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Abstract: Most work in causal inference concerns deterministic counterfactuals; the

literature on stochastic counterfactuals is small. In the stochastic counterfactual

setting, the outcome for each individual under each possible set of exposures follows

a probability distribution so that for any given exposure combination, outcomes

vary not only between individuals but also probabilistically for each particular in-

dividual. The deterministic sufficient cause framework supplements the determin-

istic counterfactual framework by allowing for the representation of counterfactual

outcomes in terms of sufficient causes or causal mechanisms. In the deterministic

sufficient cause framework it is possible to test for the joint presence of two causes

in the same causal mechanism, referred to as a sufficient cause interaction. In this

paper, these ideas are extended to the setting of stochastic counterfactuals and

stochastic sufficient causes. Formal definitions are given for a stochastic sufficient

cause framework. It is shown that the empirical conditions that suffice to conclude

the presence of a sufficient cause interaction in the deterministic sufficient cause

framework suffice also to conclude the presence of a sufficient cause interaction in

the stochastic sufficient cause framework. Two examples from the genetics litera-

ture, in which there is evidence that sufficient cause interactions are present, are

discussed in light of the results in this paper.
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1. Introduction

Although most work in causal inference concerns deterministic counterfac-
tuals, a few papers address the setting of stochastic counterfactuals (Greenland
(1987); Robins and Greenland (1989, 2000)). In the deterministic counterfac-
tual framework, each set of exposures corresponds to only one outcome for each
individual. The same set of exposures may bring about different outcomes for
different individuals but for a particular individual, the set of exposures fixes the
outcome. The collection of individuals is generally treated as the sample space
and the outcome is then regarded as a random variable over the space of indi-
viduals. In contrast, within the stochastic counterfactual framework (Greenland
(1987); Robins and Greenland (1989, 2000)), each set of exposures corresponds to
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a distribution of the outcome for each individual; the random outcome variable
defined over the space of individuals is then itself a distribution-valued random
variable.

Counterfactuals make reference to different outcomes (or distributions of
outcomes) under different exposures or interventions. Rothman (1976) described
causation in a somewhat different manner by conceiving of the relationship be-
tween cause and effect as a series of different causal mechanisms each sufficient to
bring about the outcome. These causal mechanisms Rothman called “sufficient
causes,” informally defined as minimal sets of actions, events or states of nature
which together initiate a process that inevitably results in the outcome. For a
particular outcome there would likely be many different sufficient causes, i.e.,
many different causal mechanisms by which the outcome could come about. For
example, perhaps we have some genetic factor G and some environmental factor
E which are our causes of interest for a particular cancer outcome D; perhaps one
such cause requires the environmental factor E and some unknown factors A1 in
order to operate. Within a deterministic framework, whenever both E and A1

are present an individual will inevitably have the outcome D. Perhaps another
sufficient cause for D consists of the genetic factor G and some other unknown
factors A2 and perhaps a third sufficient cause for D consists of the environ-
mental factor E, the genetic factor G, and some other unknown factors A3. We
would then have three sufficient causes: A1E, A2G, and A3EG. Each sufficient
cause involves some combination of the various component causes, namely, E,
G, A1, A2, and A3. Under a deterministic sufficient cause framework, whenever
all components of a particular sufficient cause are present, the outcome D will
inevitably occur; within every sufficient cause, each component is necessary for
that sufficient cause to lead to the outcome. If two distinct causes are both com-
ponents of the same sufficient cause then the causes participate together in the
same causal mechanism, and synergism is said to be present. Thus if there were
indeed a sufficient cause, such as A3EG, that required both E and G, then it
would be said that synergism is present between the effects of E and G. In many
settings it will not be known whether synergism is present i.e., whether there is
a sufficient cause corresponding to a causal mechanism that requires both of two
causes such as E and G to operate; we might then be interested in empirically
testing whether synergism is present.

VanderWeele and Robins (2008) gave formal definitions for sufficient causes,
sufficient cause representations, and sufficient cause interactions in the deter-
ministic setting, and furthermore derived empirical conditions for testing for
synergism. In this paper we formulate a stochastic sufficient cause framework,
relate stochastic sufficient causes to stochastic counterfactuals, and show that it
is possible to test for sufficient cause interactions even in the stochastic sufficient
cause setting.
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Technical details are provided below, but the basic approach for testing for
sufficient cause interactions in the deterministic setting is as follows. For a bi-
nary outcome D and a number of binary exposures X1, . . . , Xn, a sufficient cause
representation is defined to be a set of sufficient causes (involving X1, . . . , Xn

and possibly also other unknown variables or causes denoted by Ai) that repli-
cate a particular set of counterfactual outcomes. Thus the ith sufficient cause
would take the form AiF

i
1 · · ·F i

ni
, where each F i

k is either a member of the set
{X1, . . . , Xn} or is the complement of such a member. A sufficient cause interac-
tion is said to be present between X1, . . . , Xk if every representation of the coun-
terfactual outcomes by sufficient causes has a sufficient cause in which X1, . . . , Xk

are all present. A sufficient cause interaction necessarily implies synergism (Van-
derWeele and Robins (2008)) but synergism may be present without a sufficient
cause interaction. In the case of two binary variables, say, an X1X2 term may
not be logically necessary to represent the counterfactual outcomes by sufficient
causes, but there might be an X1X2 sufficient cause term in the representation
that actually corresponds to the biological mechanisms; see VanderWeele and
Robins (2007, 2008) for further discussion.

For two exposures, X1 and X2, we let Dx1x2 denote the counterfactual value
of D intervening to set X1 = x1 and X2 = x2. We say that the effects of X1

and X2 on D are unconfounded conditional on C if Dx1x2

∐
{X1, X2}|C where

A
∐

B|C denotes that A is independent of B conditional on C. VanderWeele and
Robins (2008) showed that for a binary outcome D and two binary exposures X1

and X2, if the effects of X1 and X2 on D are unconfounded conditional on C,
then if

p11c − p10c − p01c > 0, (1.1)

where px1x2c = E(D|X1 = x1, X2 = x2, C = c), a sufficient cause interaction
must be present between X1 and X2. It was furthermore shown if Dx1x2 is
non-decreasing in x1 and x2, then if

p11c − p10c − p01c + p00c > 0, (1.2)

a sufficient cause interaction must be present between X1 and X2. Extensions to
three way sufficient cause interactions were also noted. For three binary exposures
X1, X2 and X3, let px1x2x3c = E(D|X1 = x1, X2 = x2, X3 = x3, C = c). If the
effects of X1, X2, and X3 on D are unconfounded conditional on C, and if

p111c − p110c − p101c − p011c > 0, (1.3)

then a sufficient cause interaction must be present between X1, X2, and X3.
Finally if Dx1x2x3 is non-decreasing in x1, x2, and x3, then any of the following
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three conditions imply that a sufficient cause interaction is present between X1,
X2 and X3:

p111c − p110c − p101c − p011c + p100c + p010c > 0, (1.4)

p111c − p110c − p101c − p011c + p100c + p001c > 0,

p111c − p110c − p101c − p011c + p010c + p001c > 0.

See VanderWeele (2009) for discussion of the relation of conditions (1)-(4) to
interaction terms in linear, log-linear, and logistic models. In the context of
no confounding factors, the fact that condition (2) is sufficient to conclude the
presence of a sufficient cause interaction was stated explicitly and proved by
Rothman and Greenland (1998). Theory concerning sufficient causes developed
by VanderWeele and Robins (2008) was necessary to derive conditions (1), (3),
and (4). In this paper we provide necessary definitions for a stochastic sufficient
cause framework and show that conditions (1)-(4) above also imply the presence
of sufficient cause interactions in the stochastic sufficient cause framework.

2. Stochastic Sufficient Causes and Sufficient Cause Interactions

Under a deterministic counterfactual model, each set of potential interven-
tions corresponds to only one outcome for each individual. The same set of
interventions may bring about different outcomes on different individuals but for
a particular individual the set of interventions fixes the outcome. The determin-
istic counterfactual framework can be generalized to a stochastic counterfactual
framework wherein, for each individual, a particular set of interventions gives
rise to a distribution of outcomes for that individual (Greenland (1987); Robins
and Greenland (1989, 2000)). Likewise, the deterministic sufficient-component
cause model can be generalized to a stochastic setting so that for each individual
the completion of a sufficient cause gives rise to a probability of developing the
outcome.

We use the following notation. An event is a binary variable taking values in
{0, 1}. The disjunctive or OR operator,

∨
, is defined by A

∨
B = A + B − AB,

so that A
∨

B = 1 if A = 1 or B = 1 or both, but A
∨

B = 0 if A = B = 0.
Note, however, by defining

∨
more generally as A

∨
B = A + B − AB, we can

apply the OR operator,
∨

, to numbers other than 0 and 1. The complement of
an event A is denoted by A. A conjunction or product of the events X1, . . . , Xn

will be written as X1 · · ·Xn, so that X1 · · ·Xn = 1 if and only if each of the the
events X1, . . . , Xn takes the value 1.

We first assume that there are only two causes of primary interest X1 and
X2. In the stochastic counterfactual setting, for each exposure combination and
for each individual there is some probability of outcome. Thus in the stochastic
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setting, for each individual ω the counterfactual Dx1x2(ω) is in fact a Bernoulli
random variable with probability px1x2(ω). Note that the probabilities px1x2(ω)
are allowed to vary with ω, i.e., from one individual to another. In a stochastic
setting, as with the deterministic setting, each sufficient cause may involve either
X1 or X1 or neither, may involve either X2 or X2 or neither, and may also
involve various other background variables or causes which we denote by Ai.
There are nine possible sufficient causes for D: A0, A1X1, A2X2, A3X1, A4X2,
A5X1X2, A6X1X2, A7X1X2 and A8X1X2. We assume the background cause
variables Ai are not affected by interventions on X1 and X2 (cf., VanderWeele
and Robins (2007, 2008) for further discussion). For individual ω, if the ith
sufficient cause takes the value 1, then in the stochastic counterfactual setting
there is some probability vi(ω) that the sufficient cause brings about the outcome.
The probabilities vi(ω) are allowed to vary with ω.

In the deterministic setting, for any set of variables A0, . . . , A8 not affected by
interventions on X1 and X2, the disjunction of sufficient causes A0

∨
A1X1

∨
A2X2∨

A3X1
∨

A4X2
∨

A5X1X2
∨

A6X1X2
∨

A7X1X2
∨

A8X1X2 is said to consti-
tute a sufficient cause representation if

Dx1x2 = A0

∨
A1x1

∨
A2x2

∨
A3(1 − x1)

∨
A4(1 − x2)

∨
A5x1x2∨

A6(1 − x1)x2

∨
A7x1(1 − x2)

∨
A8(1 − x1)(1 − x2).

In the stochastic setting the causes of interest Xi and the background causes Ai

are random variables over the population but fixed for an individual; however,
in this stochastic setting, for each individual the completion of a sufficient cause
will only bring about an outcome with some probability and this probability may
vary across individuals. For a set of variables A0, . . . , A8 not affected by interven-
tions on X1 and X2, and a set of possibly dependent Bernoulli random variables
{Ri(ω)}ω∈Ω with corresponding probabilities {vi(ω)}ω∈Ω that the completion of
the ith sufficient cause brings about the outcome, we say that the disjunction
A0R0

∨
A1R1X1

∨
A2R2X2

∨
A3R3X1

∨
A4R4X2

∨
A5R5X1X2

∨
A6R6X1X2

∨
A7R7X1X2

∨
A8R8X1X2 is a stochastic sufficient cause representation for D

if for all ω and all x1 and x2,

Dx1x2(ω) = A0(ω)R0(ω)
∨

A1(ω)R1(ω)x1

∨
A2(ω)R2(ω)x2

∨
A3(ω)R3(ω)(1−x1)∨

A4(ω)R4(ω)(1 − x2)
∨

A5(ω)R5(ω)x1x2

∨
A6(ω)R6(ω)(1 − x1)x2∨

A7(ω)R7(ω)x1(1 − x2)

∨
A8(ω)R8(ω)(1 − x1)(1 − x2).

Note that Ri(ω) is the random variable which, for individual ω, denotes whether
the ith sufficient cause, if complete, brings about the outcome. Note also that
for a fixed ω ∈ Ω, we do not assume that for i 6= j, Ri(ω) is independent of
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Rj(ω). For a particular ω ∈ Ω, if it is in fact the case that {R0(ω), . . . , R8(ω)}
are mutually independent with probabilities {v0(ω), . . . , v8(ω)} then it is also the
case that counterfactual outcome probability px1x2(ω) is:

px1x2(ω) = A0(ω)v0(ω)
∨

A1(ω)v1(ω)x1

∨
A2(ω)v2(ω)x2

∨
A3(ω)v3(ω)(1 − x1)∨

A4(ω)v4(ω)(1 − x2)
∨

A5(ω)v5(ω)x1x2

∨
A6(ω)v6(ω)(1 − x1)x2∨

A7(ω)v7(ω)x1(1 − x2)

∨
A8(ω)v8(ω)(1 − x1)(1 − x2).

This follows since if Y1, . . . , Yk are independent Bernouilli random variable with
success probabilities p1, . . . , pk then Y (k) = Y1

∨
· · ·

∨
Yk is a Bernoulli random

variable with success probability p(k) = p1
∨

· · ·
∨

pk.
Note that for any given set of stochastic counterfactuals {Dx1x2(ω)}ω∈Ω there

always exists at least one stochastic sufficient cause representation, since we may
take A0(ω) = A1(ω) = A2(ω) = A3(ω) = A4(ω) = 0 for all ω and A5(ω) =
A6(ω) = A7(ω) = A8(ω) = 1 for all ω, and we may take {R0(ω), . . . , R8(ω)}ω∈Ω

as the Bernoulli random variables R0(ω) = R1(ω) = R2(ω) = R3(ω) = R4(ω) = 0
for all ω and R5(ω) = D11(ω), R6(ω) = D01(ω), R7(ω) = D10(ω), R8(ω) =
D00(ω) for all ω. In what follows probabilities and expectations with an Ω
subscript, such as PΩ and EΩ, denote probabilities and expectations over in-
dividuals but not within individuals; probabilities and expectations without a
subscript denote double expectations over the individuals in the population and
over the possible outcome realizations for the stochastic sufficient causes within
individuals. We say that there is a stochastic sufficient cause interaction between
X1 and X2 if in every stochastic sufficient cause representation for D we have
P (A5R5 = 1) > 0. Note the sufficient cause corresponding to A5 is the one with
both X1 and X2 in its conjunction. Stochastic sufficient cause interactions for
X1 and X2, X1 and X2, or X1 and X2 can be defined similarly. If there is a
stochastic sufficient cause interaction between X1 and X2, then there must be
some mechanism which requires both X1 and X2 to operate and which results in
the outcome with a non-zero probability.

We need one further concept. We say X1 or X2 has a positive monotonic
effect in the stochastic sufficient cause sense if sufficient causes with X1 or X2,
respectively, are excluded from all stochastic sufficient cause representations. In
other words, X1, say, has a positive monotonic effect in the stochastic sufficient
cause sense if we know a priori, or are willing to assume, that there are no
mechanisms for the outcome D that require the absence of X1 to operate. The
following theorems show that the conditions that suffice to conclude the pres-
ence of a sufficient cause interaction in the deterministic setting suffice also to
conclude the presence of sufficient cause interactions in the stochastic sufficient
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cause framework. As noted below, the proofs can be reconstrued so as to follow
from the results in the deterministic setting.

Theorem 1. If E(D11 − D10 − D01) > 0, then there is a stochastic sufficient
cause interaction between X1 and X2.

Proof. We have E(D11 −D10 −D01) = EΩ(p11 − p10 − p01). For any stochastic
sufficient cause representation for D,

Dx1x2(ω) = A0(ω)R0(ω)
∨

A1(ω)R1(ω)x1

∨
A2(ω)R2(ω)x2

∨
A3(ω)R3(ω)(1−x1)∨

A4(ω)R4(ω)(1 − x2)
∨

A5(ω)R5(ω)x1x2

∨
A6(ω)R6(ω)(1 − x1)x2∨

A7(ω)R7(ω)x1(1 − x2)

∨
A8(ω)R8(ω)(1 − x1)(1 − x2).

Define Bi(ω) = Ai(ω)Ri(ω) and let bi = EΩ(Bi), bij = EΩ(BiBj), bijk =
EΩ(BiBjBk), and bijkl = EΩ(BiBjBkBl). Then

EΩ(p11) = b0 + b1 + b2 + b5 − (b01 + b02 + b05 + b12 + b15 + b25)

+(b012 + b015 + b025 + b125) − b0125,

EΩ(p10) = b0 + b1 + b4 + b7 − (b01 + b04 + b07 + b14 + b17 + b47)

+(b014 + b017 + b047 + b147) − b0147,

EΩ(p01) = b0 + b2 + b3 + b6 − (b02 + b03 + b06 + b23 + b26 + b36)

+(b023 + b026 + b036 + b236) − b0236.

If b5 = 0, then EΩ(p11) = b0 + b1 + b2 − (b01 + b02 + b12) + b012 and

EΩ(p11 − p10 − p01)

= b0 + b1 + b2 − (b01 + b02 + b12) + b012

−{b0 + b1 + b4 + b7 − (b01 + b04 + b07 + b14 + b17 + b47)

+(b014 + b017 + b047 + b147) − b0147}
−{b0 + b2 + b3 + b6 − (b02 + b03 + b06 + b23 + b26 + b36)

+(b023 + b026 + b036 + b236) − b0236}
=−(b12−b012)−{b4+b7−(b04+b07+b14+b17+b47)+(b014+b017+b047+b147)

−b0147} − {b0 + b3 + b6 − (b03 + b06 + b23 + b26 + b36)

+(b023 + b026 + b036 + b236) − b0236}
= −E(B0) − E( B0B1B2) − E(B0B1B4B7) − E(B0B2B3B6) − {E(B0B4)

−E(B0B1B4)} − {E(B0B3) − E(B0B2B3)}
≤ 0.
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Thus if E(D11 − D10 − D01) > 0 then b5 > 0, and so EΩ(A5R5 = 1) > 0
and consequently P (A5R5 = 1) > 0, and there is a stochastic sufficient cause
interaction between X1 and X2.

Theorem 2. If X1 and X2 have monotonic effects on D in the stochastic suffi-
cient cause sense and E(D11 − D10 − D01 + D00) > 0, then there is a stochastic
sufficient cause interaction between X1 and X2.

Proof. We have that E(D11 − D10 − D01 + D00) = EΩ(p11 − p10 − p01 + p00).
Since X1 and X2 have monotonic effects on D, for any stochastic sufficient cause
representation for D,

Dx1x2(ω) = A0(ω)R0(ω)
∨

A1(ω)R1(ω)x1

∨
A2(ω)R2(ω)x2

∨
A5(ω)R5(ω)x1x2.

Define Bi(ω)=Ai(ω)Ri(ω) and let bi =EΩ(Bi), bij =EΩ(BiBj), bijk =EΩ(BiBjBk)
and bijkl = EΩ(BiBjBkBl). Then

EΩ(p11) = b0 + b1 + b2 + b5 − (b01 + b02 + b05 + b12 + b15 + b25)

+(b012 + b015 + b025 + b125) − b0125,

EΩ(p10) = b0 + b1 − b01,

EΩ(p01) = b0 + b2 − b02,

EΩ(p00) = b0.

If b5 = 0, then EΩ(p11) = b0 + b1 + b2 − (b01 + b02 + b12) + b012 and

EΩ(p11 − p10 − p01 + p00) = b0 + b1 + b2 − (b01 + b02 + b12) + b012

−(b0 + b1 − b01) − (b0 + b2 − b02) + b0

= −(b12 − b012) ≤ 0.

Thus if E(D11 − D10 − D01 + D00) > 0 then b5 > 0, and so EΩ(A5R5) > 0
and consequently P (A5R5 = 1) > 0, and there is a stochastic sufficient cause
interaction between X1 and X2.

The definitions for stochastic sufficient causes given in the case of two causes
of interest can be generalized to settings in which there are n causes of inter-
est, X1, . . . , Xn. The counterfactual Dx1···xn(ω) is a Bernoulli random variable
with probability px1···xn(ω). The probabilities px1···xn(ω) are allowed to vary
with ω. A sufficient cause is of the form AiF

i
1 · · ·F i

ni
, where each F i

k is either a
member of the set {X1, . . . , Xn} or is the complement of such a member, and
the variables Ai are not affected by interventions on {X1, . . . , Xn}. For individ-
ual ω if the ith sufficient cause AiF

i
1 · · ·F i

ni
= 1, then there is some probabil-

ity vi(ω) that the sufficient cause brings about the outcome. The probabilities
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vi(ω) are allowed to vary with ω. For a set of binary variables {Ai}T
i=0 that

are not affected by interventions on {X1, . . . , Xn} and a set of Bernoulli random
variables {Ri(ω)}ω∈Ω with probabilities {vi(ω)}ω∈Ω, we say that the disjunction
of {AiRiF

i
1 · · ·F i

ni
}T

i=0 constitutes a stochastic sufficient cause representation if
for all ω and all x1, . . . , xn, Dx1···xn(ω) =

∨
i

Ri(ω)Ai(ω)gi(x1, . . . , xn), where

gi(x1, . . . , xn) = 1 if F i
1 · · ·F i

ni
= 1 when (X1, . . . , Xn) = (x1, . . . , xn) and 0 oth-

erwise. For any given set of stochastic counterfactuals {Dx1···xn(ω)}ω∈Ω, there
always exists at least one stochastic sufficient cause representation since for each
conjunction F i

1 · · ·F i
ni

we may take Ai = 1 if ni = n and Ai = 0 otherwise,
and we may take the Bernoulli random variables {Ri(ω)}ω∈Ω with Ri(ω) = 0 for
all ω if Ai = 0 and, for i such that Ai = 1, Ri(ω) = Dx1···xn(ω) for x1, . . . , xn

which satisfy F i
1 · · ·F i

ni
= 1. We say Xk has a positive monotonic effect in the

stochastic sufficient cause sense if sufficient causes with Xk are excluded from all
stochastic sufficient cause representations. We say that there is a sufficient cause
interaction between the effects of X1, . . . , Xk if in every stochastic sufficient cause
representation for D there exists a sufficient cause AiF

i
1 · · ·F i

ni
with X1, . . . , Xk

in its conjunction such that P (AiRi = 1) > 0.
The method we used in the proofs of Theorems 1 and 2 in fact applies more

generally. By letting Bi = AiRi we can express the expectation of a counterfac-
tual contrast in terms of the probabilities bi = E(Bi). If in this expression we
replace bi with ai we obtain the same expression obtained in the deterministic
case by taking the expectation of the counterfactual contrast and expressing it in
terms of the probabilities ai = P (Ai = 1) (cf., VanderWeele and Robins (2007)).
In the deterministic case, we know from prior results (VanderWeele and Robins
(2008); VanderWeele and Richardson (2011)) that if the expectation of certain
counterfactual contrasts is positive, then some aj corresponding to a sufficient
cause interaction must be non-zero. It thus also follows in the stochastic setting
that if the expectation of the same counterfactual contrasts is positive, then some
bj corresponding to a sufficient cause interaction must also be non-zero. Since
bj 6= 0 we have E(Bj) > 0, and thus EΩ(AjRj) > 0 and P (AjRj = 1) > 0 so
there must be a stochastic sufficient cause interaction. Effectively, we reduce the
problem in the stochastic setting to an equivalent problem in the deterministic
setting for which the solution is already known. Thus for three-way sufficient
cause interactions in the stochastic sufficient cause setting we have the following
results.

Theorem 3. If E(D111 − D110 − D101 − D011) > 0, then there is a stochastic
sufficient cause interaction between X1, X2 and X3.
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Theorem 4. If X1, X2 and X3 have monotonic effects on D in the stochastic
sufficient cause sense then if any of the following three conditions hold,

E(D111 − D110 − D101 − D011 + D100 + D010) > 0,

E(D111 − D110 − D101 − D011 + D100 + D001) > 0,

E(D111 − D110 − D101 − D011 + D010 + D001) > 0,

there is a stochastic sufficient cause interaction between X1, X2 and X3.

Note that if the effects of {X1, X2} or {X1, X2, X3} on D are unconfounded,
then the conditions given in Theorems 1-4 are simply conditions (1)-(4) given
in the introduction. We thus have shown that the empirical conditions given
by VanderWeele and Robins (2008) that suffice to conclude the presence of a
sufficient cause interaction in the deterministic sufficient cause framework suffice
also to conclude the presence of a sufficient cause interaction in the stochastic
sufficient cause framework. If the effects of {X1, X2} or {X1, X2, X3} on D are
unconfounded conditional on some set of covariates C, then conditions (1)-(4) and
Theorems 1-4 can also be made conditional on C. Conditions for n-way sufficient
cause interactions have been derived elsewhere (VanderWeele and Richardson
(2011)). By the arguments above these conditions for n-way interactions also
imply the presence of n-way sufficient cause interactions in the stochastic setting.
In the appendix we discuss a stochastic version of recent work on the sufficient
cause model in which the exposures are categorical or ordinal with more than
two levels.

3. Genetics Applications Revisited

In this section we discuss two genetic studies (Bennett et al. (1999); Zhang et
al. (2005)). In other work (VanderWeele, Hernández-Diaz, and Hernán (2010)),
VanderWeele (2010)), it was shown that there is evidence in these two studies of
a sufficient cause interaction within a deterministic sufficient cause framework.
Here we revisit these examples in light of the stochastic sufficient cause frame-
work.

Bennett et al. (1999) studied the interaction between passive smoking, X1,
and glutathione S-transferase M1 (GSTM1), X2, on lung cancer risk, D, among
non-smokers. The authors used a case-only design with 106 lung cancer cases
and logistic regression, controlling for age, history of non-neoplastic lung disease,
radon exposure, and intake of saturated fat and vegetables (denoted here by
C) to estimate that [P (D|X1 = 1, X2 = 1, C = c)P (D|X1 = 0, X2 = 0, C = c)]/
[P (D|X1 = 1, X2 = 0, C = c)P (D|X1 = 0, X2 = 1, C = c)] = 2.6 (95% CI: 1.1-
6.1). It can be shown (VanderWeele (2009)) that, under monotonicity, [P (D|X1

= 1, X2 = 1, C = c)P (D|X1 = 0, X2 = 0, C = c)]/[P (D|X1 = 1, X2 = 0, C = c)
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P (D|X1 = 0, X2 = 1, C = c)] > 1 implies condition (2), i.e., in the notation
of the introduction, p11c − p10c − p01c + p00c > 0. Since even the lower bound
of the confidence interval for [P (D|X1 = 1, X2 = 1, C = c)P (D|X1 = 0, X2 =
0, C = c)]/[P (D|X1 = 1, X2 = 0, C = c)P (D|X1 = 0, X2 = 1, C = c)] is greater
than 1, VanderWeele, Hernández-Diaz, and Hernán (2010) argued that there was
evidence of a sufficient cause interaction within the deterministic sufficient cause
framework if it could be assumed that the effects of passive smoking and glu-
tathione S-transferase M1 (GSTM1) on lung cancer risk are monotonic. By the
results in the previous section, since condition (2) is satisfied, if the effects of pas-
sive smoking and glutathione S-transferase M1 (GSTM1) are monotonic in the
stochastic sufficient cause sense, then one could then also conclude a sufficient
cause interaction is present within the stochastic sufficient cause framework. In
other words, even if we relax the requirement that the completion of a particular
sufficient cause inevitably gives rise to the outcome and assume it does so only
with some probability, we still have evidence for a mechanistic interaction be-
tween the effects of passive smoking and glutathione S-transferase M1 (GSTM1)
on lung cancer.

Zhang et al. (2005) studied the lung cancer risk associated with ADPRT
Val762Ala and XRCC1 Arg399Gln polymorphisms using a case-control study
design. Let the ADPRT Val/Val, Val/Ala, and Ala/Ala genotypes be denoted
by V1 = 0, V1 = 1 and V1 = 2, respectively. Let the XRCC1 Arg/Arg, Arg/Gln,
Gln/Gln genotypes be denoted by V2 = 0, V2 = 1 and V2 = 2, respectively. Using
logistic regression controlling for sex, age and smoking status (denoted here by
C), the authors test [P (D|V1 = 2, V2 = 2, C = c)P (D|V1 = 0, V2 = 0, C =
c)]/[P (D|V1 = 2, V2 = 0, C = c)P (D|V1 = 0, V2 = 2, C = c)] = 1 and obtained
a p-value of 0.018, indicating the ratio is greater than 1. VanderWeele (2010)
showed that this would imply the empirical condition p22c−p20c−p02c +p00c > 0
which, under the assumption that V1 and V2 have monotonic effects on D, implies
that a sufficient cause containing the term 1(V1 = 2)1(V2 = 2) must be present
in a deterministic sufficient cause framework. The results in this paper and in
the appendix imply that, provided that V1 and V2 have monotonic effects on D

in the stochastic sufficient cause sense, then one also has evidence for a sufficient
cause containing the term 1(V1 = 2)1(V2 = 2) even in the stochastic sufficient
cause setting.

4. Concluding Remarks

In this paper we have considered settings in which the outcome for each in-
dividual under each possible set of exposures follows a probability distribution
so that, for any given exposure combination, outcomes vary not only between
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individuals but also within individuals thereby giving rise to stochastic coun-
terfactual outcomes. This additional level of random variation may be seen as
desirable. Although there is already a small literature on stochastic counterfac-
tuals (Greenland (1987); Robins and Greenland (1989, 2000)), the literature on
the sufficient cause framework to date concerns the deterministic setting. The
definitions and results given here provide a stochastic sufficient cause framework,
and relate stochastic counterfactuals to stochastic sufficient causes. In particular
we have shown that, under the assumption of no unmeasured confounding, it is
possible to empirically test for the joint presence of two causes in the same suffi-
cient cause or causal mechanism under a stochastic sufficient cause and stochastic
counterfactual framework.

Developments during the last century in quantum physics suggest that the
world may be inherently probabilistic. Similar ideas may be found in the medical
literature (Elwood (1988); Karhausen (2001)). Extending the theory of sufficient
causes to a stochastic setting may thus constitute an important step towards
conceptualizing causation in a manner more consistent with physical realities.
We have shown that regardless of whether the underlying causal mechanisms are
deterministic or stochastic, the same empirical conditions can be used to test
for sufficient cause interactions. Our results did not require that the stochastic
event of a particular mechanism bringing about the outcome be independent of
the stochastic event of some other mechanism bringing about the outcome. These
developments are furthermore important from a philosophical point of view. Be-
cause counterfactual outcomes cannot be simultaneously observed, assumptions
about them cannot be empirically verified; it is important that assumptions made
about counterfactuals be as general as possible. It is thus of interest that the
conditions for sufficient cause interactions also hold under a stochastic counter-
factual and stochastic sufficient cause setting.

Appendix

In this appendix, we discuss how the approach to stochastic sufficient causes
described in the paper applies also to the sufficient cause setting when the vari-
ables are categorical or ordinal. For illustration we consider a setting in which
there are two variables, V1 and V2, each with three possible levels: 0, 1, 2. The
remarks apply more generally. The counterfactual Dv1v2(ω) is a Bernoulli ran-
dom variable with probability pv1v2(ω); the probabilities pv1v2(ω) are allowed to
vary with ω. For simplicity assume Ω is finite. Let 1(V = v) be the indicator
function that V = v and take 1(V = ∗) ≡ 1. A sufficient cause is of the form
Aij1(V1 = i)1(V2 = j), i ∈ {0, 1, 2, ∗}, j ∈ {0, 1, 2, ∗}, where the Aij variables are
not affected by interventions on {V1, V2}. For individual ω, if Aij1(V1 = i)1(V2 =
j) = 1, then there is some probability vij(ω) that the sufficient cause brings about
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the outcome. The probabilities vij(ω) are allowed to vary with ω. For a set of bi-
nary variables {Aij}i∈{0,1,2,∗},j∈{0,1,2,∗} which are not affected by interventions on
{V1, V2}, and a set of Bernoulli random variables {Rij(ω)}ω∈Ω,i∈{0,1,2,∗},j∈{0,1,2,∗}
with probabilities {vij(ω)}ω∈Ω,i∈{0,1,2,∗},j∈{0,1,2,∗}, we say that

∨
i∈{0,1,2,∗},j∈{0,1,2,∗}

AijRijI(v1 = i)I(v2 = j) constitutes a stochastic sufficient cause representation
if for all ω and all v1 and v2 we have Dv1v2(ω) =

∨
i∈{0,1,2,∗},j∈{0,1,2,∗}Aij(ω)Rij(ω)

I(v1 = i)I(v2 = j). For any given set of stochastic counterfactuals {Dv1v2(ω)}ω∈Ω,
there always exists at least one stochastic sufficient cause representation since for
each conjunction I(v1 = i)I(v2 = j), i ∈ {0, 1, 2, ∗}, j ∈ {0, 1, 2, ∗}, we may take
Aij = 1 if i 6= ∗ and j 6= ∗ and Aij = 0 otherwise and we may define the Bernoulli
random variables {Rij(ω)}ω∈Ω by Rij(ω) = 0 for all ω if Aij = 0 and, for i, j such
that Aij = 1, Rij(ω) = Dij(ω). We say V1 (or V2) has a positive monotonic effect
in the stochastic counterfactual sense if for all ω, Dv1v2(ω) is non-decreasing in
v1 (or v2 respectively) for all points in the sample space for Dv1v2(ω). We say
that there is a weak (cf. VanderWeele (2010)) sufficient cause interaction between
I(v1 = i) and I(v2 = j) if in every stochastic sufficient cause representation for D

there exists a sufficient cause AijI(v1 = i)I(v2 = j) such that P (AijRij = 1) > 0.
Without the assumptions of monotonicity, the proof used for Theorem 1

again applies here: by letting Bij = AijRij we can express the expectation of
a counterfactual contrast in terms of the probabilities bij = E(Bij). If in this
expression we replace bij with aij , we obtain the same expression obtained in the
deterministic case by taking the expectation of the counterfactual contrast and
expressing it in terms of the probabilities aij = P (Aij = 1), and from results in
the deterministic case (VanderWeele (2010)) it then follows that if the expecta-
tion of certain counterfactual contrasts is positive, then some aij corresponding
to a sufficient cause interaction must be non-zero. It thus also follows in the
stochastic setting that if the expectation of the same counterfactual contrasts is
positive then some bij corresponding to a sufficient cause interaction must also
be non-zero. Since bij 6= 0, we have E(Bij) > 0, and thus EΩ(AijRij) > 0 and
P (AijRij = 1) > 0, so there must be a stochastic sufficient cause interaction.
In the case that one or both of V1 and V2 have a positive monotonic effect in
the stochastic counterfactual sense, then using similar arguments as in the deter-
ministic case (VanderWeele (2010)), the empirical conditions under monotonicity
implying the existence of an individual ω with a deterministic sufficient cause in-
teraction implies also an individual ω with Aij(ω) = 1 and vij(ω) > 0, and thus
a stochastic sufficient cause interaction.
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A., Bowman, E. D., Khan, M. A., Flieder, D. B. and Harris, C. C. (1999). Environmental



392 TYLER J. VANDERWEELE AND JAMES M. ROBINS

tobacco smoke, genetic susceptibility, and risk of lung cancer in never-smoking women. J.

Natl. Cancer. Inst. 91, 2009-2014.

Elwood, J. M. (1988). Causal Relationships in Medicine. Oxford University Press, Oxford.

Greenland, S. (1987). Interpretation and choice of effect measures in epidemiologic analyses.

Am. J. Epidemiol. 125, 761-8.

Karhausen, L. R. (2001). Exposures, mutations and the history of causality. J. Epidemiol.

Community Health 55, 607.

Robins, J. M. and Greenland, S. (1989). The probability of causation under a stochastic model

for individual risk. Biometrics 45, 1125-38.

Robins, J. M. and Greenland, S. (2000). Comment on: “Causal inference without counterfac-

tuals” by A.P. Dawid. J. Amer. Statist. Assoc. 95, 477-82.

Rothman, K. J. (1976). Causes. Am. J. Epidemiol. 104, 587-92.

Rothman, K. J. and Greenland, S. (1998). Modern Epidemiology. Lippincott-Raven, Philadel-

phia

VanderWeele, T. J. (2009). Sufficient cause interactions and statistical interactions. Epidemiol.

20, 6-13.

VanderWeele, T. J. (2010), Sufficient cause interactions for categorical and ordinal exposures

with three levels. Biometrika, 97, 647-659.

VanderWeele, T. J., Hernández-Diaz, S. and Hernán, M.A. (2010). Case-only gene-environment

interaction studies: when does association imply mechanistic interaction? Genetic Epi-

demiology, 34, 327-334.

VanderWeele, T. J. and Richardson, T. S. (2011). General theory for sufficient cause interactions

for dichotomous exposures. Ann. Statist., conditionally accepted.

VanderWeele, T. J. and Robins, J. M. (2007). The identification of synergism in the sufficient-

component cause framework. Epidemiol. 18, 329-39.

VanderWeele, T. J. and Robins, J. M. (2008). Empirical and counterfactual conditions for suf-

ficient cause interactions. Biometrika 95, 49-61.

Zhang, X., Miao, X., Liang, G., Hao, B., Wang, Y., Tan, W., Li, Y., Guo, Y., He, F., Wei,

Q. and Lin, D. (2005). Polymorphisms in DNA base excision repair genes ADPRT and

XRCC1 and risk of lung cancer. Can. Res. 65, 722-726.

Departments of Epidemiology and Biostatistics, Harvard School of Public Health, 677 Hunting-

ton Avenue Kresge Building, Boston, Massachusetts 02115, USA.

E-mail: tvanderw@hsph.harvard.edu

Departments of Epidemiology and Biostatistics, Harvard School of Public Health, 677 Hunting-

ton Avenue Kresge Building, Boston, Massachusetts 02115, USA.

E-mail: robins@hsph.harvard.edu

(Received July 2008; accepted October 2010)

file:tvanderw@hsph.harvard.edu
file:robins@hsph.harvard.edu

	1. Introduction
	2. Stochastic Sufficient Causes and Sufficient Cause Interactions
	3. Genetics Applications Revisited
	4. Concluding Remarks
	Appendix

