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EFFICIENT DESIGNS FOR ESTIMATION IN THE
POWER LOGISTIC QUANTAL RESPONSE MODEL

M. A. Gaudard, M. J. Karson*, E. Linder and S. K. Tse

Unwversity of New Hampshire

Abstract: A convenient three-parameter class of asymmetric dose-response models
can be obtained by raising the logistic response function to the power m, for m > 0.
For these models, called power logistic quantal response models, D-optimal two point
designs for various choices of m are numerically derived. We then investigate design
efficiencies and design robustness to misspecification of the three model parameters
for two point designs relative to the D-optimal two point design. It turns out that
if the experimenter assumes an incorrect value of m when determining a design, the
loss of efficiency incurred as a result is fairly small for a wide range of m, assuming
no error in the initial values of the other parameters. Moreover, the effects of poor
initial values of the other parameters seem more serious when m is large than when
m is small, so that special care should be taken when m is large.
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1. Introduction

The typical quantal response experiment is described by a response function,
called the tolerance distribution, that relates the dose level to the probability of
a response. The binary response probability p(z) at dose level z is modeled by
a function of the form p(z) = F(x;60), where F(z;6) is a cumulative distribu-
tion function (CDF) with parameter vector §. The nonsequential experimental
design problem is to choose distinct dose levels (z1,z3,...,z;) and numbers of
independent binary response trials (ni,nz,...,n;) to take at these dose levels,
subject to Zle n; = n, for n fixed. A design is said to be optimal if it optimizes
a statistical inference criterion.

In this paper, we consider the experimental design problem for the case where
F(z;0) is the three parameter power logistic CDF, introduced by Prentice (1976)
and studied further by Gaudard et al. (1990). The design criterion of interest is
the D-optimality (Kiefer (1959)) criterion.

The power logistic model (PLM) defines the probability of response at dose

level z; by
1

1+ e—B(zi~p)

p(z;) = [ ]m = Pim, (1.1)
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where m > 0, # > 0, and —o0o < p < co are the three parameters of the model.
These CDFs generalize the familiar logistic model (Johnson and Kotz (1970)).
The name “power logistic” emphasizes that the PLM is the mth power of the
logistic model; note that it may be written as p; m = p*, where p; is the logistic
model’s probability of a response at dose level z;.

Since the parameter m governs the difference between the symmetric logistic
model, where m = 1, and the asymmetric PLM, we present design robustness
results and derive design efficiencies relative to misspecification of m. It is shown
in Gaudard et al. (1990) that the effect of m on moments of the PLM family can
be dramatic. For example, it is shown that for m less than unity both negative
skewness and kurtosis increase rapidly as m gets smaller, and that the PLM
has gradually increasing positive skewness and kurtosis as m increases above
unity. For inference and design purposes, it is assumed that m is known, and
that p and § are unknown. As we shall see, optimal designs are fairly robust to
misspecification of m.

There is a rich literature on optimal designs for quantal response models.
Design considerations for the probit and logistic models are addressed from the
frequentist viewpoint in Abdelbasit and Plackett (1983), Wu (1985), Tamhane
(1986) and Kalish (1988). Robust estimation is considered in several of these
papers, as well as in Miller and Halpern (1980). Bayesian approaches to design
have also been developed (Freeman (1970), Kuo (1983), and Tsutakawa (1972,
1980)). Design issues for the PLM have received attention in Ford, Torsney and
Wu (1992) and Wu (1988). However, the design robustness of the PLM with
respect to model misspecification has not been studied.

As an example, consider the data set that was published in Morgan (1985,
p-109, data set 11). The plot of the response proportions against dose levels shows
that the density underlying the tolerance distribution is skewed, indicating that
a symmetric tolerance distribution, such as the logistic, would be inappropriate
for this data set. For this data set, the PLM fits much better than the logistic
model. (See Gaudard et al. (1990) for details.)

Now suppose that, previous to collecting any data, an optimal design had
been chosen based on the assumption that the logistic model was appropriate.
The question of interest in this paper concerns the extent to which such a choice
of design would cause a loss in efficiency relative to an optimal design based on
the PLM. In other words, we are concerned with the robustness of the design
with respect to misspecification of the underlying model, where misspecification
is characterized by m. To this end, attention is focused on the loss of efficiency
derived from misspecification of m, as well as from errors in the initial estimates
for p and .

In the next section we discuss maximum likelihood estimation for 8 and g,
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and give the determinant of the Fisher information matrix for 3 and u (for details,
see Gaudard et al. (1990)). In Section 3, D-optimal two point designs for 3, u
and m are obtained, their efficiencies relative to misspecification of 8, p and m
are derived, and various robustness results are presented. It turns out that if
the experimenter assumes an incorrect value of m when determining a design,
the loss of efficiency incurred as a result is fairly small for a wide range of m,
assuming no error in the initial values of the other parameters. However, if the
initially assumed value of m is close to the true value of m and § is known, the
efficiency is very sensitive to the assumed value of p, while if g is known, the
efficiency is not very sensitive to the assumed value of 3. Moreover, the effects
of poor initial values of § and p seem more serious when m is large than when
m is small, so that special care should be taken when m is large.

2. Estimation of y and

If y; is the number of responses out of the n; trials observed at dose level
z;, the y;, 1 = 1,2,...,k, k > 2, are k mutually independent binomial random
variables, each with response probability p; ,»,. The log-likelihood function is

k .
InL=> {111 ( Z’ ) + ¥ In(pim) + (ni — %) In(1 — p; )| - 2.1)
=1 t

Differentiating the log likelihood function with respect to # and u gives the
likelihood equations. These equations are difficult to solve and an iterative tech-
nique, such as the Newton-Raphson process, is required.

For a given value of m, the Fisher information matrix, denoted by I(8, u),
for § and u, is

[ k

B2 Z:n,‘I!(u,)u,2 Zn,\ll(u,)u,
I(B,p) = . (2.2)
- Z n¥(w)u; B }: n; ¥ (u;)

i=1

where u; = B(z; — p) = loglt(p ™) and ¥(u;) = m?p; (1 _sz ™2/(1 = pim),
and where logit(u) = In(u/(1 — u)) is the log odds function. The determinant of

I(B,p), is

D(B,p) =3 mi¥(ui)u 2Zn, ) (an ) )2. (2.3)

1=1 =1
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3. Design Efficiency for Two Point D-Optimal Designs

As is well known, a D-optimal design maximizes the determinant of the Fisher
information matrix. D-optimal designs for different models have been studied ex-
tensively (Silvey (1980), Abdelbasit and Plackett (1983), Jain (1987)), mainly due
to their mathematical tractability, and because maximization of the determinant
of the Fisher information matrix is equivalent to minimization of the volume of
an asymptotic confidence ellipsoid for the parameters.

Caratheodory’s theorem ensures that there is a D-optimal design for the PLM
consisting of at most three points (Silvey (1980)). Analytic approaches to finding
the D-optimal design are intractable, in part, because the tolerance distribution
is asymmetric. When k = 3, (2.3) reduces to D = njnat(u; ) (ug)(ug — ug)? +
nynge(u1)(us)(u1 — us)? + nangth(ug)h(us)(uz — ug)?. For m = .2,.5,2 and 5,
we used optimum search techniques to maximize D. In all cases, the numerically
obtained D-optimal design was a two point design. Moreover, the D-optimal
design for the logistic model as well as for many symmetric models is a two point
design. For these reasons, we proceed-to study design efficiency in terms of two
point designs. Note, however, that D-optimal designs for distributions with heavy
tails may be three point designs (Ford, Torsney and Wu (1992), Sitter and Wu
(1991)).

3.1. Derivation

For given m, the D-optimality criterion calls for maximization of (2.3), with
respect to p;m, fori =1,2,...,k subject to 3_n; = n. For k = 2 points, Equation
(2.3) reduces to

D(B, p) = n1na® (u1) ¥ (ug)(u1 — ug)?, (3.1)

and since ny + ng = n, it is clear that n; = ny = n/2 maximizes (3.1) for any
choice of pj ;m and p2 m. Note that we are treating nj/n and ns /n as continuous
allocation weights. Thus, the D-optimal two point design is supported on those
points p1 ,» and p2 m that maximize

W (up) W (ug)(ur — ug)?. (3.2)

For the given range of values of m, an examination of plots of D(B,x), with
n1 = nz = 1, over the 2-dimensional plane of (p1m,p2.m) suggests that this
function has a unique maximum; this is confirmed by the theoretical results
in Ford, Torsney and Wu (1992). Since maximization of (3.2) is analytically
intractable, we maximized (3.2) using a Newton-Raphson optimization algorithm.
"The resulting values for p1 ,,,p2,m are given in Table 1.

3.2. Design efficiency
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We measure the efficiency of an arbitrary design at (p1,m,p2m) relative to the
optimal design at (p] 1, P3 ) bY 7(P1,m, P2,m), the ratio of the determinants of the
Fisher information matrices evaluated at (p1,m,p2m) and (p} ., 73 ). Abdelbasit
and Plackett (1983) report results for the special case when m = 1. (Note that
some researchers (Minkin (1987)) prefer to use the square root of the determinant
of the Fisher information matrix in computing the efficiency of two designs. Since
the determinant depends on n?, taking square roots relates the efficiency measure
to the relative increase in sample size needed to obtain the same precision.)
Contour plots of 7(p1,m,p2,m) are given in Figure 1 for various m. Note that,
when m < 1, the efficiency decreases more quickly in the direction of decreasing
p2,m than in the direction of increasing p; m». When m > 1, the reverse holds.

3.3. Design robustness

Recall that the skewness of the PLM changes rapidly from the symmetry
of the logistic model to high negative skewness as m decreases from 1.0. The
D-optimal two point designs in Table 1 do not reflect this marked change in
skewness of the tolerance curves. From m = 1.0 to 0.2, (3 m>P2,m) changes only
from (0.176, 0.824) to (0.206, 0.876). A similar pattern can also be seen as m
increases from 1.0 to 5.0, where the PLM changes more slowly from symmetry to
high positive skewness. This suggests that the D-optimality criterion is relatively
robust with respect to m.

For a given value of m, optimal values p3 ,, and p§,, can be obtained from
Table 1 or by maximizing (3.2). Suppose z{ and z$ are the actual dose levels
corresponding to pj ., and p3 .., respectively. Then z = u+ [logit((p;m)l/ ™1/8,
t+ =1,2. In order to implement this design to study the unknown parameters 3
and p, an experimenter is in the paradoxical situation that true values of 8, u
and m must be known. Thus the experimenter is forced to use initial values G,
po and mg, and thus the dose levels zg; = pg + [logit((pf,m)l/ ™9)]/Bo, ¢ = 1,2.
We proceed to study the robustness of the D-optimal design relative to the initial
values of 8, u and m. .

For clarity, we emphasize the dependence of D(83,u) on m by writing it
as D(B,pn,m). Let R(By,po,mo) denote the ratio of D(B, u,m) evaluated at
(zo1,02) to the maximum value of D(8, u,m). Then R(By, po, mo) measures the
robustness of the D-optimal design to initial values of 5, 4 and m. Values of
R(Bo, po, ™) resulting from a numerical study for various values of m between
0.2 and 5.0 and for various ratios 3/f3p and differences S(u — ) are given in
Table 2.

The most striking consequence of Table 2 is that, if the experimenter incor-
rectly assumes that mg = 1 (the logistic model) when designing the experiment,
the minimum value of R(8,u,mp) for .5 < m < 1.5 is 82.6%, achieved when
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m = .5. Note that this presumes that the experimenter’s initial values of B and
p are correct. Thus, the optimal design based on the logistic model is robust to
a fairly wide range of m, assuming no error in the initial values for B and pu.

We draw the following general conclusions from our numerical study. As-
suming that u is known and that mg is close to m, the ratio R(Bo, p,mg) is not
very sensitive to misspecification of 3, suggesting that the initial value for [ need
not be extremely precise. If 8 is known, however, R(8, uo, mo) is very sensitive
to the difference between p and po, suggesting that a good initial value for yu is
critical. The most severe loss in robustness occurs when B is overestimated and
p 1s underestimated. The effects of poor initial values of both 3 and /. seem more
serious when m is large than when m is small, so that special care should be
taken when m is large.

Table 1. D-optimal two point designs for various m

o o
m pl,m p2,m

0.2 0.2058 0.8760
0.4 0.2289 0.8543
0.5 0.2214 0.8475
0.6 0.2213 0.8414
0.8 0.1919 0.8316
1.0 0.1760 0.8240
1.2 0.1635 0.8179
1.5 0.1491 0.8111
2.0 0.1327 0.8031
2.5 0.1218 0.7976
3.0 0.1141 0.7937
4.0 0.1039 0.7884
5.0 0.0975 0.7849
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Table 2. Relative efficiencies (%) for the D-optimality criterion

relative to initial values of B, 4 and m

B(p — po) = -1.5

ﬁ/ﬂo mo 02
0.6 0.2 66.1
0.6 0.5 18.7
0.6 1.0 6.8
0.6 2.0 2.7
0.6 5.0 0.9
1.0 0.2 69.1
1.0 0.5 35.5
1.0 1.0 13.1
1.0 2.0 3.9
1.0 5.0 0.7
1.4 0.2 60.1
1.4 0.5 36.3
14 1.0 15.3
1.4 2.0 3.7
1.4 5.0 0.3

Blu — o) = =05

B/Bo mo 0.2
0.6 0.2 85.7
0.6 0.5 37.3
0.6 1.0 19.3
0.6 2.0 10.2
0.6 5.0 4.3
1.0 0.2 95.7
1.0 0.5 60.6
1.0 1.0 33.1
1.0 2.0 14.5
1.0 5.0 3.6
1.4 0.2 86.7
1.4 0.5 61.6
14 1.0 34.3
14 2.0 13.2
1.4 5.0 1.9

B(p — o) =0

B/Bo me 0.2
0.6 0.2 86.7
0.6 0.5 43.5
0.6 1.0 26.3
0.6 2.0 16.1
0.6 5.0 8.1

- 1.0 0.2 100.0
1.0 0.5 70.9
1.0 1.0 44.9
1.0 2.0 23.7
1.0 5.0 7.4
1.4 0.2 92.3
1.4 0.5 75.3
14 1.0 46.5
14 2.0 21.7
1.4 5.0 4.2

0.5

90.2
40.5
15.7
6.6
2.2

46.7
67.2
29.5
9.3
1.6

18.0
56.6
32.4
8.7
0.8

0.5

91.4
70.1
40.6
229
10.2

48.4
95.4
65.9
32.3

8.6

19.0
78.0
63.1
29.1

4.7

0.5

80.0
74.2
51.5
34.2
18.3

43.0
100.0
82.6
50.2
17.2

17.0
84.7
78.5
45.1

1

60.0
67.1
29.4
13.0

4.6

7.5
85.6
51.6
18.2

3.4

0.6
49.1
51.1
16.9

1.7

37.1
88.9
63.9
40.1
19.4

4.5
85.1
93.0
56.2
16.9

0.4
44.3
76.3
49.4

9.4

24.4
78.1
70.7
54.3
32.8

2.9
71.6
100.0
79.1
323

0.2
38.0
79.9
68.9
19.1

m

1.5

27.0
85.3
42.8
20.0

7.3

0.7
80.8
69.7
27.8

5.6

0.0
290.7
61.4
25.4

2.8

1.5

9.7
84.0
76.9
54.4
28.8

0.2
53.4
98.7
75.4
26.0

0.0
16.7
67.7
64.2
14.6

1.5

4.7
59.8
73.1
66.0
45.4

0.1
35.1
89.3
95.2
47.1

0.0
11.0
58.3
80.0
28.7

2

9.8
95.2
55.1
274
10.4

0.1
65.0
82.9
37.6

8.0

0.0
14.8
64.2
33.9

4.1

2.0
67.9
80.9
65.2
38.0

0.0
27.7
90.4
89.0
35.4

0.0
5.1
50.8
73.3
20.4

0.7
38.4
65.3
70.4
55.5

0.0
14.0
67.8

100.0
60.9

0.0
2.6
35.5
80.7
38.3

0.0
55.2
88.9
66.4
32.7

0.0
3.9
75.3
85.9
27.5

0.0
0.0
23.1
68.6
14.9

0.0
4.2
31.5
63.5
71.6

0.0
0.1
13.1
76.7
83.9

0.0
0.0
1.9
49.3
55.1

0.0
0.5
8.1
30.1
63.3

0.0
0.0
2.8
37.7
100.0

0.0
0.0
0.3
224
77.8

239
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Table 2. Continued

By ~ po) = 0.5 m

B/Bo mo 0.2 0.5 1 15 2 5
0.6 02 804 633 141 19 02 0.0
0.6 0.5 451 684 575 341 167 0.0
0.6 1.0 311 555 639 543 392 1.1
0.6 2.0 219 431 598 627 56.8 7.8
0.6 50 132 283 46.0 57.6 63.4 338

1.0 0.2 95.7 346 1.7 00 0.0 0.0
1.0 0.5 76.4 95.2 53.2 198 59 0.0
1.0 1.0 55.2 923 93.0 674 408 0.4
1.0 2.0 346 68.2 946 98.6 88.7 11.3
1.0 5.0 13.6 30.6 53.6 726 86.7 81.2

1.4 0.2 89.9 138 01 00 0.0 0.0
1.4 0.5 86.6 85.7 297 65 1.1 0.0
1.4 1.0 59.5 91.0 76.3 446 214 0.0

1.4 2.0 324 63.0 84.6 848 728 6.7
14 5.0 83 19.0 348 493 61.7 79.9

B(p — po) =15 m
B/Bo me 0.2 0.5 1 15 2 5

0.6 0.2 559 307 34 02 00 00
0.6 0.5 355 40.5 193 6.0 1.5 0.0
0.6 1.0 20.5 41.1 294 146 59 0.0
0.6 2.0 26.0 41.5 388 261 146 0.1
0.6 5.0 21.9 40.0 484 436 336 1.5

1.0 0.2 70.0 171 04 00 0.0 0.0
1.0 0.5 68.2 63.2 197 39 06 0.0
1.0 1.0 62.1 81.7 516 220 76 0.0
1.0 2.0 52.1 854 83.0 57.8 336 0.2

1.0 5.0 32.6 64.6 90.8 96.1 879 12.7
1.4 0.2 676 69 00 00 00 0.0
1.4 0.5 90.4 665 129 1.5 0.1 0.0
1.4 1.0 79.9 9069 51.1 178 50 0.0
1.4 2.0 57.3 93.5 893 60.7 343 0.2

1.4 5.0 24.1 50.2 76.5 88.7 89.3 24.7



EFFICIENT DESIGNS FOR POWER LOGISTIC MODELS 241

1 PZ,-

. - =

A

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.1 0.2 0.3
l,l,l ’1.-
m=1 m=95

PO BTN MU Wy

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Pl,- 'l,-

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

4 0.0 2.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 1. Contour plot of 7(py,m,P2,m) for m = 0.2,0.5,1.0 and 5.0
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