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Supplementary Material

S1 Proofs

To proof Theorem 1, we begin with two technical lemmas. Let γ ∈ Rp

denote the parameter vector, i.e., γ = (γ1, . . . , γp)
T = (βT ,θT1 , . . . ,θ

T
J−1)T .

The first lemma gives the Fisher information matrix for Model (2.2) under

an exact design. The second lemma calculates ∂π(x)/∂γT , which is an

essential part of Theorem 1.

For an exact design

ξexact =

 x1 · · · xm

n1 · · · nm

 ,

the corresponding Fisher information matrix is derived in the following

lemma.

Lemma S1. Suppose Assumptions 1 and 2 hold, the Fisher information
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matrix for Model (2.2) under the exact design ξexact can be written as

M(ξexact) =
m∑
i=1

niMi,

where Mi = (mist)1≤s,t≤p is a p× p matrix with

mist =
J∑
j=1

1

πij

∂πij
∂γs

∂πij
∂γt

.

Proof of Lemma S1. For the experimental setting xi, for i = 1, . . . ,m, the

responses (Yi1, . . . , YiJ)T ∼ Multinomial(ni; πi1, . . . , πiJ). We know that

E(Yij) = niπij, E(Y 2
ij) = ni(ni−1)π2

ij+niπij, and E(YisYit) = ni(ni−1)πisπit

when s 6= t.

The log-likelihood function (up to a constant) is

l(γ) =
m∑
i=1

J∑
j=1

Yij log πij.

Then the score function is

∂l

∂γs
=

m∑
i=1

J∑
j=1

Yij
πij

∂πij
∂γs

.

Note that πi1 + · · ·+ πiJ = 1, it follows that

E

(
J∑
j=1

Yij
πij

∂πij
∂γs

)
=

J∑
j=1

ni
∂πij
∂γs

= ni
∂

∂γs

(
J∑
j=1

πij

)
= 0,

for i = 1, . . . ,m. The Hessian matrix can be achieved through the following

calculation.

E
∂l

∂γs

∂l

∂γt
= E

(
m∑
i=1

J∑
j=1

Yij
πij

∂πij
∂γs

)(
m∑
i=1

J∑
j=1

Yij
πij

∂πij
∂γt

)
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=
m∑
i=1

E

(
J∑
j=1

Yij
πij

∂πij
∂γs

)(
J∑
j=1

Yij
πij

∂πij
∂γt

)

=
m∑
i=1

E

(
J∑
j=1

Y 2
ij

π2
ij

∂πij
∂γs

∂πij
∂γt

+ 2
∑

1≤j<k≤m

Yij
πij

∂πij
∂γs

Yik
πik

∂πik
∂γt

)

=
m∑
i=1

J∑
j=1

ni(ni − 1)π2
ij + niπij

π2
ij

∂πij
∂γs

∂πij
∂γt

+ 2
m∑
i=1

∑
1≤j<k≤m

ni(ni − 1)πijπik
πijπik

∂πij
∂γs

∂πik
∂γt

=
m∑
i=1

ni

(
(ni − 1)

(
J∑
j=1

∂πij
∂γs

)(
J∑
j=1

∂πij
∂γt

)
+

J∑
j=1

1

πij

∂πij
∂γs

∂πij
∂γt

)

=
m∑
i=1

(
ni

J∑
j=1

1

πij

∂πij
∂γs

∂πij
∂γt

)
.

By the definition of Fisher information matrix, we have

M(ξexact) = E

(
∂l

∂γ

)(
∂l

∂γ

)T
=

m∑
i=1

niMi,

where Mi = (mist)1≤s,t≤p is a p× p matrix with

mist =
J∑
j=1

1

πij

∂πij
∂γs

∂πij
∂γt

.

Remark S1. From Lemma S1, the Fisher information matrix for Model

(2.2) under an approximate design

ξ =

 x1 · · · xm

ω1 · · · ωm

 ,
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can be written as

M(ξ) =
m∑
i=1

ωiMi.

Recall δx denote the single point design, then M(δxi
) = Mi, for i =

1, . . . ,m.

Let ∂π(x)/∂γT denote a J×pmatrix, whose (j, k)th entry is ∂πj(x)/∂γk,

where x ∈ X is a design point. We have the following lemma.

Lemma S2. For Model (2.2),

∂π(x)

∂γT
= G(x)H(x), (S1.1)

where G(x) is defined in Section A.1 and H(x) is defined in Section 2.2.

Proof of Lemma S2. To be convenience, let ej(x) = g−1(hT0 (x)β+hTj (x)θj),

for j = 1, . . . , J − 1. We first show the following equation

∂πj(x)

∂βs
= h0s(x)

j∑
k=1

gjk(x), (S1.2)

holds, for s = 1, . . . , p0 and j = 1, . . . , J . For each s, we prove Equation

(S1.2) holds, for j = 1, . . . , J − 1, by induction.

(i) When j = 1, it follows that

∂π1(x)

∂βs
= h0s(x)g11(x),
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by the fact π1(x) = e1(x), which implies Equation (S1.2) holds for

j = 1.

(ii) Suppose Equation (S1.2) holds for 2, . . . , j − 1 (j < J), by

πj(x) = ej(x)

(
1−

j−1∑
k=1

πk(x)

)
,

we have

∂πj(x)

∂βs
=
∂ej(x)

∂βs

(
1−

j−1∑
k=1

πk(x)

)
− ej(x)

j−1∑
k=1

∂πk(x)

∂βs

= h0s(x)(g−1)′(hT0 (x)β + hTj (x)θj)

(
1−

j−1∑
k=1

πk(x)

)

− ej(x)

j−1∑
k=1

(
h0s(x)

k∑
l=1

gkl(x)

)

= h0s(x)gjj(x) + h0s(x)

j−1∑
k=1

(
−ej(x)

k∑
l=1

gkl(x)

)

= h0s(x)gjj(x) + h0s(x)

j−1∑
k=1

(
−ej(x)

j−1∑
l=1

gkl(x)

)

= h0s(x)gjj(x) + h0s(x)

j−1∑
l=1

(
−ej(x)

j−1∑
k=1

gkl(x)

)

= h0s(x)gjj(x) + h0s(x)

j−1∑
l=1

gjl(x)

= h0s(x)

j∑
l=1

gjl(x),

which implies Equation (S1.2) holds for j.

As for the case j = J , utilizing the fact π1(x) + · · · + πJ(x) = 1 and
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the facts that have been proved in (i) and (ii), we have

∂πJ(x)

∂βs
= −

J−1∑
j=1

∂πj(x)

∂βs

= −
J−1∑
j=1

(
h0s(x)

j∑
k=1

gjk(x)

)

= h0s(x)
J−1∑
j=1

(
−

J−1∑
k=1

gjk(x)

)

= h0s(x)
J−1∑
k=1

(
−

J−1∑
j=1

gjk(x)

)

= h0s(x)
J−1∑
k=1

gJk(x),

then Equation (S1.2) holds for j = J . Therefore, Equation (S1.2) holds,

for s = 1, . . . , p0 and j = 1, . . . , J .

Now we turn to prove the following equation,

∂πj(x)

∂θuv
= huv(x)gju(x), (S1.3)

for u = 1, . . . , J − 1, v = 1, . . . , pu, and j = 1, . . . , J . Similarly, for each

u, v, we prove Equation (S1.3) holds for j = 1, . . . , J − 1, by induction.

(1) When j = 1, then π1(x) = e1(x), we have

∂π1(x)

∂θ1r

= h1r(x)g11(x),
∂π1(x)

∂θuv
= 0 = huv(x)g1u(x),

for r = 1, . . . , p1, u = 2, . . . , J − 1, and v = 1, . . . , pu, which implies

Equation (S1.3) holds for j = 1.
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(2) Suppose Equation (S1.3) holds for 2, . . . , j − 1(j < J). For u =

1, . . . , j − 1 and v = 1, . . . , pu, it follows that

∂πj(x)

∂θuv
=
∂ej(x)

∂θuv

(
1−

j−1∑
k=1

πk(x)

)
− ej(x)

j−1∑
k=1

∂πk(x)

∂θuv

= −ej(x)

j−1∑
k=1

∂πk(x)

∂θuv

= −ej(x)huv(x)

j−1∑
k=1

gku(x)

= huv(x)gju(x).

Note that for v = 1, . . . , pj, it holds that

∂πj(x)

∂θjv
=
∂ej(x)

∂θjv

(
1−

j−1∑
k=1

πk(x)

)
− ej(x)

j−1∑
k=1

∂πk(x)

∂θjv

= hjv(x)(g−1)′(hT0 (x)β + hTj (x)θj)

(
1−

j−1∑
k=1

πk(x)

)

= hjv(x)gjj(x).

By the definition of πj(x) and G(x), the following equation holds

∂πj(x)

∂θuv
= 0 = huv(x)gju(x),

for u = j + 1, . . . , J − 1 and v = 1, . . . , pu.

Combining the aforementioned three equations, Equation (S1.3) holds

for j.
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When j = J , utilizing the fact π1(x) + · · · + πJ(x) = 1 and the facts

that have been proved in (a) and (b), we have

∂πJ(x)

∂πuv
= −

J−1∑
j=1

∂πj(x)

∂πuv

= −
J−1∑
j=1

huv(x)gju(x)

= huv(x)

(
−

J−1∑
j=1

gju(x)

)

= huv(x)gJu(x),

which implies Equation (S1.3) holds for j = J . Thus Equation (S1.3) holds

for u = 1, . . . , J − 1, v = 1, . . . , pu, and j = 1, . . . , J . Based on Equations

(S1.2) and (S1.3), Lemma S2 is proved.

Proof of Theorem 1. Combing the results in Lemmas S1 and S2, it follows

that

M(ξ) =
m∑
i=1

ωiMi

=
m∑
i=1

ωi

(
∂π(xi)

∂γT

)T
D−1(xi)

(
∂π(xi)

∂γT

)
=

m∑
i=1

ωiH
T (xi)G

T (xi)D
−1(xi)G(xi)H(xi),

which completes the proof.
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Proof of Theorem 2. Let H̃ = (HT (x1), . . . , HT (xm)), and

W̃ = diag(ω1G
T (x1)D−1(x1)G(x1), . . . , ωmG

T (xm)D−1(xm)G(xm)).

According to Theorem 1, the Fisher information matrix can be written as

M(ξ) = H̃W̃ H̃T . Since πj(xi) > 0, for j = 1, . . . , J , G(xi) has full column

rank (see Appendix A.1), and ωi > 0, for i = 1, . . . ,m, W̃ is positive

definite. Therefore, M(ξ) is positive definite if and only if H̃ has full row

rank.

Proof of Corollary 1. After some elementary column transformations for

the matrix (HT (x1), . . . , HT (xm)), we obtain a new matrix

Hnew =



H0 H0 H0 · · · H0

H1 0 0 · · · 0

0 H2 0 · · · 0

...
...

...
...

0 0 0 · · · HJ−1


.

In order to keep Hnew full row rank, H0, . . . , HJ−1 are full row rank, thus

m ≥ pj, for j = 0, . . . , J − 1.

Suppose ∩J−1
j=0C(HT

j ) 6= {0}, without loss of generality, we assume that

the first row of H0 lies in ∩J−1
j=1C(HT

j ). Therefore, the first row of H0

can be represented by the linear combination of the rows of H1, . . . , HJ−1,
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respectively. Thus, the first row in Hnew can be represented by the last

p− 1 rows, which contradicts the fact that Hnew is full row rank.

Recall r = dim
(
∩J−1
j=1C(HT

j )
)
, utilizing the fact that ∩J−1

j=0C(HT
j ) = {0},

the rank of the matrix (HT
0 , . . . , H

T
J−1) is at least p0+r. Thusm ≥ p0+r.

Proof of Theorem 3. As mentioned in Remark S1, Mi = M(δxi
). The in-

formation matrix under the design ξ is

M(ξ) =
m∑
i=1

ωiM(δxi
).

Using the same argument in Theorem 2 of Yang et al. (2017), it can be

shown that |M(ξ)| is a polynomial function of (ω1, . . . , ωm).

Now we will show that the coefficients calculated in Equation (3.1) are

zero in conditions (1) or (2).

(1) For the first scenario, recallM(δxi
) = HT (xi)G

T (xi)D
−1(xi)G(xi)H(xi).

The rank of M(δxi
) is less than or equal to the rank of G(xi), i.e., J−1,

for i = 1, . . . ,m. Since max1≤i≤m αi ≥ J , without loss of generality, we

assume α1 ≥ J . Then for any τ ∈ ∆α1,...,αm , there are at least J rows

of Mτ which are the same with the corresponding rows of M(δx1), then

|Mτ | = 0, which implies cα1,...,αm = 0 according to Equation (3.1).

(2) For the second scenario, let H̄ = (HT (x1)GT (x1), . . . , HT (xm)GT (xm)),

and W̄ = diag(ω1D
−1(x1), . . . , ωmD

−1(xm)), then M(ξ) = H̄W̄ H̄T .
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By Cauchy-Binet formula (Horn and Johnson, 2012), it follows

cα1,...,αm =
∑

(v1,...,vp)∈Λ(α1,...,αm)

|H̄[i1, . . . , ip]|2
∏

k:αk>0

∏
l:(k−1)J<vl≤kJ

π−1
k,vl−(k−1)J ,

where 1 ≤ v1 < · · · < vp ≤ mJ , Λ(α1, . . . , αm) only depends on

α1, . . . , αm, and H̄[i1, . . . , ip] is the submatrix consisting of the i1th,

. . ., ipth rows of H̄. Without loss of generality, we assume α1 ≥ · · · ≥

αk > 0 = αk+1 = · · · = αm, where k + 1 ≤ max{p0 + r, p1, . . . , pJ−1}.

Suppose cα1,...,αm 6= 0 for some (α1, . . . , αm). Therefore, there exist

(v1, . . . , vp) such that H̄[v1, . . . , vp] has full rank p, and 1 ≤ v1 <

· · · < vp ≤ kJ . Then ¯̄H = H̄[1, . . . , kJ ] is full row rank. Let ¯̄W =

k−1diag(D−1(x1), . . . , D−1(xk)).
¯̄H ¯̄W ¯̄HT is positive definite. On the

other hand, we can regard ¯̄H ¯̄W ¯̄HT as the Fisher information matrix

under uniform weighted design on the k support points, thus k ≥

max{p0 + r, p1, . . . , pJ−1}, which is a contradiction.

Proof of Theorem 4. Note that maximizing |M(ξ)| is equivalent to maxi-

mize log |M(ξ)|. Recall δx denote the single point design. The Frechet

derivate of log |M(ξ)| at ξ∗ in the direction of δx − ξ∗ is

lim
α→0

1

α
(log |M((1− α)ξ∗ + αδx)| − log |M(ξ∗)|)

11
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= lim
α→0

1

α
(log |M(ξ∗) + α(M(δx)−M(ξ∗))| − log |M(ξ∗)|)

=tr
(
M−1(ξ∗)(M(δx)−M(ξ∗))

)
=tr

(
M−1(ξ∗)M(δx)

)
− p

=tr
(
M−1(ξ∗)HT (x)GT (x)D−1(x)G(x)H(x)

)
− p.

Then the theorem is proved following Pukelsheim (2006).

Proof of Theorem 5. Note that the set of all Fisher information matrices is

a convex hull. Since the design region is compact, the corresponding set is

a convex and compact subset of the linear space of symmetric matrices. By

Carathéodory’s Theorem (Danninger-Uchida, 2009), there exists a design

ξ∗ which contains only a finite number of design points that maximizes

log |M(ξ)|.

Since log |M(ξt)| is a bounded and increasing function of t, log |M(ξt)|

converges when t→∞. We shall show that

lim
t→∞

log |M(ξt)| = log |M(ξ∗)|. (S1.4)

If Equation (S1.4) does not hold, there exists ζ > 0, by the monotonicity

of log |M(ξt)|, such that

log |M(ξ∗)| − log |M(ξt)| > ζ. (S1.5)
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Utilizing the concavity of log |M(ξ)|, we have

(1− α) log |M(ξt)|+ α log |M(ξ∗)| ≤ log |(1− α)M(ξt) + αM(ξ∗)|, (S1.6)

for any 0 < α ≤ 1. Equation (S1.6) implies that

log |(1− α)M(ξt) + αM(ξ∗)| − log |M(ξt)|
α

≥ log |M(ξ∗)| − log |M(ξt)|.

Let α→ 0+ and utilize Equation (S1.5),

tr(M−1(ξt)(M(ξ∗)−M(ξt))) > ζ. (S1.7)

Recall x∗t = arg maxx∈X φ(x, ξt), then φ(x∗t , ξt) ≥ φ(x, ξt) for any x ∈

χ. Thus, we have

φ(x∗t , ξt) ≥
∫
x∈χ

φ(x, ξt)ξ
∗(dx) = tr(M−1(ξt)(M(ξ∗)−M(ξt))).

Combing with Equation (S1.7), it follows that

φ(x∗t , ξt) > ζ. (S1.8)

Let ξt+1(α) = (1 − α)ξt + αδx∗t , where 0 ≤ α ≤ 1
2
, t ∈ N∗. Since

log |M(ξ)| is an increasing function and by the definition of ξt+1, it can be

shown that

log

∣∣∣∣12M(ξt)

∣∣∣∣ ≤ log |M(ξt+1(α))| ≤ log |M(ξt+1)|, (S1.9)
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for any 0 ≤ α ≤ 1
2
. By the definition of ξ∗, we have

log

∣∣∣∣12M(ξ1)

∣∣∣∣ ≤ log |M(ξt+1(α))| ≤ log |M(ξ∗)|. (S1.10)

Equation (S1.10) implies that log |M(ξt+1(α))| is uniformly bounded for

0 ≤ α ≤ 1
2

and t ∈ N∗. By Theorem 3, |M(ξt+1(α))| is a polynomial

of α, which implies that log |M(ξt+1(α))| is infinitely differentiable with

respect to α. Recall that both M(ξt) and M(ξt+1(α)) lie in a same convex

and compact subset of the linear space of symmetric matrices for all t and

α ∈ [0, 1
2
]. Combining Equation (S1.10) with the aforementioned facts,

there exists 0 < K <∞, such that,

inf

{
d2 log |M(ξt+1(α))|

dα2
: α ∈

[
0,

1

2

]
, t ∈ N∗

}
= −K. (S1.11)

Using Taylor expansion of log |M(ξt+1(α))| with respect to α and ap-

plying Equations (S1.8), (S1.11), we can show that,

log |M(ξt+1(α))| = log |M(ξt)|+ φ(x∗t , ξt)α +
1

2
α2 d

2 log |M(ξt+1(α))|
dα2

∣∣∣∣
α=α′

≥ log |M(ξt)|+ ζα− 1

2
Kα2,

where α′ ∈ (0, α). Combining Equation (S1.9), the following equation holds

for any 0 ≤ α ≤ 1/2,

log |M(ξt+1)| − log |M(ξt)| ≥ ζα− 1

2
Kα2.

Now we consider the following two situations.
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• If K > 2ζ, let α = ζ
K

, then

log |M(ξt+1)| − log |M(ξt)| ≥
ζ2

2K
.

• If K ≤ 2ζ, let α = 1
2
, then

log |M(ξt+1)| − log |M(ξt)| ≥
1

2
ζ − 1

8
K ≥ 1

4
ζ.

Note that ζ and K are finite. The two cases imply limt→∞ log |M(ξt)| =

∞, which leads a contradiction. Thus, the sequence of designs {ξt} converge

to an optimal design that maximizes |M(ξ)| as t→∞.

Proof of Theorem 6. In this case, H(x) = diag{hT1 (x), . . . , hTJ−1(x)} is a

(J − 1) × p1(J − 1) matrix. H̃ = (HT (x1), . . . , HT (xp1)) is a p1(J − 1) ×

p1(J − 1) matrix. For any design

ξ =

 x1 · · · xp1

ω1 · · · ωp1

 ,

let W̃ = diag
(
ω1G

T (x1)D−1(x1)G(x1), . . . , ωp1G
T (xp1)D

−1(xp1)G(xp1)
)
.

Then the determinant of M(ξ) is

|M(ξ)| = |H̃W̃ H̃T |

= |H̃|2 · |W̃ |

= |H̃|2
(

p1∏
i=1

∣∣GT (xi)D
−1(xi)G(xi)

∣∣)( pi∏
i=1

ωi

)J−1

.
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Maximizing the above expression with respect to the weights ω1, . . . , ωp1

under the condition
∑p1

i=1 ωi = 1 gives ωi = 1/p1 for all i = 1, . . . , p1, which

proves this theorem.

Proof of Theorem 7. For Model (4.1),

H(xi) =

 xi 1 0

xi 0 1

 , G(xi) =


ḡi1 0

− πi2
πi2+πi3

ḡi1 (πi2 + πi3)ḡi2

− πi3
πi2+πi3

ḡi1 −(πi2 + πi3)ḡi2

 ,

where ḡij = (g−1)′(θj + βxi), for i = 1, 2, j = 1, 2. Directly calculations

yield that,

HT (xi)G
T (xi)D

−1(xi)G(xi)H(xi) =


(si + ti)x

2
i sixi tixi

sixi si 0

tixi 0 ti

 ,

where si = ḡ2
i1π
−1
i1 (πi2 +πi3)−1, and ti = (πi2 +πi3)3ḡ2

i2(πi2πi3)−1, for i = 1, 2.

The determinant of the Fisher information matrix can be derived as follows,

|M(ξ)| = ω1ω2(c1ω1 + c2ω2),

where c1 = (x1 − x2)2s1t1(s2 + t2), c2 = (x1 − x2)2s2t2(s1 + t1). Using the

facts in Corollary 2 of Yang et al. (2017), the theorem is proved.

Proof of Theorem 8. For Model (4.2), the matrices H(xi) and G(xi) have
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the following formula,

H(xi) =

 1 xi x2
i 0 0

0 0 0 1 xi

 , G(xi) =


ḡi1 0

− πi2
πi2+πi3

ḡi1 (πi2 + πi3)ḡi2

− πi3
πi2+πi3

ḡi1 −(πi2 + πi3)ḡi2

 ,

where ḡi1 = (g−1)′(θ11+θ12xi+θ13x
2
i ), ḡi2 = (g−1)′(θ21+θ22xi), for i = 1, 2, 3.

Directly calculations yield that,

HT (xi)G
T (xi)D

−1(xi)G(xi)H(xi) =



si sixi six
2
i 0 0

sixi six
2
i six

3
i 0 0

six
2
i six

3
i six

4
i 0 0

0 0 0 ti tixi

0 0 0 tixi tix
2
i


,

where si = ḡ2
i1π
−1
i1 (πi2 + πi3)−1, and ti = (πi2 + πi3)3ḡ2

i2(πi2πi3)−1, for i =

1, 2, 3. The determinant of the Fisher information matrix can be derived as

follows,

|M(ξ)| = Cω1ω2ω3(c1ω1ω2 + c2ω1ω3 + c3ω1ω2),

where C = s1s2s3(x1 − x2)2(x1 − x3)2(x2 − x3)2, c1 = t1t2(x1 − x2)2, c2 =

t1t3(x1 − x3)2, c3 = t2t3(x2 − x3)2. This theorem follows by Lemma S.4 in

Section S.13 and its proof in Section S.15 of Bu et al. (2020).

17



Supplementary Material

S2 Additional simulations results

Example S1. In this example, we demonstrate the optimal design searched

out by our method. For comparison, we also report the results for the D-

optimal design constructed in Bu et al. (2020) via grid-points. All the

simulation settings are the same as Example 4 in the main text. For clear

transparency, we drop out the points with zero weights in the following.

ξBMY,4 =

 0 66.7 133.3

0.206 0.394 0.400

 ,

ξBMY,6 =

 0 80.0 120.0 160.0

0.202 0.100 0.336 0.362

 ,

ξBMY,10 =

 0 111.1 155.6

0.203 0.398 0.399

 ,

ξBMY,20 =

 0 105.3 147.4

0.203 0.398 0.399

 ,

ξBMY,50 =

 0 102.0 106.1 146.9 151.0

0.203 0.278 0.120 0.184 0.215

 ,

ξ∗ =

 0 101.1 147.8 149.3

0.203 0.397 0.307 0.093

 .

One can see that ξBMY,4, ξBMY,10, and ξBMY,20 have only three support
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points, which are minimally supported. While ξBMY,6 and ξBMY,50 have 4

and 5 support points, respectively. Note that the optimal design ξ∗ has less

support points compared with the ξBMY,50, which is of practical significance

due to the cost of changing settings.

Example S2. Consider the situation where the pre-specified value of the

parameter vector is moderately misspecified. Since all the cases have similar

performance, we report the results of Model (2.5) as an example. Suppose

the pre-specified value of the parameter vector for the locally optimal design

fluctuates in a moderate range (±10% the magnitude of the true value).

For visualization propose, we report the results for the case that only

one of the five parameters is misspecified (we choose θ11 as an example).

The results are presented in Figure S1(a). Figure S1(a) shows the rela-

tive D-efficiencies for the locally D-optimal designs under the misspecified

parameter θ11. Clearly, these D-optimal designs under misspecified param-

eters have relative D-efficiencies greater than 99.97%. When there are two

parameters misspecified (we choose θ11, θ21 as an example), we plot a con-

tour plot in Figure S1(b). From Figure S1(b), one can see that the relative

D-efficiencies are also greater than 95.0%.

To give a comprehensive result, we also consider the case that all the

five parameters are misspecified, via the grid-point method. The results
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Figure S1: Relative D-efficiencies when the parameters are misspecified.

are summarized in Table S1. The minimum efficiency is 63.6%, which is

close to the efficiency of uniform design consider in Example 4. On the

other hand, the 1st quartile is 94.3%, which indicates the D-optimal designs

with moderately misspecified parameters are quite robust and still have

satisfactory performances.

Table S1: Summary of relative D-efficiencies when all the five parameters

are misspecified.

Min. 1st Quartile Median 3rd Quartile Max.

63.6% 94.3 % 97.6% 99.4% 100.0%
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