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Abstract

In this supplement, we provide the proofs for theoretical results of the paper.

A  Proof of Theorem 1.

We prove Theorem 1 by steps. Some key technical procedures are postponed to Lemmas 4, 7,

and 8.

Step 1 Since we can always rescale the time domain, let 7 = [0, 1] throughout the proof without
loss generality. We introduce some notations and prove basic properties in this step. Recall

T = {t1,...,tp} is a regular grid on 7. Denote

S = Cov((X(t),..., X)), So=Cov((Z(tr),...,Z(t,))T) € RP*P,

(14)
¥ = Cov(Xp,), o =Cov(Zy)eREXIEL 1 =1 10
Then
N =Y0+0"I, ¥ =Yg+,
Y, and X are submatrices of X and X,
Si=%0 Zo= o), =1 lnax (15)

For each subject k, recall Xy (T) = (Xk(t1),..., Xk(ty)) " is the discretization of the sample
path Xj. Given G = G 4+ G(-"), we also decompose Sy = Zér) + Za(r), where (E(()r))ij =
G (t;,t5), (Z(()_T))ij = G(=")(t;,t;). Suppose the eigenvalue decomposition of E(()T) and Eg)
are

Eg) =UDU', UcO0,,, DcR™ isdiagonal; (16)
2(()7;) _ (E[()T))[Il,ll}7 E(();"') — (Egir))[ll,lzb | = ]., ey lmax.

1



Namely, E(()?Z) and E(()l_r) are the submatrices of E(T) and E(_r). Then E(()Tl,) + Eél_r) = Y and

E(()? =U Iz,:]DU[}—, ] It is also noteworthy that ¢ l) and Eél ") are not necessarily orthogonal,

and E(();) is not necessarily the best rank-r approximation of ;. We also define

A=UDY? e RP*" A =Uy, \DY? e R 1 =1, .. lnax
(17)
then %) =447, 5= 4,4/
Especially, A and A; can be seen as the factors of 3¢ and ;.

Since G(s1, s2) is Liptchitz, by Weyl’s inequality (Weyl, 1949),

105(S0)/p — 0 (G) <O /p), Vi; IS5 |lr/p < CIGS lus +O(1/p),  (18)
IS0l < p-01(G) + O(1) < O, (19)
1= NE < ISollr < p- |Gllms + O(1) < Cp. (20)

We also have

2
) Cauchy-Schwarz

|| X (T ||2—E(ZX S S EX(T()*
i=1 =1

<Cp*supE|X ()| < Cp*.
t

(21)

Let Z; = [tg—1)at1 — 1/(20); {ta—1)a+s + 1/(2p)} A 1], then Z; is the time sub-domain cor-
responding to the grid indices subset I;. By the construction of [; in (2), I; N [;;1 =

{la+1,...,(0 —Da+b}, so |[[NI| =b—a, L NTy) > b_Ta > k (introduced in

Assumption 2), thus
('I“) E(Il N Il+1)
O-T(G[Zlmzlﬁ’lvzlmzl-ﬁ»l}) 2 C/’Y : T

based on the assumption. Provided that p > C'y for large constant C > 0, we further have
o () =0, (G p+0(1)
A0 LN g1 LN 4] " \UnnTi TinZiga) ) P
Assumption 2 E(Il NI 1)
2 tr(G)p/v - TT)JF

The constant ¢ here may depend on constant . Provided that ||D||/p = 01(20)/p < 01(G) +

(22)
+O(1) > cp/v.

(r)
O(1/p) < C, A[Ilmll+17]A[IlﬂIl+1,] 207[Ilﬁfl+17fzﬁfz+1]’ we further have

_ (r) / _
Or (A[Imlprl,:}) - \/UT <20 [IlnIl+17[lmIl+1]> c p/ ) I = 17 ey lmax- (23)
JAll < Vo1 (%0) < CVp. (24)



Step 2

Step 3

Our aim in this step is to develop a perturbation bound for fll, i.e. to characterize the
distance between A; and A; for each [ = 1, ..., lmax. Recall A; = Hil —XillF, A= |]267T)HF.

By Lemma 4 and b > 2r,

HAZAT a0

L= |JAAT —aAT|| <o (A IS NR) = e (25)

By Lemma 7, there exists @; € O, such that

A A AT — A
|4 - | < PA—Adle o CEHEN g cag. e
or(Ar)or(Ar) \/ O 1o ( Al

We analyze each term in (26) as follows. By (23),

o, (A1) > e/p/7i

(25)

o2(A) = op(AA]) > 0. (S0)) = C (AL + 2)
22 (27)
>cep/y—C (A + ).
Al =tr(AA]) = 0i(56)) < VrIE e < Vel s e
j=1
(20)
<Vr(p-|Gllus +0(1)) < Cpy/r,
. I - (25)
A7 =tr(AA]) < VrAA] |p < VrlISolle + CVr(p+ A+ X)
<SCVr(p+ A+ ).
By combining the previous inequalities, we conclude that
. A+ A
HAz—AzQzHFS C(A1+N) - AC{T1/4(p1/2+)\1/2+A11/2)}
PP _
(2(z-carw),) (28)
::Ala
for I =1,...,lmax and some uniform constant C' > 0. Here (z)4 = max{z,0} for any = € R.

In this step, we assume (28) hold. Recall O, is calculated sequentially. In this step, we study
how the statistical error of O is accumulated based on (28) in this step. Ideally speaking,
Ol+1 can be seen as an estimation of (Q;—HQlOAl). Specifically, we aim to show that there

exists a uniform constant C > 0 such that

HQHOH QlOlH [=0,.. lpax — 1. (29)



and

HAlél . A1Q101HF <CVAA, 1=1,... lnax. (30)

Here, A = Do A,. First, for each I =1, ..., lmax — 1, we introduce

B® = (A)tas1yn) - O € ROV B = (A1) 10y € ROTDXT.

(1)

)1 contains the first

Essentially, Bl(2) contains the last (b—a) rows of A; after rotation and B

(b— a) rows of A, before rotation. According to the proposed procedure (7),
Opp1 = ar minHB(z) —BY OH . 31
I+1 Oge(O)r l I+1 P ( )

Since Bl(z) and B(l)

)11 are submatrices of A; and Al+1 respectively, they also satisfy

HBI(Q) - Az,[(a+1);b,;]Q101HF = HAZ,[(a—i—l):b,:]OAl - Az,[(a+1);b,;]QlOzHF

. ) ) (28) (32)
< HAzOz - AlQlOlHF = HAI - AZQZHF < Ay
L .
HBl(Jr)l - Az+1,[1;(b_a),;]Qz+1HF = HAH—L[I:(b—a),:] - Al+1,[1:(b—a),:]Ql+1HF
R (28) (33)
< HA1+1 - Al+1Ql+1HF < Ay
More importantly, A;at1),] = Ai41,[1:(0-0),) = Annn,,,)> as they actually represent the
same submatrix of A. Then (31)—(33) and Lemma 1 yield
“Ol—i-l - QZTHQZO]HF = HQZH@H - Qz@HF
2 (HBZ(Q) - Al,[(aJrl):b,:]QlOlHF + HBl(Jlr)l - Al+1,[1:(bfa),:]Ql+1HF>
< (34)

O-T(AIZOIZJA)
2080+ Ay B (A + Ay
_O-T‘(A[Ilmfl+1,2]) o \/ p/’}/

Recall A = Do A,. Thus,

HQ!@ - Q101HF < ZZE “Qk+10k+l - Qkok"F
k=1

§ C(Al +Al+1) . CA

ST n Vol




Step 4

which has finished the proof for (29). Then
)’Alél - A1Q1@1“F < HAIOAl - Ale@HF + HAzQz@ - AlQ101"F

< HAZ - AlQlHF + || Al - HQZ@ - Q101"F (35)

(28)(29) CA (19 ~
< A B2 oL < C\AA

for I =1,..., lmax, which has finished the proof for (30).

In this step, we develop the error bound from sequential aggregation based on (30). Recall

Zl:iell A?,[i,:]
’{l 11 E Il}‘ '

The direct way to analyze A is complicated. We instead consider the following half integers

AeRP", Ay = (36)

between 1/2 and p + 1/2,

B={5a+.5...,(lmax — 1)a+ .5}
(37)
U{b+.5,b+a+.5,...,0+ (Imax — 1)a + .5},
and divide the whole index set {1,...,p} into pieces, say Ki,..., K,,, by inserting “bars”
with the half integers in (37). For example, when p = 10,b = 5,a = 3, then B = {.5,3.5,6.5}U

{5.5,8.5,11.5}, and {1,...,10} is divided as the following subsets
Ki,...,Ks = {1,2,3}, {4,5}, {6}, {7,8}, {9,10}.
Such a division has two important properties,
e Given |B| < 2lyax and 0.5 € B, {1,...,p} is divided into at most 2ly,x intervals, so

m < 2lmax-

e For any piece K and two indices 7, j € K, we must have
{l:iEIl}Z{lijGIl},

namely Indices i and j belong to the same set of sub-intervals {I;}. Thus, we can further
denote Jg, = {l :i € I},Vi € K} as the sub-intervals that covers K. Then the following

equality holds,

A[Ks, | Z z (Ks))" (38)

| Ks leJk,

Based on the definition of Jx,, we also know

VieJg, K,CI. (39)



Based on these two points, we analyze A on each piece K and then aggregate as follows,

HA — AQIOAIHF :\ Z A[K&:] — A[K57:]Q101 ;
s=1
(38)
= z_; |JK | lz < Liks,] — ALk, ]Qlol)
5= eJk .
Now for each s =1,...,m,
|JK | lg: (Af (K] A[K,s,:]Qlél) )
1 Ny )
el 2 (i = tucs2001)] o
39 1 . G )
LY [0 sao)], Zens
Combining (40) and (41), we obtain
H‘/Zl - AQ101HF S C\/ﬁ71/2A S Clmax'yl/QA. (42)

By definition of lpax, b/p < CI L., thus lpa < C. Provided that opmax(A) = ||Zo] and

n* > C~? for large constant C,
i - ~ A (42) ~
Omax(A) < omax(AQ1071) + ||A — AQ104]|p < Cp'/? + CH'2A.

Then the following inequality holds,

0

R
< HAAT — AQloAlATHF + HAQlOH/iT — AQloAlOAIQIATHF
(42

) - . -
< Jmax(AT) : 071/2A + UmaX(A) : 0’71/2A

SC'ylmA (C’pl/2 + C”yl/2A> .
Given ¥y = Eér) + E((;T) and ||E(()7T)||F < A, in summary, we have proved the upper bound

Hflo — EOHF < Cy'2A <C’;101/2 + 071/2A> + A= C(p)?A + CyA% + A



Step 5 It remains to develop the expected error upper bound for f]o and G. Recall Cov(Xy,) =%

If 3, is calculated from complete samples by (3) in Step 2, we have

2
EA} =K nll S (X — X (X, — Xi) T =%
keJ, P
] [ A AN (44
(2 )
<;Eu<xk>zl (XTI < %EIIX( )< Cf
Under the incomplete observation scenario (Step 2’), we have
EA?
— zll: E{ Y knyngyer, (Xr(h(i)) —(;()('Il.(li))) (Xi(L(5)) = X(L(5)))
ij=1 1,7,
- El,ij}
B B X)) — p(h0) (X0G) — ) — Sas )
£ (n*)iji
7,7=1 2J>
S E{X (L) XROGNY _ s~ EX(L()* + EX(L(5)"*
Scz‘;l (7)iju =€ ;1 2n; 0,0
<P pmx (e < ¥
n t n*

Now we analyze |39 — Zo||F in two scenarios under the complete sample case (Step 2). The

incomplete sample case (Step 2’) similarly follows. Recall the definitions of Ay and A,

N C(A;+ A _ _
A = (& +2) 1/4AC{T1/4(p1/2+)\1/2+Al1/2)},A:ZAz.
1
(g (2-c@a+ )\)>+>
Let
B={p/y—=C(A1+X) >p/(27),Vl=1,...,lnax} 6)
={C(A;+ ) <p/(27),VI=1,...,lmax}
be a “good” event. By Markov’s inequality,
bmax 2 (44)(45) 2 /0%
p(pe) < - OB T A G Ol /1 2, (47)

—~  p*/(2y)? - p*/7?



When B holds, note that n* > Cp, we have

EHio—zo

1p<E {C(vp)l/ZA +CrA? + )\} 1p

Imax Imax 2
(A4 N) {0 (A + M)}
<C(~p) WZE /l )1/2+c E (p/;) +A

<Cyy/p?/n* + Cyp/n* < Cp/~2/n*.

When B¢ holds, given n* > ~2,p > ~, we have

Imax
E HEO — EOHF lge < EC {71/4(1)1/2 LAV2 4 Z All/Q)} 1 e
=1

lmax

<CP(B%)y 1/4 1/2+ZC’71/4< 1/2) ) /2~(]E123)1/2

9/4,1/2 1
<ELE 4l () 00) V2 2 )

CAY/ApL/2  CnB/ApL/2 —
= n* (n*)3/4 < Cpyy?/n*.

In summary,
E Hio — ZOHF < Cp/v?/n*.

Finally, since ¥ is a p-by-p linear interpolation for G, we finally have

HG—GHH *H20—20HF+0 O(W2/n*+p7").

B Proof of Proposition 1

The key of developing a sharper rate for 3 is on a better estimation bound for ||A; — 40|,
where A; is the estimated factor computed in Step 3 of the proposed procedure. The essence of

the sharper bound relies on the following lemma.

Lemma 2. Suppose all conditions in Theorem 1 and Proposition 1 hold. Recall /ll s the
estimation of the factor of each piece calculated in Step 3 in the proposed procedure. Then there
exists a “good event” B, (defined later in Equation 65) that happens with probability at least
1 — Cyr/n*, such that

E min A — AO|F - g noasy < Cpr/ni; VI=1,... lnas.



Proof of Lemma 2. We assume p(t) = 0 without changing the covariance estimators essen-
tially. Note that the sample covariance 3 is calculated in Step 2 as

- 1

Y= > ((Xi) = (X)5) (Xk)r, — X))
I ke,

The proof of this lemma is divided into steps.

Step 1 We introduce a series of notation in addition to the symbols in the proof of Theorem 1
here. Based on Karhunen-Loeve decomposition, the continuous sample trajectory X (t) =
Zy(t) + €x(t) can be decomposed into three parts: the leading part of signal, the non-leading
part of signal, and the noise:
s
Xi(t) =) &udi(t) + > &udsi(t) +elt), ke . (48)
Jj=1 jzr+l

Then, \;(G) = Var(&;). Let £ = §jk/AJI-/2(G) be the normalized score. We further define

gll te gln
S = c RTXTL7 (49)
Erl T 57"71
(P1)1,(1) - ARG (é1) 1) - N2
= e Rlhlxr
((Z)l)ll(ul‘) . )\}/Q(G) .. (d)l)fl(ul‘) . )\71'/2(G)

as the matrix of leading scores and the discretized loadings, respectively. Then, ®; matches

the definition (15) in Theorem 1 as
0,8, =z e RN, (50)

We further let Z,i_r) (t) = > 541 &k®j(t) be the tail part of sample. By restricting (48) onto
the index set I;, one has
(Xe)n, =Y &k(o)n + D &(di)n + ()1,
Jj=1 j>r+1
:CI)ZS[;M + (Z]gir))jl + (er)r,, keJ.

Based on the proof of Theorem 1, rank(Eg)) =r and

(50) r)y (22) r .
(@) 2 o;(55)) = pos(Gly L) 0, =17,



Step 2

o\ 1/2 ., 1/2
9] = (@2 7)) = (x(5)) " < (- 0G5 1) + O()

Assumption 2

(51)
C’pl/Q.

In particularly,
(22)

(@) = 0r (A) = 1 [or(S0 1) = eV/p/- (52)

Recall the central goal of this proposition is to provide an upper bound for minpep, Hfll —
A;O||r. One can only show ming ||/11 — A,0||%4 < Cpy/n; by directly applying Lemma 7 on
f]Ol and E(()?. Instead, we introduce a “bridge” covariance in this proof

_ 1 1
Soi = S (@S] ) (@S a) T = Eq)lsjls*}l@f e RN (53)
1

U key,

Let A4; = ®;57,/4/n;. Then for all Q € Oy, we have
in || 4, - 40|l < min {|I4 - 4 AQ - 40| |
Quin |4 — AO|lp < min | A = AQ|lF + |4Q - AO]
=4, - A in |4, — A,0Q"|F.
14 = AQllp + min [|A; — A,0Q " ||F
By taking the infimum over @) € O,., we obtain the following triangle inequality,
in ||A; — A;0||p < min ||4; — 4,0 in |4, — A0 . 54
Gin |4 — A0||r < min |4, — A,0|lr + min |4 — 40||F (54)

In the next two steps, we give upper bounds for minpeo, |4; — 4;0|r and minpco, ||A; —

A,0||F, respectively.
Since rank(S, S}l /n}) =r, we can further factorize
S8}, /ni = FE"
for some F; € R"*". Then,
Owin (Si/v/7F) = \/amm (S455/m7 ) = omin( ),
O (S, /17) = \/ Fwas (S45], /17 ) = Fmax(FL).

Suppose
F:UFEFVFT, Up,Vr € O, EFERTXT

is the singular value decomposition. Since ¥ is diagonal, we have
”EF - I’I’XT‘H <max {Umax(ﬂ) - 1) 1— Umin(ﬂ)}

:max{amaX(SJl/\/nT‘) - 1,1 - Umin(S]l/\/TTZk)}.

10



We set A; = ®;F; € RIX" then
Yo = O FF 0 = A4A]
On the other hand, we also recall that the true factor A; satisfies

pAT =3 — o8] (56)

Since rank(E((]?)) = r and both A;, ®; € RIX" there exists an orthogonal matrix V; € O,

such that ®; = A;V;. Therefore,
min [|4; — 40|} = min [|®F; — &V, O|%
0c0; 0e0,
= foin 1@ UrSpVe — &V, O
<|QURSEVE — ©VTVURVE [} = 10Up(Sr — L) Vi |7 (57)
(51)
<NUp(Sp—DVp |2 |27 < Cpl|Sp —I)?
(55) 2
< Cpmax {O'max(S]l)/\/nik -1,1- O'min(SJl)/\/'nzk} )

Let T' = max {amaX(SJl)/‘ /nf — 1,1 = omin(S7)/A /nz"} Since (£1x, . . ., &k is a sub-Gaussian
vector, by random matrix theory (c.f. Theorem 5.39 in Vershynin (2010)),

P (7= C\/r/n; +1)
=P (max {omax (S)/ /0] = 1,1 = Gwin(S)/v/nf } = CyJr/nj +1)
Sl_P<1_C T/n?_tgo'min (SJZ/\/TL»Z()EO-maX(SJZ/\/n»Zk) (58)
<14 Cy/r/nf + t)

<Cexp(—cnjt?), Vt>0.

11



Then,

() Cy\/r/n; (9]
ET2:/ 2t]P’(TZt)dt§/ l2t-1.dt+/ 2P (T > t)dt
0 0 Cy/r/nf

SCr/nf—l-/Ooo2(t—|—C r/nz")]P’(TZC r/n}“+t>

S/ C (C’ r/nf —i—t) exp(—cnjt?)dt
0

1 & <
=Cr/n] +Cy/r/n} - | = / exp(—ct? dt+/ —texp —ct?)dt
i+ Oyfring [z [ esptatyie s [ e

<Cr/nj.

E min ||4; — A4;0|>
5%%1”1 10| %

(57)

< C’pEmaX{amaX(SJl)/\/nZ‘ —-1,1- O'min(S]l)/\/nzk}Q (59)
<CpET? < Cpr/nj.

Step 3 Then we consider minpeg, Hfll — AjO||F in this step. We apply Lemma 4 to fllfllT and
iOl + O'QIM‘. Then,

| 44T — s, <crml/qnl—r) (15— S0~ 0117)

(60)
<C|So — S0t — Iy |7
By setting M = ¥ = fllfll—r, M = AZAZT in Lemma 7, we have
a1 AAT — Sy . _
min |4 - A0)5 I A= 20lE (424 4)
O€0, or(Ay)or(Ap) (61)

<0Hi01 — S0 — 2 IE

— A (1A + 1Al -
ey A (A 1A

12



Step 4 In this step, we give an upper bound for IEHZAIOZ — Yo — (72[|1l| |%. First,

— T —
L — sz) — Yot — 021\11\

F

A
Sl =
]
5
ﬁ
=

== Z Xi)r(Xe) ], — X1, X[, — Sor — 2Ly,

F

T+ (ﬁk)fl) (‘1’15[:&] +(Z )+ (Ek)fz) !

A
| =
g
—
A
s
=
_|_

kGJl
- E(q)ls[:,k])(@ls[:,k’])T oLy | + HXIlXITZ .
! F
1 —r —r
Z ®1S(Zy ||+ o Z(Z,g Nz
ny keJ, U lked,

F F

1
+ > (er)n(er), — o’ Iy

l
keJ; F

+% Z(‘I)ZS[:,MHZ;E_T))IZ) ()1 +HXIZXZHF

U ke, P
We analyze each term separately.
e Since S|, ) and Z,gfr) (t) correspond to different scores in the Karhunen-Loéve decomposi-

tion, they must be with mean zero and uncorrelated, which implies that E®;S|. ) Z, IE_T) (t) =

0. In addition, § ®;S}. Z5 (1) are 1. for different k. Thus,
[k “k

2
E | Y @Sy (2
keJ; F
' 1 -
(”1)2 ZEH‘I’lsk 22 ))Iz‘ . ;EH‘PIS[:J](Zf L%
keJ;

1 —r 1/2
=B {3 128} < - (Rl Bl )08)

Y

13



Here,

EN(ZS )8

2
Cauchy-Schwarz

=E | Y z{ (T(n(i)))? < Y. 2@ )

S i€l
<Inf-supB(Zy (1) < CpPr/ (o),
where the last inequality is due to the assumption of this proposition.
E||®.5) 1ll2
=E|| X1, — (Z )1 — (el

<C (EIX415 + 125 )nlls + () ll3)

<O | YOEX (@@ + Y EIZE@ @@ + Y Ele(T(L(i)]*
i€l i€l i€l
<C|n? (sup EX () +sup EZ7) ()4 + Ee4> < Cp’.

Provided that n* > Cy? > Crv, we have
2

C . 12 _ Cp’r
Z DS ( Il < — (0*r/(nf7) - p*) / < —

keJ; " T

F
e With the assumption that (Ee*)'/? < Cr/v, we have
2
. Cauchy-Schwarz
El(er)r |3 =E | Y ex(T(Li(0))) < 1Y Ben(T(4(i))*
i€} S
<Cp*(r/v).
= (Ee2)2 <Eet < C(r/v)2
Given E(Ek)ll(Gk)Z — %I, = 0, we have
2
1
E E Z(Ek)fl(6k>}: - U2I|Il| = Z Ek I Gk —0 I|[l|‘
U ke s ") €y
1 T ar || o 2 T 27 |12
:7E ui, =, < (E ot [+ Il

2 C’pzr

(E||€Il\|2+0 p) < = | 1D Een(T( f+olp | <=
n nry

[ l ey !

14




e With the assumption that sup,c7 EX (t)* < C, and X (t) = Z1.(t) + ex(t), we have

E[[(Zk)1 ]Iz <CEll(Xi)1llz + CEll(e)1 12

2 2
<CE [ Y Xu(T(L()? | +CE | Y ex(TE(0)))?
i€l; i€l; (63)
Cauchy-Schwarz
< Ol Y EXW(T(L()" + CIL| - Y Eep(T(L(i)))*
i€l; 1€1]

<C|I|* < Cp*.
Given Ee; = 0, ¢, and (Sk, Z,(C_T) (t)) are uncorrelated, we have

E (‘I’ZS[:M + (ZIE*’"))IZ) ()], =0 and

2
1 .
EW > (‘1’15[:,k]+(21§ ))Iz) (x)1,
l keJ; F

1 T2
=525 (0 - (05

1 1 1/2
:EEH(Zk)IkH% New)n N3 < — (BI(Zk) 113 - Ell (er) 1, 113)
l 1

(62)(63) C’pQT
< .
nyy
e Given EX(t) =0 and X1(¢),..., X, (t) are independent,
4
12 1 C
E| %57 | = B || 20 (X < s BIKu)n S
13 F (nl)4 lgjl l ) (nl)z 1112
C , c|\lh)?  Ccp* _ Cp* r
S Ml ) EXW(TL)) € 7oy € g S v 2
(n] )? gf:z (n] )? (n] )? n
In summary,
- = 2 Cp®r
EHZOZ — S — oIy <=2 (64)
F = oyn
Step 4 In this step, we further introduce the following “good” event,
B. = {o2(A) = 02(A))/4,02(A1) = 02 (A) /2,71 <1< lna | (65)

Then we develop the upper bound under this good event to finalize the proof. First, we aim

to show B* happens with high chance. By (60), we have

|4l - AAT || < C|fEa—Sa— oy

F

= az(fll) > U?(Al) — CHEOI — Yo — O'2IHZ|HF.
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By definition,

1
A = 0, (5SS ) > ohan (@003 VD
l

In addition,

o2(4) ' E o2 (@) > ep/r.

Thus, B, holds if the following two conditions hold for some small constant ¢ > 0:
W, XSy Vi) =1/2, and S — S — 02yl < cp/y. (66)
By Markov’s inequality and the sub-Gaussian random matrix tail bound (58),

P(B, holds) > P((66) holds)

>1 =P (3,02(Sa/vm) < 1/2) + P (3L,C)1 S0 — Sor = Lyl = ep/7)

(58) El[2o — S0t — 02,2113
> 1 — lpax €Xp —cnf) — Imax =
(=eni) c(p/v)>

(64)
>1—Cexp(—cn*) — Cry/n*

>1—Cry/n*.

When B, holds, we must have

or (A1), or (A1), UT(AI) 2 C\/I%-

By combining (61), (64), and the previous inequality, we have for all 1 <1 < [jax,

CE| S0 — Sor — o1 ||%
JT(AZ)JT(Al)
SC’IEHEOl — o1 — aQIWH% < C}i?“.

p/ n;

Onél([)?r EHAI — AZOH%‘l{B* holds} < - 1¢B, nolds}

(68)

Finally, (54), (59), and (68) conclude the statement of this lemma. [

Now we consider the proof of Proposition 1. Similarly to the proof of Theorem 1, we develop

an upper bound on the probability of the “bad case,” i.e., B, does not hold. To this end, we

16



define w € RP, w; = |{l :i € I;}|~! as the weight in Equation (9). Then,

lmax lmax
IS0l <|AAT||p = ||diag(w (Zx‘h) <2A1> diag(w)

F

Imax Imax Imax
(Z A?) (Z A[) < lmax - Z HA?(A?)T”F
=1 F =1

Imax Imax

max Z ||AlAl HF < lmax Z ||ElHF

=1 =1
Then,

EHilH% =E|— Z Xk Xfl)((Xk)Il - XIZ)T
l keJ; F
2

=E || = Z Xo)n,(X) [ — XX,
m ke, P

Cauchy-Schwarz C
< = = Y ENX)n (XR) L IE + CE| X, X |7
l keJ;

)
— Z El(Xk)1ll5 + CEI!XIle < Cp.
n kedJ,

E[£0 - S0l < CE|[Zo]|F + CISoll7 < Cp.
By Cauchy-Schwarz inequality,

1/2
B[St — Soll s < (E|S — Soll? - Bl )

(67)
< (Cp* - qr/n*)?

Similarly to Steps 3 - 5 and based on Lemma, 2, one can develop the upper bound for ||f30 —Y|r

on the “good event,”
E(S0 — El|F - 15, nolas) < Cv/p2ry/n*.
Thus,
E|[S0 — Ellr = E[|S0 — Sl s, nowdsy + ElS0 — Zllrlise hoasy < CV/p2ry/n*.
Finally, since ¥ is a p-by-p linear interpolation for G, we finally have
lé-¢| < f||zofzouF+o O(/Ar/n* +p7Y),

which has finished the proof of Proposition 1. [
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C Technical Lemmas

We collect all technical tools that were used in the main context of this paper in this section.
We first provide the proof for Lemma 1, which provides an error bound for Wahba’s problem

(Wahba, 1965).
Proof of Lemma 1. Based on our assumption,
o~ al, <[ acgo,a], = 40f ~ac
F F F

<[ 4:0] - 4| + | 407 - 4| =142 — AOsllr + |41 = 4O | #

<ap + as.
On the other hand,

420 - ]
F

> — ||A; — AO1 || — ||A20 — AO0||F + ||AO, — AO20||»

Y

— a1 — ag + omin(A)]|O1 — 020||F

> —ay —ay+ MO — 0] Oy

Therefore,

A 2(a1 + a2)

O-0J0 H <2\ mrar)

H 27 lp = A
Finally,

A A 2(a1 +a
|0:0 1| _<[0:0- 01| +110: - 11, < 101~ 1 + 2222,
F F A
]

The following lemma characterizes the least and largest singular value of semi-positive sym-

metric definite matrix factorization.

Lemma 3. Suppose a positive semidefinite matriz A € RP*P can be decomposed as A= HDH".

pXT

Here D € R™" is a non-negative diagonal matrixz and H € R is a general matriz that is not

necessarily orthogonal. Then
(max DZ-Z-) o2(H) > 0,(A) > (mln Dii> o2(H),
7 (2
(1m0 ) 1712 > 4] = (smin D) 1]

18



Proof of Lemma 3. Suppose the singular value decomposition of H is H = U HDHV; , where

Ug € Op,, Dy € R™" is diagonal with non-increasing non-negative entries, Vg € Oy, . Then,

|A| = max v’ Au= max u' HDH v > (U;[:J]H) D (HTUH7[:71]>

[ufl2<1 llulla<1
>0,(D HH Un.. ”H = min Dy~ of(H),
|A|| = max v’ Au= max u' HDH u
llull2<1 l[ull2<1

< amas [l ] - D] 17 ruuz(maxDu) |

On the other hand, without loss of generality we assume D, = min; D;;, then
oo (A) =a, (UH (DHVJ DVHDH> Ug) _— (DHVII DVHDH)

= min  u' DyVyDVyDyu <e!DyViy DVyDye,
u€R™:||ull2=1

<Dl Ie] Du i 13 = (max Dy ) 2211,

or(A) =a, (UH (DHVJ DVHDH) UIT[) = oy (DHV,} DVHDH)

502, (DiVil )omin(D) = (m.in D) o2 (H).

These have finished the proof for this lemma. [J

Lemma 4. Suppose ¥ = Sg+02I € R¥*Y. Here, ¥ is positive semi-definite, Y = E(T)—i—E( T)
Eg) is a rank-r matriz. Suppose 3 is another rank-r symmetric matriz satisfying HZ—EHF <A
Suppose UDUT is the etgenvalue decomposition and

S = :Zlff[:,i] {(ljm‘ —6°)V 0} (U)', where 6% = ( — Z D“) V0, (69)

i=r+1

then the following inequality holds,

20— 20||, < CVB/=1) (A + 156l - (70)

for uniform constant C' > 0.

Proof of Lemma 4. Since ¥ = Z 1 U[ D“U[ i is the eigenvalue decomposition of f?, we

also have the following eigenvalue decomposition for S — 02,

b
5= 0%l =20 + 307 + (8 -%) =Y O (D — o0,

=1
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Additionally, since E(T) is positive semi-definite, we can write down the eigenvalue decomposition

=>4 U Z]DUU[ A where U € Oy ,, D € R™" is non-negative diagonal. By Lemma 5,

b 1/2
H{Du - 02}?:74-1”2 — ( Z <ﬁu — 0'2)2>

i=r+1
~ - 2 2 o 242 v (71)
< Z(Dii_a —Dy)* + Z (Dj; —07)
i—1 i=r+1

< = 2Ty = 2 e = 1257 + £ = Ze < A+ IZ57 )k

Then
1 < 1 <
~2 2] A . 2 . 2
‘J —O"— (b—r,z DZZ>\/O o’ < < _T‘Z D“> o
1=r+1 i=r+1
b . 1/2 72)
- - 72
< [ 2‘< 17 2)2
_b_r.z Di; —o?| < b_r<Z(D )
i=r+1 i=r+1
< (A 1S5
N F
Thus

| = 2) = 0| < [E =]+ 16%x — Tl

(73)
<VB/=7) (A+ 125 I) + A
On the other hand, note that 3¢ — 62y, = Z?zl U[:,i}(f]n- - 62)(7[;] and U[:,l], .. '7U[17b} are
orthonormal, the following inequality holds,
[£o ==, <[[£o- =~ mb)H + H2 S EoH
i=r+1 P
+ ww—m(»umﬁ%w)
In particular,
r b 2
2 ; ~2 5T . ; Nl
ULy {(D” -0 )VO} b — 2 Ura(Da =)0
=1 i=r+1 F 75
- 2 A 2,12 |7 2| =
=S {{Da-vor— (-} + Y [Du-e?] .
=1 i=r+1
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Here, we note that the i-th eigenvalue of X satisfies \;(X) = Dy; +02,D;; > 0for 1 <i <7, so

> {10y - = 5 {5 0) )}

= 1<e<r
<3 ) { 52— o?) +} +3 ) { o? — ”_i_o,g))_'_}?
1<e<r 1<i<r
2
+3 Z {()‘i(z)f)n’>+}
1<i<r
(72) A
_b_T(AHIE”Hp) +0+3Z{ —Du‘}2
Leména 5b3b ()\—1— HZ( r ”F) +3||§A]—Z||% < % <>\+ ||2§)7T)HF)2+3)\2;
Y |pa-a < ¥ {Q‘ﬁii—f’?ﬂ!o—?—Aﬂ}
r41<i<b 4 1<i<b
T, (A+ HE(()_T)HF)Q 20 (/\+ 1= HF)Q,

In summary, we have
[£0 =20, < VBB =1) (A + 167 lE) -
for some uniform constant C' > 0. [

Lemma 5. Suppose A, B € R™ are two symmetric matrices. \j(A) and \;(B) represent the

j-th eigenvalues of A and B, respectively. Then

U

|A - B|% Z (B)). (76)

Proof of Lemma 5. Since

|4~ Bl =tr ((A- B)T(4- B))

2
=[|A|% + | BIIF — 2tr(ATB) = Z M(A) + ) (B) —2tx(ATB),
j=1

we only need to show

d
(ATB) < Z (77)
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Suppose the eigenvalue decomposition of B is B = UDU ", with D = diag(\1(B), ..., \a(B)).
Let U{J} = U[:,l:j}7 then

d d
B=Y UpgUly-%(B) =Y UnUfy - (M(B) = Aj+a(B)),
=1 i=1

thus,

which has finished the proof of this lemma. [

Lemma 6. Suppose A € R¥™9 is symmetric, Uijy € Qqyj, then
J
i=1

Proof of Lemma 6. Without loss of generality we can assume A = diag(A1(A),..., A\q¢(4)).

Since Uy;y € Qg 5, we have

d
0< (Ugyyi <1, Z(U{j})ii =7,
i=1
then by rearrangement inequality,
d J
T T T
tr (ATU U ) = A4 (U{j}U{jQM <3 Ni(A).
i=1 i=1

g

The following lemma characterizes the square-root factorization perturbation. The proof

involves Abel’s summation identity in Lemmas 8 and 9, which is highly non-trivial.

Lemma 7. Suppose M, M € RP*" are two matrices with the same dimension, then there exists

an orthogonal matriz O € O, such that

A 2 _ NN - MM
|31 - mo0| < A (N + M) (78)
F o (M)on (M)
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Proof of Lemma 7. Suppose M " M has singular value decomposition: M TM =UXVT, where
U, Var € O,, £ € R™". We will show that when O = UV T (namely the solution to Wahba’s
problem), (78) holds.

Define x; = JZ‘(M),:I/Z‘ =o0;(M), z; = O'i(MTM), by Lemma 8, we know

222,20, ypp=2--2y 20, 222220,

and » 7,z <>, xy; for all 1 <s <r. Then by both inequalities of Lemma 9,

T T
D (gl —220) =) (aF + 4] - 22) @y
=1 =1
T
222 vy; — 2 —22 (ziyi — 2i)aryr > 0.
On the other hand,
~ 2 ~ ~ ~ ~
HM _ MOHF — tr (MMT MM —NOTMT — MOMT)
=|[ M5 + |M||F = 2tr(OT M TM) = || M]3 + |M ||} — 2t (VU TUSV)

=3 (o0 + 20) - 20 (MTND)) = S 447 — 220
=1 =1
[ — a7
—tr (MMTMMT MM MM - MNMTMMT — MMTMMT>
=|MM %+ | MM T|% - 2| M T M| %

r

:i(ag(M)+af(M) 207 MTM) > (@ 4yl 22,
i=1 i=1

which means

R 2 T T
HM - MOHFO'T(M)UTM = 2,9, Z(m? by? - 2z) < Z (2 + yf — 222)

~ A 2
< [T —aoar

. 2 |IMMT - MMT|%
min < = .
0€0, or(M)o, (M)

g MOH
In addition,
) . 21 . 2 . 2 N )
min HM - MOH < HM - IMH + HM + IMH — N2 + (|2
) F~ 2 F F
Therefore, we have finished the proof of this lemma. [
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Lemma 8. Suppose M,M € RP*" qgre two matrices of the same dimensions, we have the
following inequality for Ky Fan s-norm of M "M (Fan, 1950) for any s > 1,
S

MMk, =Y oi(MTM) < 0i(M)oi(M).
=1 =1

Proof of Lemma 8. We first note the following property for Ky Fan norm (Fan, 1950),

X = tr(UT XV
1 X1k, = Zaz = Juax. r( )-
VE@T‘S‘

Let M = UMEMVA; be the singular value decomposition, then (3,); = oi(M). Now for any
UV €O,
TayT TasT T TvrrTarT
tr (UTMTIV ) =tr (UTMTUg S VIV ) = (vA VUTM U, Sy,

e wis (UG MUVTV ) Zaz ) (U MuvTvy)

[

where is last equality is due to the Abel’s summation formula'. Note that UABM UVTVM is a
s-by-s projection of M, so it has smaller Ky Fan norms than M. Then
i i
when i <s, > (ULMVTUVy) =3 e]ULMUV Ve,
j=1 A
<|U MUV Vg lk, < Z o;(M

Jj=1

when i > s, Z(U]TV[MUVTVA> < |ULMUVTV]| <Zaj
Jj=1 j=1

"https://en.wikipedia.org/wiki/Summation_by_parts
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Thus,

T TMmT y a; / — 05 Z r T
£ (U M MV) S; ( (M) +1(M));(U MUVTY, )jj
n Z aZ(M)—gM(M))i:(UTMUVTV )
i=s+1 Jj=1 77
st: (Ui(M —oit1( )ZU]
=1
+ Z (Uz'(M)_UzH )ZU]
i=s+1
:zs:ai(M)az(M),
=1

since U and V are arbitrarily chosen from O, s, we have finished the proof for this lemma. [
Lemma 9. Suppose {z;};_,,{yi}i_i,{zi}_, are three sequences of non-negative values satisfying

xr122x. 20, y12--2y2>20, 21=>--22z 20

Vi<s<r, vazyl>z,z,

This means x1y1 > 21, T1Y1 + T2y2 > 21 + 22, but not necessarily xoy2 > z9. Then, we must

have the following two inequalities,

T T

Z ($12y12 B Z’L2) - Z('rzyz - Zi)xry’r > 0.

i=1 i=1

m? + y? — (azf + y?)xryr — 23:?%2 + 2xyixpyr >0, V1I<i<nr.

Proof of Lemma 9. The key to the first inequality is via Abel’s summation formula. First,

T T IS
Z Z; yz - Z + Z TiYi — xryr - {Z($?y3 - 222) - Z(xzyz - Zz)xzyz}
=1

=1 =1
r r—1 7
= @iy — z) (@i — 2yr) = Y (@i — zigayin) Y (w5y5 — 2) ¢ = 0.
i=1 i=1 j=1

If we let p41 = Yr41 = 2zr+1 = 0, then

<

r
{ I yz — % ) (xlyl - xzyz} Zz TilYi — Zz
=1 ;
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By combining the two inequalities above, we have finished the proof for the first part.

addition, by some algebraic calculation we can show
o}ty — (@ + y)reyr — 2 (Y7 — wiyirrey)
=} +yi — (o] +yd)awiys — 2 (afy] — aty?) + (@F + yf — 220:) (xiyi — wryr)
=z} +yi — 2}y — vy} + (@i — vi)*(wiyi — 2ryy)
=(wi — i) (] + wiyi + y7) + (2 — vi)* (wiyi — 2ryr) > 0.

Therefore we have finished the proof for this lemma. [
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