
Statistica Sinica 16(2006), 267-285

NONPARAMETRIC SURVIVAL ANALYSIS ON

TIME-DEPENDENT COVARIATE EFFECTS

IN CASE-COHORT SAMPLING DESIGN

Haimeng Zhang and Chunfeng Huang

Concordia College and North Dakota State University

Abstract: A nonparametric analysis of time-dependent covariate effects on fail-

ures determined by a regression function β0(t) in Cox’s regression model based on

case-cohort sampling design is developed. The analysis is carried out through max-

imizing appropriate penalized pseudolikelihoods. Weak uniform consistency and

pointwise asymptotic normality of the resulting estimators are investigated under

regularity conditions. Further generalization of the results is also discussed in the

paper.
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1. Introduction

The Cox proportional hazards model has played a prominent role in both the

statistical literature and the analysis of right-censored survival data since it was

first introduced in Cox (1972). It has been widely used for analysis of biomedical

data from both longitudinal studies and clinical trials, mainly due to its appealing

mathematical simplicity, as well as its general availability through most statistical

packages. In this model, the data consist of i.i.d. copies (Ti, Di, Zi), i = 1, . . . , n,

of (T,D,Z), where Ti = min{T 0
i , V 0

i }, Di = I(Ti = T 0
i ) the censoring indicator

function, and T 0
i , V 0

i , and Zi represent individual i’s failure time, censoring

time, and random covariate, respectively. In addition, it is further assumed

that the conditional hazard function given z at time t ∈ [0, 1] is of the form

λ(t|z) = λ0(t) exp[β0z] with the unknown parameter β0 and an unknown baseline

hazard function λ0(t).

While the Cox proportional hazards model is relatively simple to present,

the assumption of the constant effect of a covariate on survival over the entire

follow-up period may not be met, and a generalization of the original model

becomes necessary. There are various nonparametric approaches proposed in

the literature. These include, for example, the sieve estimation procedure of

Murphy and Sen (1991); the goodness-of-fit testing in Marzec and Marzec (1997)
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based on the sieve estimator; a local partial likelihood estimation technique in

Fan, Gijbels and King (1997) and in Cai and Sun (2003); and the smoothing

splines approach in Zucker and Karr (1990). Other complementary works include

O’Sullivan (1993) and Gray (1992, 1994) for the generalized Cox regression model

with time-varying regression coefficients.

In this paper, we focus on the nonparametric smoothing approach proposed

by Zucker and Karr (1990) (ZK90 for short). We think the penalized smoothing

splines approach could enhance the robustness of the flexible estimates of time-

dependent effects, especially in regions where there is little data. In ZK90, it

is assumed that the hazard function at time t ∈ [0, 1] for an individual with

covariate z is given by

λ(t|z) = λ0(t) exp[β0(t)z], (1)

where β0(t) is an unknown function taking values in R. In addition, one takes

the maximum penalized partial likelihood estimator of β0(t) as the maximizer of

lF(β|data)−αJ(β), where lF is the negative log partial likelihood in the Cox model

based on the data from entire cohort; J is a quadratic functional of the form

J ≡ [β, β] =
∫

[β(m)]2(m ≥ 1) which measures the roughness of β; and α ≡ αn is

a sequence of positive numbers depending on n, controlling the tradeoff between

the smoothness and the goodness-of-fit of the estimate. Asymptotic properties

of the maximum penalized partial likelihood estimator are presented in ZK90.

If β0(t) ≡ β0 is a constant parameter in (1), the estimation of β0 based on

counting processes and martingale theory has been widely discussed in the liter-

ature; see for example, Andersen and Gill (1982) and Fleming and Harrington

(1991). Estimation might require the collection of information from all cohort

members, generally impractical for many epidemiological studies and prevention

trials, where questions relevant to public health require the follow-up of thou-

sands of subjects over many years. There has been much interest in developing

statistical methods to tackle this problem. Prentice (1986) proposed a case-

cohort design, where a simple random sample is selected at time t = 0 and the

estimation of β0 is based only on the data from this random sample and fail-

ures outside this subcohort. The asymptotic properties of the estimator based

on this case-cohort design are discussed in Self and Prentice (1988) (SP88 for

short). Chen and Lo (1999) (CL99 for short) improved Prentice’s estimator by

incorporating information from all cases rather than only those cases included

in the random sample. It has been known that the CL99 estimator performs

better than the SP88 estimator. When the failure rate is small, both estimators

generally perform well if the sampled risk set is of an appropriate size (Zhang

and Goldstein (2003)).
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In this paper, we present a maximum penalized pseudolikelihood approach

under a case-cohort design as a generalization of ZK90’s. More specifically, if

lCC denotes the negative log pseudolikelihood based on SP88’s case-cohort sam-

ple data, then the maximum penalized pseudolikelihood estimator (MPPLE) of

β0(t) is the maximizer of lCC(β|data)−αJ(β). One of the objectives of this paper

is to investigate the asymptotic properties of MPPLE. In Section 2, after the in-

troduction of notation and assumptions, we show the existence and weak uniform

consistency of the estimator under regularity conditions, as well as asymptotic

normality. It should be noted that under a “very smooth” assumption on β0(t)

(see the remark in Section 2), both consistency and asymptotic normality hold

for the most popular cubic smoothing spline estimate.

In Section 3, the extension of the approach in Section 2 to CL99 is consid-

ered, and the corresponding asymptotic properties of the proposed estimator are

presented. Some discussion is given in Section 4 and detailed proofs are deferred

to Section 5.

2. Penalized Estimator under the SP88 Approach

In this section, we investigate the estimation of the regression function β0(t)

based on a case-cohort sampling design. To start with, we present the count-

ing processes framework associated with the Cox regression model (Andersen

and Gill (1982)). Let (Ω,F , P ) be a complete probability space and {Ft}t∈[0,1]

a right continuous, nondecreasing family of sub-σ-algebras of F , with F0 con-

taining all P -null subsets of F . We suppose that {Ft} includes failure time

and covariate histories up to time t, and censoring histories to t+ for all sub-

jects in a cohort R = {1, 2 . . . , n}. For the ith individual, i ∈ R, we associate

the triplet (Ni(t), Yi(t), Zi), these are independent replicates of (N(t), Y (t), Z),

where Ni(t) =
∑

j≥1 1(tj ≤ t, j = i) is the counting process of failure times in

(0, t], Zi is the time independent covariate, and Yi(t) is the censoring process:

1 if the ith individual is “at risk” for observable failure time and 0 otherwise.

We also assume Ni(1) < ∞ a.s., for every i. Note that Ni can only jump when

Yi(t) = 1.

Corresponding to each counting process Ni(t), the intensity process

λi(t) = Yi(t)λ0(t) exp(β0(t)Zi), (2)

determines the rate at which individual i is observed to fail at time t, given the

cohort history Ft− up to time t. Then Mi(t) = Ni(t)−
∫ t
0 λi(u)du is a martingale

(Andersen and Gill (1982)).

Let R̃ of size ñ be the simple random sample selected at t = 0 from the

cohort R. The Cox log pseudolikelihood under a case-cohort sampling design,
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up to a constant (1/n), is given by

lCC(β) =
1

n

n
∑

i=1

Di[β(Ti)Zi − log(
∑

j∈R̃

Yj(Ti)e
β(Tj)Zj )].

The MPPLE, denoted as β̂CC(t), is the minimizer of,

HCC(β) =
1

2
α[β, β]+

1

n

n
∑

i=1

∫ 1

0
Yi(u)(log

S̃(0)(β, u)

S̃(0)(β0, u)
−Zi[β(u)−β0(u)])dNi(u). (3)

Here [f, g] =
∫ 1
0 f (m)(t)g(m)(t)dt for f and g belonging to the Sobolev space

Hm = Hm[0, 1] of piecewise m-times (m ≥ 1) differentiable functions f with

[f, f ] < ∞. The remainder of this section is organized as follows. We first

introduce basic notation, then assert the existence and consistency of β̂CC(t), and

its asymptotic normality.

Notation. For x ∈ R,

S(j)(x; s) =
1

n

n
∑

i=1

Yi(s)Z
j
i e

xZi , j = 0, . . . , 3, A(x; s) =
S(1)(x; s)

S(0)(x; s)
,

V (x; s) =
S(2)(x; s)

S(0)(x; s)
− A(x; s)2,

C(x; s) =
1
n

∑n
i=1 Yi(s)[Zi − A(x; s)]3exZi

S(0)(x; s)
,

s(j)(x; s) = E[Y (s)ZjexZ ], j = 0, . . . , 3, a(x; s) =
s(1)(x; s)

s(0)(x; s)
,

v(x; s) =
s(2)(x; s)

s(0)(x; s)
− a(x; s)2,

w(s) = λ0(s)s
(0)(β0(s); s)v(β0(s); s).

For a case-cohort design, we set

S̃(j)(x; s) =
1

ñ

∑

i∈R̃

Yi(s)Z
j
i exZi , j = 0, . . . , 3,

Ã(x; s) =
S̃(1)(x; s)

S̃(0)(x; s)
, Ṽ (x; s) =

S̃(2)(x; s)

S̃(0)(x; s)
− Ã(x; s)2.

For notational simplicity we write, for example, S (j)(β0, s) ≡ S(j)(β0(s), s). Sim-

ilar abbreviations for the other quantities are applied throughout the paper.
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Assumptions. The following assumptions are in force for the remainder of the

section.

Assumption 2.1. The parameters αn are deterministic.

Assumption 2.2. w(s) ≥ w0 for some positive constant w0.

Assumption 2.3. β0 ∈ Hm.

Assumption 2.4. w(s) is (2m − 1) times continuously differentiable on [0, 1].

Assumption 2.5. The distributions of T 0 and V 0 are absolutely continuous.
Furthermore for simplicity, we assume Z is a time-independent random variable,
0 ≤ Z ≤ 1. Consequently, 0 ≤ A(x, s) ≤ 1, 0 ≤ V (x, s) ≤ 1, and |C(x, s)| ≤ 1.

In addition to the requirements listed above from ZK90, we need the following
assumptions for a case-cohort design.

Assumption 2.6. ñ/n →P γ > 0.

Let D[0, 1] denote the space of right-continuous functions on [0,1] with left-
hand limits functions. The following weak convergence of stochastic processes
taking values in D[0, 1] is defined in terms of the Skorohod topology (Billingsley
(1968)).

Assumption 2.7. (Tightness condition) n1/2(A(β0, s) − Ã(β0, s)) is tight on
D[0, 1].

Assumption 2.7 is required in SP88. It guarantees weak convergence in the
later development of asymptotic properties.

Assumption 2.8. For any fixed s, t,∈ [0, 1], B(s, t) ≡ E[(Z − a(β0, s))(Z −
a(β0, t))Y (s)Y (t)eβ0(s)Z+β0(t)Z ] λ0(s)λ0(t) ≥ B0, for some positive constant B0.

Assumption 2.8 is required for the development of asymptotic normality. In
the case when Z is a binary covariate with P (Z = 1) = π0 > 0 and P (Z = 0) =
1 − π0 > 0, Assumption 2.8 holds automatically, see Section 4 for details.

Finally, we define

< f, g >w=

∫ 1

0
f(s)g(s)w(s)ds, < f, g >Hm=< f, g >w +[f, g].

for f, g ∈ Hm. From the assumption that 0 < w0 ≤ w(s) ≤‖ w ‖∞ and Sobolev
space theory, as given in Silverman (1982), there exist functions (φν)

∞
ν=0 in Hm

and numbers 1 = µ0 ≥ µ1 ≥ µ2 ≥ · · · ≥ 0 such that the sequence (φν)
∞
ν=0 is an

orthonormal basis for L2[0, 1] under the inner product < f, g >w and (µ
1/2
ν φν)

is an orthonormal basis for Hm under the inner product Hm . In particular, with
ρν = µ−1

ν − 1,

< φν , φη >w= δνη , < φν , φη >Hm= µ−1
ν δνη, [φν , φη ] = ρνδνη . (4)
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Existence. The existence and characterization of the MPPLE β̂CC(t) follows the

same lines as those given in Theorem 1 of ZK90, except that the inequality (4.1)

in ZK90 is replaced by
∫ 1
0 Ṽ (β, s)h2(s)dN̄(s) > 0 with N̄(s) = (1/n)

∑n
i=1 Ni(s).

It follows that the computation of β̂CC(t) reduces to a finite dimensional maxi-

mization as discussed in ZK90.

Consistency.

Theorem 1. Suppose that m ≥ 3 and that α → 0, with n−1α−(4+ε)/2m → 0 as

n → ∞ for sufficiently small ε > 0. Then ||β̂CC − β0||∞ →P 0.

The proof of the consistency of β̂CC(t) is straightforward but tedious, paral-

leling the approach in ZK90. A sketch of the proof is given in Section 5.

Remark 1. It can be shown (Zhang and Huang (2004)) that we actually have

||β̂CC − β0||∞ ≤ OP (n−1α− 4+ε
2m ) + OP (n−1α− 7

4m ) + OP (n− 1
2 α− 2+ε

4m )

+OP (α1− 4+ε
2m ) + OP (n− 1

2 α
1
2
− 7

4m ) + OP (α
1
2
− 2+ε

4m )

+OP (n− 1
2 α

1
2
− 4+ε

2m ) + OP (n− 3
4 α

1
4
− 7

4m )

+OP (n− 1
4 α

1
4
− 2+ε

4m ). (5)

Note that the first six terms are the same as those in ZK90 for a full cohort

design (ZK90 missed the second term), the last three are due to the case-cohort

sampling. Furthermore, the requirement of m ≥ 3 is from the fourth term in

order to obtain α1−(4+ε)/2m → 0 as α → 0.

Remark 2. The requirement of m ≥ 3 in Theorem 1 is only a sufficient condition.

However, if we assume β0(t) is “very smooth,” i.e., β0(t) ∈ H2m[0, 1], or equiva-

lently
∑∞

ν=0 µ−2
ν b2

0ν < ∞ with β0(t) =
∑∞

ν=0 b0νφν(t), then the above conditions

can be relaxed to m ≥ 1 and α → 0 with n−1α−max{(4+ε)/2m,(m+8)/6m} → 0.

Note that the same assumption is also used by both Wahba (1977) and Silver-

man (1982).

Remark 3. The requirement of m ≥ 3 for consistency in ZK90 can also be

relaxed to m ≥ 1 under the same “very smooth” assumption in a full cohort

design.

Asymptotic Nomality. Let X(t) = (N(t), Y (t), Z) and, for fixed s, t ∈ [0, 1],

Rα(s, t) =

∞
∑

ν=0

1

1 + αρν
φν(s)φν(t), rα(s, t) =

∞
∑

ν=0

1

(1 + αρν)2
φν(s)φν(t),

f(X)(t) =

∫ 1

0
[Z − a(β0, s)]Rα(s, t)Y (s)eβ0(s)Zλ0(s)ds. (6)



NONPARAMETRIC ANALYSIS IN CASE-COHORT DESIGN 273

Theorem 2. Suppose that α → 0 and that

n−1α− 7+2ε
2m → 0, nα1− 1+ε

2m → 0. (7)

as n → 0 for sufficient small ε > 0. Then, as n → ∞, we have for each fixed

t ∈ [0, 1],

β̂CC(t) − β0(t)
√

σ2
n(t)
n + 1−γ

γ
Var [f(X)](t)

n

→d N(0, 1),

where σ2
n(t) = rα(t, t), and Var [f(X)](t) =

∫ 1
0

∫ 1
0 B(s, η)Rα(s, t)Rα(η, t)dsdη.

The proof of Theorem 2 is given in Section 5.

Remark 1. The result reveals that the asymptotic variance of β̂CC(t) can be

decomposed into two terms, with σ2
n(t)/n being the asymptotic variance of the

maximum penalized partial likelihood estimator based on the full cohort and

((1−γ)/γ)(Var [f(X)](t)/n) due to the case-cohort sampling design. In addition,

it can be shown that Var [f(X)](t) has the same convergence rate as σ2
n(t) under

Assumption 2.8. It is then easy to provide an estimate of the asymptotic variance

of β̂CC(t) and thus to make inference for β0(t), following the discussion in ZK90,

Section 9.

Remark 2. Theorem 2 actually requires m≥5. Note that in (7), nα1−(1+ε)/2m =

nα(7+2ε)/2m· α1−4/m−3ε/2m. The condition (7) holds only if α1−4/m−3ε/2m → 0,

or equivalently, 1 − 4/m − 3ε/2m > 0, which necessitates m ≥ 5.

Remark 3. Our requirements on m for consistency and asymptotic normality

agree with those in ZK90. (There is an apparent mistake in Theorem 3 of ZK90,

where they actually require m ≥ 5 for their inequality (7.10) to hold.)

Remark 4. It should be noted that the requirement of m ≥ 5 for asymptotic

normality is only a sufficient condition. Under the assumption of a “very smooth”

β0(t), the condition for asymptotic normality of β̂CC(t) can be relaxed to α → 0

with n−1α−(7+2ε)/2m → 0 and nα4−(5+ε)/2m → 0, so m ≥ 2 suffices.

Remark 5. Note that if γ = 1, Theorem 2 recovers the asymptotic normality

of the maximum penalized partial likelihood estimator of ZK90. Therefore, the

requirement of m ≥ 5 for asymptotic normality in ZK90 can also be relaxed to

m ≥ 2 usnig the “very smooth” assumption under a full cohort design.

3. Penalized Estimator under the CL99 Approach

In this section, we apply the same techniques as those used in Section 2 to

derive the asymptotic properties of the penalized estimator mimicking the CL99
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approach. Recall that R and R̃ denote the sets of all individuals in the cohort

of size of n and subcohort of size of ñ, respectively. Following the notation from

CL99, we let n1(ñ1) and n0(ñ0) be the numbers of the cases and controls in

the cohort (subcohort), respectively. We further let R1, R̃1 and R0, R̃0 denote,

respectively, the index sets of all cases and all controls in R, R̃.

First we introduce

Š(p)(x; s) =
1

n

∑

j∈R1

Zp
j Yj(w)eβZj +

n0

nñ0

∑

j∈R̃0

Zp
j Yj(w)eβZj , p = 0, . . . , 3,

Ǎ(x; s) =
Š(1)(x; s)

Š(0)(x; s)
, V̌ (x; s) =

Š(2)(x; s)

Š(0)(x; s)
− Ǎ(x; s)2.

Recall from Section 1 that D ≡ I(T = T 0) is the indicator of an observed

failure. We assume that π = P (D = 1) with 0 < π < 1. In addition to

Assumptions 2.1−2.6, we need the following.

Assumption 3.7. (Tightness condition) n1/2(A(β0, s) − Ǎ(β0, s)) is tight on

D[0, 1].

Assumption 3.8. For any fixed s, t ∈ [0, 1], B̃(s, t) ≡ E[(Z − a(β0, s))(Z −
a(β0, t))Y (s)Y (t)eβ0(s)Z+β0(t)Z | D = 0]λ0(s)λ0(t) ≥ B̃0, for some constant B̃0 >

0.

Assumption 3.9. n1/n →P π > 0.

Assumption 3.7 parallels Assumption 2.7 to ensure the weak convergence

of random sequence n1/2(A(β0, s) − Ǎ(β0, s)), and Assumption 3.8 parallels As-

sumption 2.8 for asymptotic normality of β̂CL(t).

The existence of β̂CL(t) follows as and the existence of β̂CC(t) in Section 2,

with Ṽ (β, s) replaced by V̌ (β, s). For consistency and asymptotic normality, we

have the following.

Theorem 3.

1. Suppose that m ≥ 3, and that α → 0 with n−1α−(4+ε)/2m → 0 as n → ∞ for

sufficiently small ε > 0. Then ||β̂CL(t) − β0||∞ →P 0.

2. Suppose that α → 0 with n−1α−(7+2ε)/2m → 0 and nα1−(1+ε)/2m → 0 as

n → 0 for sufficiently small ε > 0. Then, as n → ∞, for each fixed t ∈ [0, 1],

we have (β̂CL(t) − β0(t))/
√

σ2
n(t)/n + [(1 − γ)/γ](1 − π)[E0(t)/n] →d N(0, 1),

where, for each t ∈ [0, 1], E0(t) =
∫ 1
0

∫ 1
0 E[(Z−a(β0, s))(Z−a(β0, u))Y (s)Y (u)

eβ0(s)Z+β0(u)Z |D = 0]Rα(s, t)Rα(u, t)λ0(s)λ0(u)dsdu.

The proof of Theorem 3 is given in Section 5. Note that the remarks after

Theorems 1 and 2 in Section 2 hold here as well.
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4. Discussion

Several extensions of model (1) in ZK90 can be carried over from the full

cohort case to a case-cohort design. These extensions include time-dependent co-

vaiates and the general relative risk function r(β0z) as specified by SP88. How-

ever additional assumptions, such as regularity conditions mentioned in SP88

when the exponential relative risk function eβ0Z is replaced by r(β0Z), are neces-

sary. Note that to extend our results to the multivariate case, we face the same

difficulty as was pointed out by ZK90.

The MPPLE presented here offers flexibility in exploring time-dependnet

covariate effects. To apply this method in practice, however, one needs to com-

pute the resultant estimator efficiently. Hastie and Tibshirani (1993) develop an

iterative algorithm to obtain the maximum penalized partial likelihood estima-

tor of ZK90 through the computation of weighted smoothing splines. The same

algorithm can clearly be applied to the computation of MPPLE. In addition,

various data driven smoothing parameter selection procedures, such as cross val-

idation and generalized cross validation in O’Sullivan (1988) and Gu (2002), can

be incorporated with the algorithm.

Now we visit Assumption 2.8 by considering a special case where Z is a

binary covariate with P (Z = 0) = 1 − π0 and P (Z = 1) = π0, 0 < π0 < 1.

Let Ḡ(t|z) be the survival function of continuous censored time V 0 when Z = z.

Under the conditional independence of V 0 and T 0 given Z we have that, without

loss of generality, for s ≤ t,

w(t) = π0(1 − π0)
Ḡ(t|1)e−Λ(t)eβ0(t)−Λ̃(t)

π0Ḡ(t|1)eβ0(t)−Λ̃(t) + (1 − π0)Ḡ(t|0)e−Λ(t)
λ0(t),

B(s, t) = π0(1 − π0)λ0(t)
Ḡ(t|1)e−Λ(t)eβ0(t)−Λ̃(t)

π0Ḡ(t|1)eβ0(t)−Λ̃(t) + (1 − π0)Ḡ(t|0)e−Λ(t)

×(1 − π0)Ḡ(s|0)eβ0(s)−Λ(s) + π0Ḡ(s|1)eβ0(s)−Λ̃(s)

π0Ḡ(s|1)eβ0(s)−Λ̃(s) + (1 − π0)Ḡ(s|0)e−Λ(s)
λ0(s)

≡ w(t) × B̃(s),

say. Here Λ̃(t) =
∫ t
0 λ0(s)e

β0(s)ds and Λ(t) =
∫ t
0 λ0(s)ds. Let d0 = min0≤s≤1 β0(s)

> −∞. Noticing that the assumption of w(t) ≥ w0 implies that λ0(t) ≥ c0 for

some positive constant c0 > 0, one can easily see that B̃(s) ≥ C∗ > 0, with C∗ =

c0 when d0 ≥ 0, C∗ = c0e
d0 otherwise. In summary, if Z is a binary covariate,

we have for some positive C∗ > 0, B(s, t) ≥ C∗w(max{s, t}) ≥ C∗w0 > 0, which

satisfies Assumption 2.8. The more general case might be more complicated and

requires further investigation.
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Appendix

A sketch of the proof of Theorem 1. We let

H̃1(β) =
1

2
α[β, β] +

1

2

∫ 1

0
w(s)[β(s) − β0(s)]

2ds

− 1

n

n
∑

i=1

∫ 1

0
[Zi − Ã(β0, s)][β(s) − β0(s)]dNi(s)

be an approximation of HCC(t) based on a two-term Taylor series expansion,

patterned after ZK90. Let β̃1 be the minimizer of H̃1(β). With (4), if we take

(bν) and (b0ν) as the coefficients in the expansions of β(t) and β0(t) in Hm,

respectively, i.e., β(t) =
∑∞

ν=0 bνφν(t), β0(t) =
∑∞

ν=0 b0νφν(t), the minimizer

β̃1(t) is given by β̃1(t) =
∑∞

ν=0 b̃1νφν(t) ≡ ∑∞
ν=0[(X̃ν + b0ν)/(1 + αρν)]φν(t),

where X̃ν = (1/n)
∑n

i=1

∫ 1
0 [Zi − Ã(β0, s)]φν(s)dNi(s). Our proof then consists of

the following steps.

Step 1. Show that β̃1 converges to β0 as n → ∞. Specifically, that for a suitable

choice of α, E||β̃1 − β0||2∞ → 0.

Step 2. Show that for n sufficiently large, β̃1 is close to β̂CC(t), i.e., for the

suitable choice of α,

||β̂CC − β̃1||H1 →P 0. (8)

For more details, see Zhang and Huang (2004).

To prove Theorem 2, we first write

β̂CC(t)−β0(t) = (β̂CC(t)−β̃1(t))+(β̃1(t)−β̂1(t))+(β̂1(t)−β∗(t) + (βα(t)−β0(t)))

+U(t)

≡ I + II + III + IV + U(t), where,

Xν =
1

n

n
∑

i=1

∫ 1

0
[Zi−A(β0, s)]φν(s)dNi(s), β̂1(t) =

∞
∑

ν=0

Xν+b0ν

1+αρν
φν(t),

X∗
ν =

1

n

n
∑

i=1

∫ 1

0
[Zi−a(β0, s)]φν(s)dMi(s), β∗(t) =

∞
∑

ν=0

X∗
ν +b0ν

1 + αρν
φν(t),

βα(t) =
∞

∑

ν=0

b0ν

1 + αρν
φν(t), U(t) =

∞
∑

ν=0

X∗
ν

1 + αρν
φν(t).

This decomposition is analogous to (7.2) of ZK90, with the extra breakdown of

the first two terms due to the finite sampling of the case-cohort. It follows from

(8) that term I converges to zero in probability if m ≥ 1, for a suitable choice
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of α. For terms III and IV, Lemmas 5 and 6 in ZK90 guarantee convergence

to zero in probability. In addition one has, from ZK90 that if n1/2α1/4m →
∞, U(t)/

√

Var (U(t)) →d N(0, 1) as n → ∞. Here Var (U(t)) = σ2
n(t)/n and

C1α
−1/2m ≤ σ2

n(t) ≤ C2α
−1/2m for some C1, C2 > 0 (depending on t).

For term II, we first observe that X̃ν(t) − Xν(t) = (1/n)
∑n

i=1

∫ 1
0 [A(β0, s) −

Ã(β0, s)]λi(s)φν(s)dNi(s). Therefore,

β̃1(t) − β̂1(t) =
∞
∑

ν=0

X̃ν − Xν

1 + αρν
φν(t)

=
1

n

n
∑

i=1

∫ 1

0
[A(β0, s) − Ã(β0, s)]Rα(s, t)dMi(s)

+
1

n

n
∑

i=1

∫ 1

0
[A(β0, s) − Ã(β0, s)]Rα(s, t)λi(s)ds

≡ II1 + II2,

say. For each fixed t, let
√

n/σ2
nζ(u, t) = [1/(

√
nσn)]

∑n
i=1

∫ u
0 [A(β0, s)− Ã(β0, s)]

Rα(s, t)dMi(s), which is a local square integrable martingale with ξ(·, t) = 〈ζ(·, t),
ζ(·, t)〉 = [1/(nσ2

n)]
∑n

i=1

∫ ·
0[A(β0, s) − Ã(β0, s)]

2R2
α(s, t)λi(s)ds. Note that sups

|A(β0, s) − Ã(β0, s)| = oP (1), and that (1/n)
∑n

i=1 λi(s) →a.s. s(0)(β0, s)λ0(s).

Hence, for some constant C∗ > 0 and each t ∈ [0, 1],

ξ(1, t) ∼= oP (1)

σ2
n

∫ 1

0
R2

α(s, t)s(0)(s)λ0(s)ds

≤ oP (1)

∫ 1

0

R2
α(s, t)w(s)ds

σ2
n infs v(β0, s)

≤ C∗oP (1) →P 0

if n → ∞,
√

n/σ2
nII1 →P 0. Here the asymptotic equivalence ∼= is in the sense

of almost sure convergence. Now let UCC(t) = II2 + U(t). We need only find the

asymptotic normality of UCC(t). II2 involves the difference between subcohort

and full-cohort means. Note that Proposition 1 in SP88 is not applicable in our

situation, we need the following proposition to show that II2 and U(t) converge

jointly to independent Gaussian random variables.

Proposition 1. Let Xn = (X1n, . . . , Xnn) and δn = (δ1n, . . . , δnn) be indepen-

dent random sequences satisfies the following.

1. δn is a vector of ñ ones and n − ñ zeros, each possible configuration of zeros

and ones is equally likely and ñn−1 → γ ∈ (0, 1).

2. For some scalar functions fin(Xn) of Xn, S2
fn

(Xn) − c2
n →P 0 for some

positive sequence cn → σ2
p, with 0 < σ2

p ≤ ∞ as n → ∞. Here S2
fn

=

n−1
∑n

i=1[fin(Xn) − f·n(Xn)]2.



278 HAIMENG ZHANG AND CHUNFENG HUANG

3. For any ε > 0,

n−1
n

∑

i=1

[fin(Xn) − f·n(Xn)]2I
{|fin(Xn)−f·n(Xn)|>n

1
2 εcn}

cn
2

→P 0,

where f·n(Xn) = n−1
∑n

i=1 fin(Xn).
4. The scalar functions gn(Xn) of Xn converge in distribution to a Gaussian

random variable with mean zero and variance 1.
Then for hn(Xn, δn) =

√

n/c2
n[ñ−1

∑n
i=1 δinfin(Xn)−f·n(Xn)], we have (gn(Xn),

hn(Xn, δn)) converges in distribution to a bivariate normal random variable with

mean zero and covariance matrix given by

(

1 0

0 (1 − γ)/γ

)

.

Proof. The result when 0 < σ2
p < ∞ holds, as given by Proposition 1 in

SP88. We focus on the case when σ2
p = ∞. From Conditions 2 and 3, it is

sufficient to prove that the conclusion holds for (gn(Xn), h̃n(Xn, δn)), where

h̃n(Xn, δn) =
√

n/S2
fn

(Xn)[ñ−1
∑n

i=1 δinfin(Xn) − f·n(Xn)], if for any ε > 0,

n−1
∑n

i=1 [fin(Xn) − f·n(Xn)]2I{|fin(Xn)−f·n(Xn)|>n1/2εSfn}/S
2
fn

→P 0. Now the
result above follows along the lines of the proof of Proposition 3 of Zhang and
Goldstein (2003), with the modification of using Hájek’s theorem on sampling
without replacement from a finite population as stated in Cochran (1977, pp.39-
40.)

Note that simple calculation gives

n
1
2 [A(β0, s) − Ã(β0, s)]

= n
1
2 [(S̃(0)(β0, s)−S(0)(β0, s))A(β0, s) − (S̃(1)(β0, s)−S(1)(β0, s))]S̃

(0)(β0, s)
−1

= n
1
2 [(S̃(0)(β0, s)−S(0)(β0, s))a(β0, s)−(S̃(1)(β0, s)−S(1)(β0, s))]s

(0)(β0, s)
−1

+OP (n−1).

Hence, we can apply Proposition 1 with Xin representing {Yi(u), Ni(u), Zi; 0 ≤
u ≤ 1}. For fixed t ∈ [0, 1],

UCC(t) = U(t) +
1

n

n
∑

i=1

∫ 1

0
[A(β0, s) − Ã(β0, s)]Rα(s, t)λi(s)ds

∼= U(t) + [ñ−1
n

∑

i=1

δinfin(Xn) − f·n(Xn)]

+OP (n−1)

∫ 1

0
Rα(s, t)s(0)(β0, s)λ0(s)ds

=U(t) + [ñ−1
n

∑

i=1

δinfin(Xn) − f·n(Xn)] + II2b, (9)
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where ∼= holds due to (1/n)
∑n

i=1 λi(s) →a.s. s(0)(β0, s)λ0(s) in the integration

for II2. Here, for each fixed t ∈ [0, 1],

fin(Xn)(t)=

∫ 1

0
[Yi(s)e

β0(s)Zia(β0, s)(s
(0)(β0, s))

−1−Yi(s)Zie
β0(s)Zi(s(0)(β0, s))

−1]

×Rα(s, t)λ0(s)s
(0)(β0, s)ds

=

∫ 1

0
[Yi(s)e

β0(s)Zia(β0, s) − Yi(s)Zie
β0(s)Zi ]Rα(s, t)λ0(s)ds. (10)

Now for II2b, we have, for some constant C∗ > 0,

√

n

σ2
n

II2b =

√

n

σ2
n

OP (n−1)

∫ 1

0
Rα(s, t)s(0)(β0, s)λ0(s)ds

≤ OP (n− 1
2 )

σn
sup
s,t

|Rα(s, t)|
∫ 1

0
s(0)(β0, s)λ0(s)ds

≤ C∗OP (n− 1
2 α− 1

4m ) →P 0

as nα1/2m → ∞. Therefore, it is sufficient to consider the convergence of the

first two terms in the expression for UCC(t) in (9).

Proposition 2. (i) If nα3/2m → ∞ as n → ∞, S2
fn

(Xn) − c2
n →P 0 with

c2
n = Var [f(X)](t) and C1σ

2
n(t) ≤ Var [f(X)](t) ≤ C2σ

2
n(t) for some constants

C1, C2 > 0 (depending on t). (ii) If nα1/2m → ∞ as n → ∞, n−1
∑n

i=1{[fin(Xn)

−f·n(Xn)]2/c2
n}I{|fin(X)−f·n(X)|>n1/2εcn} →P 0.

Proof. (i) Noting that n−1(
∑n

i=1 fin(Xn)) →a.s. E[f(X)] = 0, it is then suffi-

cient to prove that

n−1(

n
∑

i=1

f2
in(Xn)) − E[f(X)2] →P 0, (11)

For (11), note that for constants C∗
1 , C∗

2 , C∗ > 0,

E[f(X)2I{|f(X)|2>n}] ≤
E[|f(X)|4]

n

≤ 1

n
C∗

1 sup
s

|λ3
0(s)| sup

s,t
R2

α(s, t)

∫ 1

0
R2

α(s, t)s(0)(s)v(β0, s)λ0(s)ds

≤ C∗
2

n
α− 2

2m

∫ 1

0
R2

α(s, t)w(s)ds ≤ C∗n−1α− 3
2m → 0

if nα3/2m → ∞. It remains to prove that n−1(
∑n

i=1 f2
in(Xn)) − E[f(X)2

I{|f(X)|2≤n}] →P 0. In view of the Weak Law of Large Numbers, we need to show
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that
∑n

i=1 P (|fin(Xn)|2 > n) → 0, and n−2
∑n

i=1 E[|fin(Xn)|4I{|fin(Xn)|2≤n}] →
0. However, one can easily see that both terms above are bounded by E|f(X)|4/n
→ 0 if nα3/2m → ∞. The first part follows.

For the second part, we show that there exist positive constants C1, C2 > 0

(depending on t), such that

C1σ
2
n(t) ≤ Var [f(X)](t) ≤ C2σ

2
n(t). (12)

Following the notation in Section 2, we let K(s, η), 0 ≤ s, η ≤ 1, be given as

K(s, t) =
∑∞

ν=0 ρνφν(s)φν(t). Obviously K(s, η) is a reproducing kernel with

eigenfunctions φν(s) and corresponding eigenvalues ρν . Therefore, K(s, η) is a

continuous function on [0, 1] × [0, 1] and hence bounded by a positive constant

M > 0. Then from Assumption 2.8 and the boundedness of w(·), we have, for

some positive constant C∗
1 > 0, that B(s, η) ≥ C∗

1K(s, η)w(s)w(η). Then, for

some constant C1 > 0,

Var [f(X)](t) ≥ C∗
1

∫ 1

0

∫ 1

0
K(s, η)Rα(s, t)Rα(η, t)w(s)w(η)dsdη

= C∗
1

∑

n1

∑

n2

φn1(t)φn2(t)

(1 + αρn1)(1 + αρn2)

∫ 1

0

∫ 1

0
K(s, η)w(s)w(η)φn1 (s)φn2(η)dsdη

= C∗
1

∑

n1

∑

n2

φn1(t)φn2(t)

(1 + αρn1)(1 + αρn2)

∑

ν

ρν

(
∫ 1

0
φn1(s)φν(s)w(s)ds

)

×
(

∫ 1

0
φn2(η)φν(η)w(η)dη

)

= C∗
1

∑

ν

ρν

(1 + αρν)2
φ2

ν(t) ≥ C1σ
2
n(t).

Here
∑

ν (and the same for others) is the abbreviation for
∑∞

ν=0. The last

inequality holds in view of ρν = Cνν
−2m for c∗1 ≤ Cν ≤ c∗2, from Naimark (1967)

or ZK90, with constants c∗1 > 0 and c∗2 > 0. The left inequality of (12) follows.

Now we consider the right inequality of (12). Note that B(s, η) is the co-

variance function of random process [Y (s)(Z − a(β0, s))e
β0(s)Zλ0(s)]. Therefore,

it can be expanded in a uniformly convergent series of its eigenfunctions ϕk(s)

with corresponding eigenvalues ξk (for example, Yeh (1973, p.288)), B(s, η) =
∑

k ξkϕk(s)ϕk(η). Here {ϕk(s)} is a complete orthonormal basis for L2[0, 1] un-

der the inner product < ·, · >w. Therefore, there exists ζ
(k)
i , such that for each k,

ϕk(s) =
∑

i ζ
(k)
i φi(s) and

∑

i(ζ
(k)
i )2 = 1. Hence, B(s, η) =

∑

k ξk(
∑

i ζ
(k)
i φi(s))
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(
∑

j ζ
(k)
j φj(η)). Then,

Var [f(X)](t) =

∫ 1

0

∫ 1

0
R(s, t)R(η, t)

∑

k

ξk

∑

i

ζ
(k)
i φi(s)

∑

j

ζ
(k)
j φj(η)dsdη

≤ 1

w2
0

∑

k

ξk

∑

n1

∑

i

ζ
(k)
i

1 + αρn1

φn1(t)

∫ 1

0
φn1(s)φi(s)w(s)ds

×
∑

n2

∑

j

ζ
(k)
j

1 + αρn2

φn2(t)

∫ 1

0
φn2(η)φj(η)w(η)dη

=
1

w2
0

∑

k

ξk

(

∑

i

ζ
(k)
i

1 + αρi
φi(t)

)2

=
1

w2
0

∑

k

ξk

(

∑

j

1

(1 + αρj)2
φ2

j(t)
)

= σ2
n(t)

(

∑

k

ξk

w2
0

)

.

Note from B(s, s)=
∑

ξkϕ
2
k(s), we have

∫ 1
0 B(s, s)w(s)ds=

∑

k ξk

∫ 1
0 ϕ2

k(s)w(s)ds

=
∑

k ξk. Therefore, Var [f(X)](t) ≤ σ2
n(t)(

∫ 1
0 B(s, s)w(s)ds/w2

0). Take C2 =
∫ 1
0 B(s, s)w(s)ds/w2

0 > 0 and complete the proof.

(ii). The proof requires extensive usage of the Weak Law of Large Numbers as

in Durrett (1996, p.41). We take bn = n in the theorem throughout the rest of

the proof.

From (i) we may assume, for simplicity, that cn = σ2
n(t) in the proof. From

the inequality (for example, see SP88, p.72), |a − b|2I{|a−b|>ε} ≤ 4|a|2I{|a|>ε/2}

+4|b|2I{|b|>ε/2}, it is sufficient that, for ε > 0,

n−1
n

∑

i=1

|fin(Xn)|2
σ2

n

I
{|fin(Xn)|>n

1
2 εσn}

→P 0, (13)

n−1
n

∑

i=1

|f·n(Xn)|2
σ2

n

I
{|f·n(Xn)|>n

1
2 εσn}

=
|f·n(Xn)|2

σ2
n

I
{|f·n(Xn)|>n

1
2 εσn}

→P 0. (14)

To prove (13), note the i.i.d. nature of fin(Xn) and the Weak Law of Large

Numbers of Durrett (1996), with

an =

n
∑

i=1

E
[ |fin(Xn)|2

σ2
n

I
{|fin(Xn)|>n

1
2 εσn}

I
{
|fin(Xn)|2

σ2
n

I
{|fin(Xn)|>n

1
2 εσn}

≤n}

]

.
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It is sufficient to prove

n
∑

i=1

P
( |fin(Xn)|2

σ2
n

I
{|fin(Xn)|>n

1
2 εσn}

> n
)

→ 0, (15)

n−2
n

∑

i=1

E
[ |fin(Xn)|4

σ4
n

I
{|fin(Xn)|>n

1
2 εσn}

I{|fin(Xn)|≤nσn}

]

→ 0, (16)

n−1an =n−1
n

∑

i=1

E
[ |fin(Xn)|2

σ2
n

I
{|fin(Xn)|>n

1
2 εσn}

I
{
|fin(Xn)|2

σ2
n

I
{|fin(Xn)|>n

1
2 εσn}

≤n}

]

→ 0. (17)

For (15), we have for δ, C∗
1 , C1 > 0,

n
∑

i=1

P
( |fin(Xn)|2

σ2
n

I
{|fin(Xn)|>n

1
2 εσn}

> n
)

= P
( |fin(Xn)|2

σ2
n

> n
)

≤ n
E[|f(X)|2+δ ]

n1+ δ
2 σ2+δ

n

≤ α− δ
2m E[|f(X)|2]
n

δ
2 σ2+δ

n

≤ C∗
1

α− 1+δ
2m

n
δ
2 σ2+δ

n

≤ C1

n
δ
2 α

δ
4m

→ 0

if nα1/2m → ∞. Similarly,

n−2
n

∑

i=1

E
[ |fin(Xn)|4

σ4
n

I
{|fin(Xn)|>n

1
2 εσn}

I{|fin(Xn)|≤nσn}

]

≤ n−1E
[ |f(X)|4

σ4
n

I
{|f(X)|>n

1
2 εσn}

]

≤ E|f(X)|4
nσ4

n

≤ C∗(nα
1

2m )−1 → 0,

if nα1/2m → ∞. Lastly, for δ, C∗
1 > 0,

n−1
n

∑

i=1

E
[ |fin(Xn)|2

σ2
n

I
{|fin(Xn)|>n

1
2 εσn}

I
{
|fin(Xn)|2

σ2
n

I
{|fin(Xn)|>n

1
2 εσn}

≤n}

]

≤ E
[ |fin(Xn)|2

σ2
n

I
{|f(X)|>n

1
2 εσn}

]

≤ C∗
1

α− 1+δ
2m

n
δ
2 σ2+δ

n

→ 0,

if nα1/2m → ∞. Now for (14), we have that

n−1
n

∑

i=1

|f·n(Xn)|2
σ2

n

I
{|f·n(Xn)|>n

1
2 εσn}

=
|f·n(Xn)|2

σ2
n

I
{|f·n(Xn)|>n

1
2 εσn}

→P 0
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is equivalent to [|f·n(Xn)|/σn]I{|f·n(Xn)|>n1/2εσn}
→P 0. Then for every δ > 0 and

some constant C∗
1 > 0,

P
( |f·n(Xn)|

σn
I
{|f·n(Xn)|>n

1
2 εσn}

> δ
)

= P
( |f·n(Xn)|

σn
>n

1
2 ε

)

≤ E[f·n(Xn)2]

nεσ2
n

∼= E[f2(X)]

nεσ2
n

≤C∗
1

α− 1
2m

nεα− 1
2m

=
C∗

1

nε
→ 0.

This completes the proof for (ii) and the proof for Proposition 2.

In view of the first part of Proposition 2 and the direct application of Propo-

sition 1 with fin(Xn)(t) given by (10) and g(X) = U(t), we have the following

result.

Proposition 3. Provided nα3/2m → ∞ as n → ∞ for each fixed t ∈ [0, 1],

UCC(t)
√

σ2
n(t)
n + 1−γ

γ
Var [f(X)](t)

n

→d N(0, 1). (18)

Proof of Theorem 2. By Slutsky’s Theorem, Proportion 2, and Proposition

3, it suffices to show that
√

n/σ2
n[β̂CC(t) − β̃1(t)],

√

n/σ2
n[β̂1(t) − β∗(t)], and

√

n/σ2
n[βα(t)−β0(t)] converge in probability to zero as n → ∞. Under (7), these

follow from (8), Lemmas 1 and 6 in ZK90, and (18), respectively.

Proof of Theorem 3. We first introduce a convenient representation of Ǎ(β0, s).

For each j = 0, 1, we define

Š(j)(β3, s) ≡
n1

n
Š

(j)
1 (β0, s) +

n0

n
Š

(j)
0 (β0, s) (19)

with Š
(j)
0 (β0, s) ≡ (1/ñ0)

∑

l∈R̃j Yl(s)Z
j
l e

β0Zl , Š
(j)
1 (β0, s) ≡ (1/n1)

∑

l∈Rj Yl(s)Z
j
l

eβ0Zl . Then Ǎ(β0, s) = Š(1)(β0, s)/Š
(0)(β0, s). In addition, we write S(j)(β0, s),

j = 0, 1 in Section 2 as

S(j)(β0, s) =
n1

n
S

(j)
1 (β0, s) +

n0

n
S

(j)
0 (β0, s), (20)

where S
(j)
0 (β0, s) ≡ (1/n0)

∑

l∈Rj Yl(s)Z
j
l e

β0Zl , S
(j)
1 (β0, s) ≡ (1/n1)

∑

l∈Rj Yl(s)

Zj
l e

β0Zl .

From (19) and (20), and applying the same calculation as in Section 2, we
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have, from Zhang and Goldstein (2003), that

n
1
2 (Ǎ(β0, s) − A(β0, s))

= n
1
2

( Š(1)(β0, s)

Š(0)(β0, s)
− S(1)(β0, s)

S(0)(β0, s)

)

= −n
1
2
0

n
1
2

n
1
2
0 {(Š

(0)
0 (β0, s)−S

(0)
0 (β0, t))a(β0, s)−(Š

(1)
0 (β0, s)−S

(1)
0 (β0, s))}

×s(0)(β0, s)
−1 + OP (n−1).

Therefore, as with UCC(t), we have

UCL(t) = U(t) +
n

1
2
0

n
1
2

[ñ−1
0

∑

i∈R0

δinfin(Xn) − f·n(Xn)] + II2b

with fin(Xn) and f(X) given by (10) and (6). Here II2b is given in Section 2

with
√

n/σ2
nII2b →P 0 as n1/2α1/4m → ∞. Noting that (n0/n) →P 1−π as n →

∞, and with the application of Proposition 1, the consistency and asymptotic

normality of β̂CL(t) can be proved following the lines of those for β̂CC(t).
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