=1, are sub-Gaussian distributed,

such that E exp(tξ̃>u) ≤ exp(C‖u‖22), for any u ∈ Rr, the tail part Z(−r)(t) =∑
k≥r+1 ξkφk(t) satisfies supt E|Z(−r)(t)|4 ≤ Cr/(n∗γ), and the noise satisfies

(E|ε|4)1/2 ≤ Cr/γ. Then, the proposed procedure with Step 2 yields the following

rate of convergence:

E‖Ĝ−G‖HS = O

(√
rγ

n∗
+ p−1

)
. (3.3)

Here, n∗ = minl n
∗
l and n∗l is defined in (2.2).
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Remark 4. We briefly compare the convergence rates of step 2 and step 2′.

First, n∗ when using the complete sample is no greater than that when using both

complete and incomplete subjects. On the other hand, the factor γ2 in (3.1) is

greater than rγ in the counterpart of (3.3). This is because Âl calculated using the

standard sample covariance matrix, as in Step 2, possesses a sharper convergence

rate than that calculated using the extended sample covariance matrix, as in Step

2′, as demonstrated by Lemma 7. Therefore, there is a trade-off between using

Steps 2 or 2′. In general, we recommend using Step 2′ when most subjects have

noncontiguous observations (missing values); otherwise Step 2 is preferred.

4. Numerical Experiments

Simulations: In this section, we investigate the numerical performance for the

proposed procedure using a series of simulation studies. For each setting, we

generate Xij =
∑K

k=1 ξikφk(tij) + εij , where i = 1, . . . , n, j = 1, . . . , p, and tij are

equally spaced p values on [0, 1]. We observe a contiguous (δ = d/p) portion of the

trajectory for each subject. All simulation results are based on 100 repetitions.

The first simulation setting is designed to assess the basic performance of

the proposed method, and to explore the choices of the tuning parameters. In

particular, we set p = 30, the true rank K = 3, and the eigenfunctions {φk(t)}
as linear combinations of M = 10 cubic B-splines with equally spaced knots, as

shown in Figure 3. The random scores {ξik} are i.i.d. normal with variances

(λ1, λ2, λ3) = (42, 32, 22). The errors εij are i.i.d. normal with variance one. We

let the length of the observation band d = 10, so that each observation band

covers one-third (d/p) of the total domain. We further let each contiguous subset

of length d be observable by nrep = {10, 20, 50} subjects, which means the total

sample size n = nrep × (p − d + 1) = 210, 420, 1,050. We apply the proposed

method in Section 2, with the rank r selected by cross-validation, as described in

Section 2, and report the relative estimation errors for different choices of tuning

parameters b and a in Table 1. Here, the relative estimation error in all simulation

settings is defined as ‖Ĝ − G‖HS/‖G‖HS . We can see that the estimation error

decreases as the sample size increases, and the performance is not sensitive to

the values of (b, a), as long as b is slightly smaller than the bandwidth d and

a is small. The cross-validation of the proposed method tends to slightly over-

select r, but over-selection does not affect the RMSE of the covariance estimation

significantly in our simulation settings. In the following simulations, we always

use the bandwidth b = d0.7 · de and the incremental parameter a = d0.1 · de
The second simulation setting further explores the performance under dif-
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Figure 3. The first three eigenfunctions used in the simulations to generate the data.

Table 1. Results for simulation 1: the average relative error over 100 simulations are
shown, with the standard error given in parentheses. Here, a and b are different choices
of tuning parameters, and the results are stable.

nrep = 10 nrep = 20 nrep = 50

b = 7, a = 1 0.324 (0.17) 0.224 (0.14) 0.123 (0.06)

b = 7, a = 2 0.325 (0.16) 0.221 (0.13) 0.132 (0.1)

b = 8, a = 1 0.314 (0.17) 0.23 (0.14) 0.13 (0.09)

b = 8, a = 2 0.364 (0.17) 0.292 (0.19) 0.126 (0.08)

b = 9, a = 1 0.326 (0.16) 0.227 (0.15) 0.119 (0.07)

b = 9, a = 2 0.347 (0.15) 0.214 (0.11) 0.145 (0.11)

ferent settings. In particular, let p = 30 and the fraction of observable domain

δ = {1/5, 1/3, 1/2}. In addition to the previous setting with K = 3, we also

consider K = 10, the score variances (λ1, . . . , λ10) = (42, 32, 22, 2−4, . . . , 2−10),

φ1, φ2, φ3 are the same as in the previous settings, and φk(t) =
√

2 sin(kπt),

for k = 4, . . . , 10 (all 10 functions are orthonormalized). Similarly to the first

simulation setting, we implement the proposed procedure with r selected using

cross-validation, and let b = d0.7·de and a = d0.1·de; see Table 2. We can see that

the proposed procedure still performs well when there are moderate deviations

to the reduced-rank structure. The estimation error decreases as the observed

partial trajectory covers a larger fraction of the entire trajectory. Note that the

selected rank r for the cases K = 10 increases as the sample size increases, with

an average value r = 4.25 for d/p = 1/3 and nrep = 50.

The third simulation explores the performance when there are further missing

values within the observable fraction of the domain. The setting is the same as

that in the first simulation, except that the data have a 5%, 10%, or 15% missing

rate. As in the previous two simulations, we implement the proposed procedure
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Table 2. Results for simulation 2: the average relative error over 100 simulations are
shown, with the standard error given in parentheses. Here, K is the total number of
eigenfunctions used to generate the covariance, and δ denotes the fraction of domains
observed.

K = 3 K = 10

nrep = 10 nrep = 20 nrep = 50 nrep = 10 nrep = 20 nrep = 50

δ = 1/5 0.43 (0.17) 0.397 (0.2) 0.294 (0.21) 0.461 (0.16) 0.403 (0.18) 0.304 (0.19)

δ = 1/3 0.341 (0.17) 0.237 (0.16) 0.135 (0.1) 0.322 (0.16) 0.248 (0.14) 0.143 (0.06)

δ = 1/2 0.243 (0.11) 0.17 (0.07) 0.113 (0.05) 0.248 (0.1) 0.165 (0.05) 0.114 (0.04)

Table 3. Results for simulation 3: the average relative error over 100 simulations are
shown, with the standard error given in parentheses. Here, “missing” is the percentage
of missing values within the observed domain.

missing nrep = 10 nrep = 20 nrep = 50 nrep = 100

5% 0.36 (0.14) 0.24 (0.12) 0.16 (0.07) 0.12 (0.06)

10% 0.39 (0.16) 0.29 (0.13) 0.19 (0.08) 0.13 (0.05)

15% 0.42 (0.13) 0.32 (0.13) 0.22 (0.1) 0.16 (0.06)

with r selected by cross-validation, and let b = d0.7 · de, and a = d0.1 · de; see

Table 3. We can see that the proposed procedure performs reasonably well when

there is a moderate number of missing values, and the performance improves

when the sample size becomes large.

The fourth simulation compares the performance of the proposed method

with the matrix completion method proposed in Descary and Panaretos (2018).

The data-generating procedure is the same as those of the previous simulations.

The matrix completion method is implemented using the Matlab code down-

loaded from the authors’ website. The method requires an input of rank r, and

they propose using a scree-plot to manually determine the rank (looking for an

“elbow” in the plot). Because this approach is not feasible in simulation settings,

we use the true rank r for both methods. The results are reported in Table 4.

The relative performance depends on the fraction of the domain observed. For

δ = 1/2, both methods work fine, and the matrix completion method is slightly

better for a small sample size (nrep = 10). For δ = 1/3, both methods work fine,

and the proposed method is slightly better for larger sample sizes. For δ = 1/5,

neither of the methods work well for a small sample size (nrep = 10), although

the error for the matrix completion method is not as large as that of the pro-

posed method. When n increases, the error of the proposed method decreases

to a reasonably small level; the matrix completion method is less satisfactory in
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Table 4. Results for simulation 4: the average relative error over 200 simulations are
shown, with the standard error given in parentheses. Here, “MatComp” is the matrix
completion method proposed in Descary and Panaretos (2018), and δ denotes the fraction
of domains observed.

nrep = 10 nrep = 20 nrep = 50 nrep = 100
δ = 1/5 proposed 0.37 (0.11) 0.27 (0.09) 0.17 (0.06) 0.12 (0.04)

MatComp 0.32 (0.06) 0.27 (0.04) 0.23 (0.02) 0.22 (0.02)
δ = 1/3 proposed 0.26 (0.10) 0.2 (0.06) 0.12 (0.04) 0.08 (0.03)

MatComp 0.29 (0.08) 0.2 (0.05) 0.14 (0.03) 0.11 (0.02)
δ = 1/2 proposed 0.26 (0.11) 0.18 (0.07) 0.12 (0.05) 0.08 (0.03)

MatComp 0.24 (0.08) 0.17 (0.05) 0.11 (0.03) 0.08 (0.02)

this case.

Application to a study on the working memory of midlife women: We

downloaded the data from the SWAN database (link: http://www.icpsr.umich.

edu/icpsrweb/ICPSR/series/00253). The study examines the physical, biolog-

ical, psychological, and social health of women during their middle years. In this

section, we focus on the measurement of working memory, that is, the ability

to manipulate information held in memory. In this study, working memory was

assessed using digit span backwards (DSB) (Corporation (1997)): participants

repeat strings of single-digit numbers backwards, with two trials at each string

length, increasing from two to seven, stop after errors in both trials at a string

length; score as the number of correct trials (range, 0–12). The testing was first

administered at the fourth follow-up to 2,709 women, and then repeated in the

sixth and subsequent visits. The data up to the tenth visit are publicly available.

We exclude those subjects who dropped out before the tenth follow-up visit, leav-

ing a sample size of n = 2,016. Following previous literature, we did not use the

first measurement in order to alleviate the practice effect on the testing results

(Karlamangla et al. (2017)). Instead, we focused on the age range T = [48, 62].

Each subject has up to five years of consecutive data, and the average number

of follow-ups is 3.3. We applied the proposed method described in Section 2 to

estimate the covariance function, using a rank r = 3 selected by cross-validation,

a band parameter b = 4, and an increment parameter a = 1. The estimated

covariance surface is shown in the left panel of Figure 4. We can see that the

variance is bigger at the middle part around age 55.

The nonparametric covariance estimation serves as a stepping stone for fur-

ther functional data analysis. In the following, we perform a functional princi-

pal component analysis for the working memory trajectories, and examine how

http://www.icpsr.umich.edu/icpsrweb/ICPSR/series/00253
http://www.icpsr.umich.edu/icpsrweb/ICPSR/series/00253
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Figure 4. Left: The estimated covariance surface of the working memory data for women
aged between 48 and 62. Right: The estimated mean function and estimated eigenfunc-
tions corresponding to the largest three modes of variation, where the dashed lines are
95% bootstrap simultaneous confidence bands.

the shapes of the trajectories depend on education (less than high school, high

school, some college/technical school, college graduate, postgraduate), controlling

for race (Black, Chinese, Japanese, Caucasian/White, Non-Hispanic, Hispanic)

and difficulty paying for basics (no hardship, somewhat hard, very hard). These

are just for illustration of the functional data methods; a thorough analysis for

this complex data set is beyond the scope of this study.

Given the estimated covariance, we conducted a functional principal compo-

nent analysis based on the Karhunen–Loève expansion Z(t) = µ(t) +
∑

j ξjφj(t).

Here, {φj(t), j ≥ 1} is an orthonormal basis that consists of eigenfunctions of G,

and {ξj =
∫

(Z(t)−µ(t))φj(t)dt : j ≥ 1} are (random) scores. Intuitively, the first

K terms expansion, µ(t) +
∑K

j=1 ξjφj(t), forms a K-dimensional representation

of Z(t) with the smallest unexplained variance. The smoothed mean function

and the first three estimated eigenfunctions {φj(t), j = 1, 2, 3} are visualized in

the right panel of Figure 4. We also constructed 95% confidence bands for these

quantities using the nonparametric bootstrap method, as outlined in Hall and

Hosseini-Nasab (2006). The best linear prediction methods, as used in Yao et al.

(2005), were applied to obtain estimates of ξj .

The mean function shows that the working memory function for a middle-age

woman is, on average, decreases as she gets older. With longitudinal declines,
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on average, there are individual differences in working memory aging and pos-

sible improvements in performance over multiple years. The first eigenfunction

φ1(t) is close to a horizontal line. Therefore, φ1(t) can be interpreted as a size

component: subjects with a positive score in the direction of this eigenfunction

have better working memory function than that of an average woman for all ages

between 48 and 62. The regression analysis show that this component is signif-

icantly and positively correlated with education level, which means that people

with higher education tend to have higher working memory scores over the entire

period. The other two covariates, financial status and race, are also statistically

significant. The second eigenfunction φ2(t) has a reversed U-shape with a maxi-

mum at around age = 55. This can be interpreted as a changing pattern before

and after age 55, which possibly relates to the menopausal transition, resilience,

and compensatory mechanisms (Fuh et al. (2006); Greendale et al. (2009); Hahn

and Lachman (2015)). Subjects with a positive score in the direction of this

eigenfunction have an increase in working memory before age 55, and a fast de-

cline after age 55. The regression analysis show that education is a significant

factor, with the postgraduate education group having a more prominent reversed

U-shape pattern. The other two covariates are not statistically significant. The

third component φ3(t) crosses the zero line around age 55, representing a com-

plementary effect to the second component.

This functional data analysis perspective differs from that of traditional linear

mixed effect models, because the modes of variation for individual chronological

aging trajectories are extracted nonparametrically from the data (FPC compo-

nents), and one can examine how the shape of the trajectories interact with other

covariates. In comparison, traditional linear mixed effect models (Karlamangla

et al. (2017)) often control these covariates as fixed main effects.

5. Conclusions

We have focused on data observed on a regular equally spaced grid. The

proposed sequential aggregating method can be readily extended to the setting

in which the observational times are irregular and random. However, adjustments

need to be made to step 2. In particular, the sample covariance estimate for Σl

in step 2 is not applicable if the data are irregularly observed. In this case, one

can first adopt a bivariate local linear smoothing method (Yao et al. (2005)) to

estimate the covariance on the observable part (the diagonal banded area), say

G̃(s, t), for |s − t| < δ. Then, for each piece l, take the corresponding sub-piece

from G̃(s, t), evaluate that on a predefined regular grid Il, and use that as Σ̂l.
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All other steps remain the same.
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