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Abstract: By modifying the optimal criterion of Kudo (1967), an alternative theory

is developed for incorporating prior probabilities into multiple hypotheses testing.

Unlike Kudo’s theory, an explicit optimal test can be obtained. It is shown that the

optimal test is a natural extension of some well-known tests such as the maximum

likelihood test.
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1. Introduction

Let X = (x1, . . . , xn) be a random sample of size n with a joint density
f(X, θ) with respect to a σ finite measure µ, where θ is an unknown parameter
lying in a subset Θ of a metric space, and X takes values in an Euclidean space
Ω. Let {Θi, 1 ≤ i ≤ m} be a finite partition of Θ. We consider the problem of
testing multiple hypotheses

Hj : θ ∈ Θj, 1 ≤ j ≤ m, (1.1)

in which it is desired to decide to which one of the m subsets θ belongs on
the basis of the sample X. The decision can be described by a test function
φ(X) = (φ1(X), . . . , φm(X)) with φj(X) ≥ 0, 1 ≤ j ≤ m, and

∑m
j=1 φj(X) = 1.

We accept Hj when φj(X) = 1. For each 1 ≤ j ≤ m, a non-negative function
Lj(θ) is given to designate the loss corresponding to the acceptance of Hj, when
θ is the value of the parameter. The commonly used loss function is

Lj(θ) =

{
0, θ ∈ Θj ,

Lji, θ ∈ Θi, and i �= j,
(1.2)

for 1 ≤ j ≤ m. There are many testing problems with more than two hypotheses.
For instance, when one wishes to test which of two trials is more effective, one
frequently is faced with the third hypothesis representing indifference. Even in
classical testing there may exist three hypotheses: the null hypothesis Ho; the
alternative H1; there is no significant evidence for accepting either Ho or H1 (see
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Berger (1985)). As pointed out by Lehmann (1986, p.380), in the problem of
multiple comparisons, testing equality of m means as a simple choice between
acceptance and rejection usually leaves many questions unanswered. In partic-
ular, when the hypothesis is rejected one would like to obtain more detailed
information about the relative position of the means. Thus, a test of more than
m hypotheses is required. Another type of common multiple hypotheses testing
problem is that of classifying an observation into one of several populations (see
Rao (1973, pp.491-497), or Anderson (1984, Chapter 6)).

In the literature, there are at least two approaches to multiple hypothe-
ses testing— the Bayesian and minimax approaches (see, for example, Zacks
(1971, Chapter 9), or Berger (1985)). The former uses prior information that can
be completely and accurately quantified in terms of a single prior distribution,
whereas the latter completely ignores the prior information. In some practical
situations, there really exists prior information on the parameter. However, it is
often found difficult to assign an appropriate prior distribution. The reason is
that the prior information may be incomplete and the population underlying the
prior information is usually not consistent with that of the sample (see Berger
(1985, p.240), Zhang (1992, 1995)).

To take partial prior information into account, Hodges and Lehmann (1952)
suggested a compromise between the Bayesian and minimax approaches. Blum
and Rosenblatt (1967) studied the minimax estimate when the prior distribution
is restricted to certain families of prior distributions. Kudo (1967) introduced
the mean-max criterion to choose the estimate when the prior is defined on
a subsigma field of sets. Recent treatments from the viewpoint of Bayesian
robustness can be found in Berger (1985, 1990, 1994), and in the references
therein.

In this paper we are mainly concerned with the partial prior model (Kudo
(1967)), in which a statistician is informed of nothing but the prior probabilities
of m hypotheses, say pi, 1 ≤ i ≤ m, with

∑m
i=1 pi = 1, and that the prior

distribution π belongs to the following class of prior distributions

PM = {π :
∫

Θi

π(dθ) = pi, 1 ≤ i ≤ m}.

PM is of substantial interest in that the prior quantiles might be easy to specify
for practitioners. Berliner and Goel (1990) determined ranges of posterior prob-
abilities of sets with respect to this class of priors. Related studies were made by
DeRobertis and Hartigan (1981), Manski (1981), Cano, Hernandez and Moreno
(1985), Lambert and Duncan (1986), among others. There have been relatively
few works on the problem of Bayesian robust hypothesis testing. A recent paper
in this direction was provided by Berger and Mortora (1994) who considered the
situation, in the presence of nuisance parameters, from the posterior decision
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point of view. In this paper, we investigate the following question: which pro-
cedure for testing (1.1) is optimal under the above partial prior model, and in
what sense is it optimal?

To motivate our procedure, we consider the simplest case: H1 : θ ∈ Θ1

versus H2 : θ ∈ Θ2, where Θ1 and Θ2 are bounded. Suppose there are prior
probabilities p1 and p2 on Θ1 and Θ2, respectively. For i = 1, 2, let πi be a
uniform distribution on Θi, π = π1p1 + π2p2 the prior distribution, and let
m =

∫
Θ1

f(X, θ)π1(dθ)p1 +
∫
Θ2

f(X, θ)π2(dθ)p2. Then the posterior density of θ

is

π(θ|X) =




f(X,θ)π(θ)p1

m , θ ∈ Θ1,

f(X,θ)π(θ)p2

m , θ ∈ Θ2.

The ratio of the maximum posterior densities of Θ1 and Θ2 is

R = C
supΘ1

f(X, θ)p1

supΘ2
f(X, θ)p2

,

where c is a constant. As a function of the sample X, R can be used to test H1

versus H2. When p1 = p2 = 0.5, this test reduces to the well-known Maximum
Likelihood Ratio Test (see, for example, Cox and Hinkley (1974)). The procedure
suggested here is an extension of the above ratio test.

In the next sections, we first establish a frequentist Bayesian criterion to
measure the risk of a testing procedure φ(X) with respect to PM. An optimal
test is developed in terms of this criterion. We show that, suitably choosing prior
information, we can recover the Maximum Likelihood Ratio Test and the Bayes
procedures in Zacks (1971, p.425) and Rao (1973, p.493). Then we investigate
the related questions for the quantile class of priors and the ε-corrupted class of
priors.

2. The Main Theory

2.1. An alternative criterion and test

Kudo (1967) suggested the use of the maximum Bayes risk with respect to
PM to measure the risk of a decision procedure. The optimal solution with re-
spect to this criterion seems not easy to solve. In the following, an alternative
criterion is proposed. The main advantage of the new criterion is that the cor-
responding optimal test has an explicit formula which is a natural extension of
several classical tests, including the Maximum Likelihood Ratio Test.

To begin with, let θo ∈ Θ denote the unknown true parameter. In light
of the likelihood principle (see, for instance, Berger (1985, p.27)), given sample
X, a θ for which f(X, θ) is large is more “likely” to be the true θ than a θ for
which f(X, θ) is small. Note that the loss associated with the acceptance of Hj is
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Lj(θ) when θo is θ. Hence, given the sample X, Lj(θ)f(X, θ) can be used as the
weighted loss of accepting Hj and taking θ as the true value of the parameter.
Averaging the weighted loss with respect to the prior distribution π yields the
average weighted loss of the acceptance of Hj given X and π. Then, given X, the
maximum weighted loss of the acceptance of Hj under the partial model π ∈ PM

is
sup

π∈PM

∫
Θ

f(X, θ)Lj(θ)π(dθ).

This gives the expected relative maximum weighted loss of the acceptance of Hj,

∫
φj(X)

supπ∈PM

∫
Θ

Lj(θ)f(X,θ)π(dθ)∑m

k=1
supπ∈PM

∫
Θ

Lk(θ)f(X,θ)π(dθ)
f(X, θo)µ(dX)

=
∫

φj(X)
supπ∈PM m(X|π)

∫
Θ

Lj(θ)m(dθ|X)∑m

k=1
supπ∈PM m(X|π)

∫
Θ

Lk(θ)m(dθ|X)
f(X, θo)µ(dX),

(2.1)

where m(X|π) and m(dθ|X) are the marginal density of X and the posterior
distribution of θ given X, respectively. The risk of a decision φ can be measured
by

R(φ, θo) =
m∑

j=1

∫
φj(X)

supπ∈PM

∫
Θ Lj(θ)f(X, θ)π(dθ)∑m

k=1 supπ∈PM

∫
Θ Lk(θ)f(X, θ)π(dθ)

f(X, θo)µ(dX).

(2.2)
The decision φo with R(φo, θo) = min R(φ, θo) for all θo ∈ Θ is called the PM
optimal test of the multiple hypotheses (1.1). An explicit form of such a test is
obtained in the following theorem.

Theorem 2.1. Suppose that f(X, θ) is measurable with respect to (X, θ), and
that for 1 ≤ i �= j ≤ m and each X, Lj(θ)f(X, θ) is continuous on Θi with respect
to θ. For 1 ≤ j ≤ m, assume

Mj(X) =
m∑

k=1

pk sup
Θk

Lj(θ)f(X, θ) < ∞.

Then the PM optimal test φo = (φo
1, . . . , φ

o
m) has

φo
j =

{
1, Mj(X) = min1≤k≤m Mk(X),
0, otherwise,

1 ≤ j ≤ m. We choose φo
i (X), φo

j(X) such that φo
i (X)φo

j (X) = 0 if Mj(X) =
Mi(X) for some i < j.

Proof of Theorem 2.1. Observe that

sup
π∈PM

∫
Θ

Lj(θ)f(X, θ)π(dθ) =
m∑

k=1

pk sup
θ∈Θk

Lj(θ)f(X, θ).
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For θo ∈ Θ, we have

R(φ, θo) =
m∑

j=1

∫
φj(X)

Mj(X)∑m
k=1 Mk(X)

f(X, θo)µ(dX)

which attains the minimum at φ = φo.

Remark. If for each j, Θj is a finite set, then Theorem 2.1 holds. If for each j,
Θj is a singleton, then the PM optimal test is just the Bayes solution discussed
in Rao (1973, p.493).

The main difference between the classical Bayes test and the PM optimal
test lies in the use of the prior distribution. The Bayes approach incorporates
the whole prior distribution into the test while the PM optimal test does not.
In practice, there are at least two situations to consider. In one, several prior
quantiles can be specified directly from the partial prior information. In another,
the prior distribution can be selected, but with some uncertainties, for example,
about its tails. In the former situation, the PM optimal test can be directly
used. In the latter situation, we can first select part of the prior distribution,
for example, the corresponding prior probabilities of hypotheses. Then we use
the PM optimal test. Thus, we can expect that the robust behavior of the PM
optimal test with respect to the prior distribution is better than that of the
Bayes test. Although the Bayesian robust analysis in Berger (1985) can be used
in these situations, some additional efforts may be necessary to come to a unique
decision. The following example highlights this point.

Example 2.1. (see Berger (1985), p.166). Suppose one wishes to classify the
intelligence (IQ) level θ of a child as Θ1 : θ < 90 (below average), Θ2 : 90 ≤ θ ≤
110 (average), or Θ3 : θ > 110 (above average) by an IQ test. The loss function
is defined by

L1(θ) =




0, if θ < 90,
θ − 90, if 90 ≤ θ ≤ 110,
2(θ − 90), if θ > 110,

L2(θ) =




90 − θ, if θ < 90,
0, if 90 ≤ θ ≤ 110,
θ − 110, if θ > 110,

L3(θ) =




2(110 − θ), if θ < 90,
110 − θ, if 90 ≤ θ ≤ 110,
0, if θ > 110.

Assume that the test result x follows N(θ, 100), a normal distribution with
mean θ and variance 100. Assume also that, in the population as a whole, θ is
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distributed according to F . The question is which class the IQ level of a child
belongs to if he scores 115 (i.e., x = 115) on the test.

Bayes approach: Suppose that there are two possible choices of F , F =
N(100, 152) and F = N(100, 102), due to incompleteness of the prior information.
Then, by the theory in Berger (1985, p.166), we obain two different Bayes deci-
sions, θ ∈ Θ3 and θ ∈ Θ2 when we adopt F = N(100, 152) and F = N(100, 102),
respectively. Which decision should we take? We might use the PM optimal test
to answer the question.

PM optimal test: Let f(115, θ) = 0.1 exp(−(115−θ)2/200)/
√

2π, and pi denote
the prior probabilities on Θi, i = 1, 2, 3. Then

M1 = p2 sup90≤θ≤110(θ − 90)f(115, θ) + p3 supθ>110 2(θ − 90)f(115, θ),
M2 = p1 supθ<90(90 − θ)f(115, θ) + p3 supθ>110(θ − 110)f(115, θ),
M3 = p1 supθ<90 2(110 − θ)f(115, θ) + p2 sup90≤θ≤110(110 − θ)f(115, θ).

When F = N(100, 152), we have p1 = p3 = 0.2514, p2 = 0.4972, M1 = 0.888,
M2 = 0.269 and M3 = 0.086. The decision of the PM optimal test is θ ∈ Θ3.

When F = N(100, 102), we have p1 = p3 = 0.1587, p2 = 0.6826, M1 = 0.820,
M2 = 0.170 and M3 = 0.105. The decision of the PM optimal test is still θ ∈ Θ3.

Thus, given uncertainty about the selected prior distributions, the PM optimal
test seems preferable to the Bayes approach because of its robustness.

2.2. Extensions and special cases

Theorem 2.1 can be extended to the following situation, which occurs for
example when the prior density is specified by the histogram approach or by
several quantiles (see Berger (1985), p.77).

Suppose that for each Θi, 1 ≤ i ≤ m, there exist a partition ∪ti
k=1Θik and

prior probabilities pik on Θik, 1 ≤ k ≤ ti. This partial prior information model is
denoted by PMR. Then, under PMR and the loss function Li(θ), 1 ≤ i ≤ m, the
optimal test of the multiple hypotheses (1.1) can be obtained in the following way.
Consider the problem of testing

∑m
i=1 ti hypotheses Hik : θ ∈ Θik, 1 ≤ k ≤ ti,

1 ≤ i ≤ m with the following loss function: if θ ∈ Θik, then the loss of accepting
Hij is 0 and the loss of accepting Hvj is Li(θ). Let φo

ik, 1 ≤ k ≤ ti, 1 ≤ i ≤ m be
the optimal test. The desired decision is of the form φo

i =
∑ti

k=1 φo
ik for 1 ≤ i ≤ m.

In particular, as min1≤i≤m ti tends to ∞, the limit of the PM optimal test is the
Bayes procedure in Zacks (1971, p.425).

In some practical situations, there may be misspecification of the prior prob-
abilities, and some of the prior probabilities may be missing. From the robust
viewpoint, we can use the following two classes of priors to express such uncer-
tainty and modify Theorem 2.1 in these cases.
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(i) A quantile class of priors

QPM = {π : li ≤
∫

Θi

π(dθ) ≤ ui, i = 1, . . . ,m},

where 0 ≤ li ≤ ui ≤ 1, i = 1, . . . ,m are predetermined constants (see Berger
(1990)).

For each 1 ≤ j ≤ m, we sort supΘi
Lj(θ)f(X, θ), i = 1, . . . ,m, from the

largest to the smallest. For simplicity, we assume

sup
Θ1

Lj(θ)f(X, θ) ≥ · · · ≥ sup
Θm

Lj(θ)f(X, θ).

Write

s = max{k ≥ 1 :
k∑

i=1

(ui − li) ≤ 1 −
m∑

i=1

li}.

Set po
ij = ui, i = 1, . . . ,m, if s = m; po

ij = ui, i = 1, . . . , s, po
s+1,j = ls+1 +

1 − ∑s
i=1 ui +

∑m
i=s+1 li and po

ij = li, i = s + 2, . . . ,m. Then, under QPM, the
conclusion of Theorem 2.1 still holds when for each 1 ≤ j ≤ m, pi, 1 ≤ i ≤ m, in
Mj is replaced by po

ij, 1 ≤ i ≤ m.
(ii) An ε-corrupted class, EPM, in which there exists a subset No of {1, . . . ,m}
and a positive number ε such that

∑
i∈No

pi = 1 − ε and pi is determined only
when i ∈ No. Then, under EPM, the conclusion of Theorem 2.1 remains true
when Mj is replaced by∑

i∈No

pi sup
Θi

Lj(θ)f(X, θ) + ε sup
∪i�∈No,i�=jΘi

Lj(θ)f(X, θ),

for 1 ≤ j ≤ m.

Proof of (i) and (ii). The key step is to calculate

sup
QPM

m∑
k=1

∫
Θk

Lj(θ)f(X, θ)π(dθ)

and

sup
EPM

m∑
k=1

∫
θ∈Θk

Lj(θ)f(X, θ)π(dθ),

which is straightforward. The proof is completed.
The following special cases are useful to illustrate Theorem 2.1 and its ex-

tensions.

Special cases. Assume that Lj(θ) is of the form (1.2). Without loss of gener-
ality, assume L1m �= 0. Then

Mj(X) =
m∑

i�=j

piLji sup
θ∈Θi

f(X, θ)
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and the PM optimal test depends on Lji, 1 ≤ i, j ≤ m only through the ratios
Lji/L1m, 1 ≤ i, j ≤ m.

In particular, if m = 2, we have

M1(X) = p2L12 sup
θ∈Θ2

f(X, θ), M2(X) = p1L21 sup
θ∈Θ1

f(X, θ),

φo
1(X) =

{
1, p1 supΘ1

f(X, θ)/p2 supθ∈Θ2
f(X, θ) ≥ L12

L21
,

0, otherwise,
(2.3)

and φo
2 = 1 − φo

1. It means that we narrow or relax the rejection region of the
classical maximum likelihood ratio test according to the ratio p2/p1.

Let m = 3, Lij = 1, Lii = 0, for 1 ≤ i �= j ≤ 3 (0-1 loss). Usually Θ2 is an
indifference region. Then, we have

M1 = supθ∈Θ2
f(X, θ)p2 + supθ∈Θ3

f(X, θ)p3,

M2 = supθ∈Θ1
f(X, θ)p1 + supθ∈Θ3

f(X, θ)p3,

M3 = supθ∈Θ1
f(X, θ)p1 + supθ∈Θ2

f(X, θ)p2.

For simplicity, assume Mi �= Mj for i �= j. Then, for i = 1, 2, 3,

φo
i =

{
1, supθ∈Θi

f(X, θ)pi > maxj �=i supθ∈Θj
f(X, θ)pj,

0, otherwise .
(2.4)

Let m = 3 and assume that L12 = 0 = L21, L13 = L23, and L31 = L32, that
is, we actually wish to test the null hypothesis θ ∈ Θ3 against the alternative
θ ∈ Θ1 ∪ Θ2 with the prior probabilities on Θi, 1 ≤ i ≤ 3. Then, we have

M1(X) = M2(X) = L13 supθ∈Θ3
f(X, θ)p3,

M3(X) = L31(supθ∈Θ1
f(X, θ)p1 + supθ∈Θ2

f(X, θ)p2);

φo
1(X) + φo

2(X) =


1,

supθ∈Θ1
f(X,θ)p1

supθ∈Θ3
f(X,θ)p3

+
supθ∈Θ2

f(X,θ)p2

supθ∈Θ3
f(X,θ)p3

≥ L13
L31

,

0, otherwise ,

φo
1(X)φo

2(X) = 0 and φo
3(X) = 1 − φo

1(X) − φo
2(X).

(2.5)
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