
Statistica Sinica 27 (2017), 1699-1714
doi:https://doi.org/10.5705/ss.202015.0338

REGRESSION ANALYSIS WITH

RESPONSE-SELECTIVE SAMPLING

Kani Chen, Yuanyuan Lin, Yuan Yao and Chaoxu Zhou

Hong Kong University of Science and Technology, The Chinese University

of Hong Kong, Hong Kong Baptist University and Columbia University

Abstract: Response-selective sampling, in which samples are drawn from a popu-

lation according to the values of the response variable, is common in biomedical,

epidemiological, economic and social studies. This paper proposes to use trans-

formation models, the generalized accelerated failure time models in econometrics,

for regression analysis with response-selective sampling. With unknown error dis-

tribution, the transformation models are broad enough to cover linear regression

models, Cox’s model, and the proportional odds model as special cases. To the best

of our knowledge, except for the case-control logistic regression, there is presently

no prospective estimation approach that can work for biased sampling without

modification. We prove that the maximum rank correlation estimation is valid for

response-selective sampling and establish its consistency and asymptotic normal-

ity. Unlike inverse probability methods, the proposed method of estimation does

not involve sampling probabilities, which are often difficult to obtain in practice.

Without the need of estimating the unknown transformation function or the er-

ror distribution, the proposed method is numerically easy to implement with the

Nelder-Mead simplex algorithm that does not require convexity or continuity. We

propose an inference procedure using random weighting to avoid the complication

of density estimation when using the plug-in rule for variance estimation. Numeri-

cal studies with supportive evidence are presented. Application is illustrated with

the Forbes Global 2000 data.

Key words and phrases: General transformation model, maximum rank correlation,

random weighting, response-selective sampling.

1. Introduction

Response-selective sampling is commonly used in biomedical, epidemiologi-

cal, financial, and social studies. Specifically, let (Y ∗, X∗) and (Y,X) represent

the pair of response and covariates in the population and in the sample, respec-

tively. As defined in Lawless (1997), sampling schemes that depend on the value

of Y are called response selective or response biased. The response-selective sam-

pling assumes that, for any y, the conditional distribution of X given Y = y is
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the same as that of X∗ given Y ∗ = y. For example, in case-control studies, the

conditional distribution of X∗ given Y ∗ = 1(0) is the population distribution of

the covariates for all cases (controls), which is the same as that of the covariates

of cases (controls) in the case-control sample. Throughout the paper, we denote

the observations as (Yi, Xi), i = 1, . . . , n, which are independent and identically

distributed.

The response-selective sampling schemes are likely to contain more infor-

mation relevant to one’s interest. In general, compared to prospective sampling

which selects samples during the study period and watches for outcomes, retro-

spective sampling like response-selective sampling selects samples with outcomes

established at the start of the study, hence it is useful in clinical studies for its

effectiveness and its saving duration and costs. Thus, in a study of possible depen-

dence of levels of hypertension (response) on those of sodium intake (covariate),

sampling from patients in a hospital, which can be regarded as response-selective

sampling, would be more effective than from the general public as the latter has

much smaller proportion of people with hypertension. An example in economic

and social studies is that wage is only observed for employed people.

The statistical analysis of biased sampling has received considerable attention

in the past decades. Case-control or choice-based sampling, which is a special case

of response-selective sampling, has been extensively studied; see Anderson (1972);

Manski and Lerman (1977); Prentice and Pyke (1979); Breslow and Day (1980);

Cosslet (1981); Scott and Wild (1986); Manski (1993), etc. There are other stud-

ies on biased sampling data, involving semiparametric and parametric models; see

Hausman and Hausman and Wise (1981); Jewell (1985); Bickel and Ritov (1991);

Wang (1996); Lawless, Kalbfleisch and Wild (1999); Chen (2001); Tsai (2009);

Luo and Tsai (2009); Luo, Tsai and Xu (2009), among others. In statistical

analysis of biased sampling, one of the celebrated findings is that the prospective

estimating equation is still valid for case-control logistic regression; see Anderson

(1972) and Prentice and Pyke (1979). However, in general, estimating equations

based on prospective sampling is invalid for biased sampling and modifications us-

ing, for example, inverse probability methods is necessary. This paper shows, for

a general transformation model, a rank estimation method based on prospective

sampling still applies, without any modification, to response-selective sampling.

Regression analysis with response-selective sampling is generally associated

with the fitted model. In particular, the estimation of the parameter of interest

with biased sampling usually relies on the model assumptions, such as the in-

verse probability method and the pseudo-likelihood method; see Binder (1992);
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Lin (2000); Wang (1996), and Tsai (2009). Recently, nonparametric tests and

estimation for right censored data with biased sampling can be found in Ning,

Qin and Shen (2010) and Huang and Qin (2010). A novel approach to analyze

length-selective data with semiparametric transformation and accelerated failure

time models has been developed by Shen, Ning and Qin (2009). We consider

a class of transformation models with response-selective sampling, under which

an unknown monotonic transformation of the response is linearly related to the

covariates with an unspecified error distribution. The transformation models

are called generalized accelerated failure time (GAFT) models in econometrics.

They include many popular models, such as the proportional hazards model, the

proportional odds model, and the accelerated failure time models or linear mod-

els. The response-selective sampling that we consider can be viewed as a special

case of the Heckman model; see Heckman (1977, 1979). This model assumes

an outcome linear regression model and a probit selection model. We consider

more general transformation models and assume the “selectivity/observability”

solely depends on the value of the response variable. In the case analysis of wage,

we assume the chance that a potential job is taken only depends on the wage

offered. The proposed estimating method does not depend on the specification

of the sampling probabilities, unlike the Heckman correction. There is a rich

literature on linear transformation models with a known error distribution; see,

for example, Dabrowska and Doksum (1988); Cheng, Wei and Ying (1995, 1997);

Chen, Jin and Ying (2002), and Zeng and Lin (2007). However, their meth-

ods cannot be directly applied to transformation models with an unknown error

distribution. Similarly, the case-control logistic regression method in Anderson

(1972) and Prentice and Pyke (1979) cannot be generalized directly.

In view of the importance of the response-selective sampling designs as well

as transformation models, an easy-to-implement estimation methodology, with

an advantage over the existing methods in terms of generality, is worth pursuing.

Conventional methods, such as least squares (LS) or least absolute deviations

(LAD) cannot be directly applied to response-selective sampling. The maximum

rank correlation (MRC) estimate, originated from Han (1987) for prospective

studies, is based on the rank correlation (Kendall’s τ) between two variables.

For illustration, consider a simple linear regression model

Yi = β′Xi + εi, 1 ≤ i ≤ n,

where the (Yi, Xi, εi) are independent and identically distributed (i.i.d.) copies

of (Y,X, ε). The idea of MRC estimation is to maximize the rank correlation



1702 KANI CHEN, YUANYUAN LIN, YUAN YAO AND CHAOXU ZHOU

between Yi and β′Xi with respect to β. Heuristically, given that β′Xi > β′Xj , it

is more likely that Yi > Yj than otherwise, that the rank of Yi and the rank of β′Xi

are positively correlated. A number of studies on MRC have been conducted.

Sherman (1993) proved its
√
n-consistency and asymptotic normality, and Khan

and Tamer (2007) extended this method to semiparametric models with censoring

by proposing the partial rank (PR) estimator. A smoothed partial rank (SPR)

estimator was considered in Song et al. (2007) for transformation models with

censoring.

We offer an estimator based on MRC for transformation models with response-

selective sampling that does not rely on any further model assumption. It works

equally well regardless of what the monotonic transformation is, as the MRC

estimate only depends on the ranks of responses. The estimation of the trans-

formation function, which is likely to be quite complex and computationally

burdensome, is not required. The proposed method is easy to implement and

computationally straightforward with the help of Nelder-Mead simplex direct

search. The Nelder-Mead simplex algorithm does not require convexity or conti-

nuity; see Nelder and Mead (1965). The MRC objective function is a U-statistic.

To avoid estimating the covariance matrix, we propose to use a random weighting

resampling scheme for inference. In addition, since prospective sampling can be

regarded as a special case of response-selective sampling, the proposed estimation

is valid for prospective sampling.

We describe the model in Section 2. The proposed estimation and its in-

ference with theoretical justification are presented in Section 3. A simulation

study with supportive evidence is given in Section 4. In Section 5, our method is

applied to the Forbes Global 2000 data set. The paper concludes with a remark

in Section 6. Proofs are deferred to the supplementary materials.

2. Model Description

Let (Y ∗,W ∗) be a response and a (d+ 1)-dimensional vector of covariates in

the population. Assume that

H(Y ∗) = θ′0W
∗ + ε∗, (2.1)

where H(·) is an unknown monotonically increasing function, ε∗ is the error,

independent of W ∗, with unspecified distribution, and θ0 is a (d+1)-dimensional

vector of regression coefficients. When H(·) is the identity function, (2.1) is a

linear regression model. When ε∗ follows the extreme-value distribution or the

standard logistic distribution, the resulting model is the proportional hazards
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model or the proportional odds model, respectively. As θ0 in (2.1) is not uniquely

defined, one can take ‖θ0‖ = 1. For convenience, we choose to fix the first

component of θ0, |θ0,1| = 1. Then, θ0 = (±1, β′0)
′, where β0 denotes the rest

components.

Accordingly, W ∗ can be decomposed as W ∗ = (Z∗, X∗), where Z∗ is the

covariate corresponding to the fixed regression coefficient and X∗ is the other

d-dimensional covariate. As we can replace Z∗ by −Z∗ if θ0,1 = −1, we can

further assume θ0,1 = 1 and then (2.1) can be rewritten as

H(Y ∗) = Z∗ + β′0X
∗ + ε∗. (2.2)

We point out that the parameter estimation does not vary with different decom-

positions of covariates regardless of a positive constant multiplication.

Let (Y,Z,X) be the response and covariates following the distribution P

of response-selective sampling. The nature of response-selective sampling im-

plies that, for any y, the conditional distribution of (X,Z) given Y = y is the

same as that of (X∗, Z∗) given Y ∗ = y. An alternative but equivalent def-

inition of response-selective sampling uses a sampling index ∆. Suppose the

response Y ∗ is observed if and only if the covariates (X∗, Z∗) are observed and

the response-covariates pair (Y ∗, X∗, Z∗) is observed if and only if ∆ = 1. Then

the response-selective sampling is defined by the conditional independence of ∆

and (X∗, Z∗) given Y ∗. And we can denote the observations as (Y ∗i , X
∗
i , Z

∗
i ,∆i)

where ∆i = 1 for i = 1, . . . , n. With biased-sampling, Wang (1996) provided a

novel pseudo-likelihood method for Cox’s proportional hazards model. A pseudo-

partial likelihood approach can be found in Tsai (2009). The existing methods

for Cox’s model with biased-sampling are conceptually appealing and have clear

interpretation. The pseudo-likelihood approach relies on the specification of pro-

portional hazards model, hence it cannot apply to all transformation models.

We know of no specific construction of regression analysis based on transforma-

tion models with response-selective sampling. We propose a general estimation

and inference procedure based on MRC for model (2.2) with response-selective

sampling. Our approach applies to all transformation models with or without

knowing the error distribution, and is therefore more robust.

3. Estimation and Inference

With response-selective sampling, the observations are (Yi, Zi, Xi), 1 ≤ i ≤
n, i.i.d. copies of (Y,Z,X). Throughout, I(·) is the indicator function. Similar

to Han (1987), the rank correlation for response-selective sampling is defined as
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Un(β) =
∑
i 6=j

I(Zi + β′Xi > Zj + β′Xj)I(Yi > Yj). (3.1)

The MRC estimate maximizes the rank correlation Un(β), say β̂n. Han (1987)

and Sherman (1993) established the consistency and asymptotic normality of β̂n
with data from prospective sampling. However, with response-selective sampling,

it is not clear whether the large sample properties still hold.

Theorem 1. Under regularity conditions C1-C6 given in the Appendix, as n→
∞, √

n(β̂n − β0)→ N
(
0, A−1B(A−1)′

)
in distribution, where the explicit forms of A and B are given in the supplemen-

tary materials.

The limiting covariance matrix of β̂n involves the derivative of conditional

expectation of the objective function, which can be difficult to estimate. To

circumvent this, we propose a distributional approximation based on a random

weighting method by externally generating i.i.d. random variables. Let e1, · · · , en
be a sequence of i.i.d. nonnegative random variables with mean 1 and variance

1. Take

Ũn(β) =
∑
i 6=j

eiejI(Zi + β′Xi > Zj + β′Xj)I(Yi > Yj) (3.2)

and β̃n = arg maxβ∈BŨn(β). The distribution of
√
n(β̂n − β0) can be approx-

imated by the resampling distribution of
√
n(β̃n − β̂n) when fixing the data

(Yi, Zi, Xi), 1 ≤ i ≤ n.

Proposition 1. Given {(Yi, Zi, Xi), 1 ≤ i ≤ n}, under regularity conditions

C1-C6 in the Appendix, as n→∞,
√
n(β̃n − β̂n)→ N

(
0, A−1B(A−1)′

)
in distribution, the asymptotic distribution of

√
n(β̂n − β0).

The resampling method based on random weighting for the U-statistic ob-

jective function is well established in Jin, Ying and Wei (2001). We omit the

proof here.

Remark 1. For computation, the numerical minimization is straightforward

with the Nelder-Mead simplex algorithm that does not require convexity or con-

tinuity. In simulations, we use the “fminsearch” function in Matlab directly to

search over a wide range of starting values in case there exist local maximizers.



REGRESSION ANALYSIS WITH RESPONSE-SELECTIVE SAMPLING 1705

Matlab code is available upon request. In addition, another slight problem is

that, with a large sample size or a large dimension of covariates, the computa-

tion is slower in simulations due to many replications. Algorithm proposed by

Abrevaya (1999) improves the complexity of computation for MRC from O(n2)

to O(n log n); it is available for large sample sizes. A smoothed approximation of

the indicator function considered by Song et al. (2007) can be applied for large

dimensions of covariates.

Remark 2. Our objective function Un(β) only depends on the responses through

their orders which are not changed by the unknown monotonically increasing

transformation H(·). Thus our estimate of β0 is invariant of the transformation

and estimating the unknown transformation H(·) can be avoided.

Remark 3. For data including cases with missing all covariates, the complete

observations can be regarded as drawn from a response-selective sampling pro-

vided the missing mechanism is missing-at-random.

Remark 4. Condition C3 in the Appendix is imposed to facilitate the proof

of consistency. We assume that the error distribution has a twice differentiable

density function with log-concavity. Although it looks somewhat restrictive, it

includes a number of widely used distributions, for example, N(0, σ2) and Pareto

family. Thus linear models with normal errors, Cox’s model, and the proportional

odds model are included. With increasing technicalities, this condition can be

loosened or dropped, as evidenced in our simulation results in Section 4.

4. Simulation Studies

Extensive simulation studies were conducted to examine the finite sample

performance of the proposed method. In the first, we consider the linear model

Y = Z +X1β1 +X2β2 + ε, (4.1)

where (β1, β2) = (1,−1), Z ∼ N(0, 1), and X1 and X2 follow a bivariate normal

distribution with mean (1,−0.5) and variance(
1 0.2

0.2 1

)
.

We also consider the linear model

Y = Z +X1β1 +X2β2 +X3β3 +X4β4 + ε, (4.2)

where (β1, β2, β3, β4) = (1,−1, 1,−1), Z ∼ N(0, 1), and X = (X1, X2, X3, X4)

follows a multivariate normal distribution with mean (1,−0.5, 1, 0.5) and unit
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Table 1. Simulation results for sampling schemes 1-3 with p = 2.

Scheme 1 Scheme 2 Scheme 3
β1 β2 β1 β2 β1 β2

ε ∼ Double exponential distribution
BIAS 0.0238 0.0030 0.0142 0.0216 0.0070 0.0206

SE 0.2213 0.2337 0.1887 0.1783 0.2447 0.2571
SEE 0.2286 0.2320 0.1816 0.1821 0.2464 0.2496
CP 0.9600 0.9600 0.9600 0.9700 0.9600 0.9600

ε ∼ Normal distribution
BIAS 0.0159 0.234 0.0020 0.0006 0.0262 0.0402

SE 0.1338 0.1430 0.1469 0.1442 0.4074 0.4028
SEE 0.1368 0.1356 0.1443 0.1431 0.3964 0.3907
CP 0.9600 0.9500 0.9500 0.9700 0.9600 0.9600

ε ∼ Extreme value distribution
BIAS 0.0390 0.0234 0.0169 0.0149 0.0451 0.0081

SE 0.1443 0.1339 0.0933 0.0963 0.2478 0.2227
SEE 0.1632 0.1638 0.0968 0.0967 0.2332 0.2381
CP 0.9700 0.9700 0.9500 0.9500 0.9500 0.9600

variance and equal correlation coefficients ρ = 0.2. Response-selective sampling

were conducted with the four different schemes. In schemes 1 and 2, the samples

were restricted to Y < −2 or Y > 4 and Y < −2 or Y > 2.5, respectively.

Scheme 3 is simply prospective sampling. In scheme 4, the sampling probability

was fixed as Φ(y − 2) for response value y.

Distributions for the error were the double exponential distribution with

parameter 1, the standard normal distribution, and the standard extreme value

distribution. The sample size was 200 and simulation results were based on 100

replications. The external random weights were generated from the standard

exponential distribution with 500 replications.

We only present the simulation results with the inverse probability weighted

method (IPW) for scheme 4 for comparison, in which the least squares estimating

equations are weighted by the correctly specified or misspecified sampling prob-

abilities. Here, for different sampling schemes, the IPW method with correctly

specified weights refers to the least squares estimation with the true sampling

probability as weights, and the IPW method with misspecified weights refers to

the least squares estimation with a unit vector as weights. The inverse probabil-

ity weighted cannot be directly applied to schemes 1-2 due to null observations

for some intervals in the range of the response and the lack of specification of

the sampling mechanism for the estimation of sampling probability. Sampling

scheme 3 was prospective sampling.
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Table 2. Simulation results for sampling schemes 1-3 with p = 4.

ε ∼ Double exponential ε ∼ Normal ε ∼ Extreme value

BIAS SE SEE CP BIAS SE SEE CP BIAS SE SEE CP

Scheme 1 β1 0.0014 0.1226 0.1365 0.9600 0.0098 0.1036 0.1007 0.9500 0.0138 0.0829 0.0798 0.9500

β2 0.0036 0.1453 0.1337 0.9600 0.0322 0.1047 0.0958 0.9500 0.0029 0.0821 0.0790 0.9600

β3 0.0240 0.1244 0.1311 0.9500 0.0174 0.1022 0.1000 0.9500 0.0069 0.0888 0.0810 0.9600

β4 0.0068 0.1313 0.1366 0.9500 0.0055 0.1035 0.0992 0.9400 0.0050 0.0852 0.0808 0.9600

Scheme 2 β1 0.0132 0.1064 0.0996 0.9600 0.0083 0.0905 0.0822 0.9400 0.0061 0.0894 0.0745 0.9400

β2 0.0076 0.1050 0.1005 0.9600 0.0070 0.0864 0.0829 0.9400 0.0169 0.0693 0.0761 0.9600

β3 0.0002 0.1115 0.0996 0.9600 0.0169 0.0819 0.0805 0.9500 0.0147 0.0798 0.0758 0.9500

β4 0.0100 0.1125 0.1045 0.9600 0.0070 0.0774 0.0805 0.9500 0.0155 0.0749 0.0746 0.9500

Scheme 3 β1 0.0087 0.0789 0.0727 0.9500 0.0079 0.0695 0.0652 0.9500 0.0090 0.0698 0.0707 0.9600

β2 0.0085 0.0896 0.0738 0.9500 0.0077 0.0702 0.0652 0.9600 0.0027 0.0892 0.0720 0.9400

β3 0.0096 0.0660 0.0707 0.9600 0.0107 0.0711 0.0659 0.9400 0.0057 0.0742 0.0706 0.9600

β4 0.0020 0.0816 0.0739 0.9600 0.0028 0.0611 0.0656 0.9500 0.0166 0.0791 0.0703 0.9400

In Tables 1–2, we present the bias of the estimates of the regression param-

eters β1 and β2 (BIAS), the empirical standard error (SE), the average of the

estimated standard errors (SEE), and the 95% coverage probabilities (CP) for

the proposed method. We present the estimation results for scheme 4 with the

proposed method and the inverse probability weighted (IPW) method in Table

3.

From Tables 1-3, the proposed method works well in all configurations. The

estimated standard errors based on random weighting are generally close to the

empirical standard errors. The proposed method gives more robust results than

the inverse probability weighted method (IPW) for sampling scheme 4. The IPW

with the true sampling probability as weight (correctly weighted) gives reasonable

results for normal error and double exponential error, but provides inaccurate

estimates with extreme value error. The IPW with misspecified weights gives

generally biased estimates. Overall, the first simulation contains supportive evi-

dence of the superiority of the proposed method in terms of both generality and

flexibility.

The second simulation was intended to show that condition C3 may just be

technical. Consider the model

Y = Z + β′X + ε,

where β = 1, Z ∼ N(0, 1), X ∼ N(0, 1), ε follows the mixture of the standard

normal distribution and a Bernoulli distribution with probability of success 0.5

and the mixture probabilities are (0.5, 0.5). The error distribution is not log-

concave and thus does not satisfy C3. Samples with values of the response
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Table 3. Simulation results for sampling scheme 4 with the proposed method and IPW.

Proposed IPW IPW
correctly weighted mis-weighted

BIAS SE SEE CP BIAS SE BIAS SE
ε ∼ Double exponential distribution

p = 2 β1 0.0302 0.1106 0.1142 0.9500 0.1080 0.1386 0.2630 0.0692
β2 0.0124 0.1083 0.1154 0.9600 0.0096 0.2723 0.1165 0.0861

p = 4 β1 0.0119 0.0995 0.0880 0.9500 0.0354 0.1498 0.0977 0.0917
β2 0.0089 0.0875 0.0889 0.9600 0.0030 0.1312 0.0853 0.0781
β3 0.0109 0.0840 0.0882 0.9600 0.0357 0.1432 0.0951 0.0892
β4 0.0062 0.0881 0.0897 0.9500 0.0068 0.1708 0.1553 0.1126

ε ∼ Normal distribution
p = 2 β1 0.0022 0.1092 0.0985 0.9400 0.0578 0.0849 0.1518 0.0487

β2 0.0253 0.1023 0.0958 0.9600 0.0118 0.1299 0.0782 0.0592
p = 4 β1 0.0126 0.0667 0.0694 0.9500 0.0227 0.1135 0.0629 0.0584

β2 0.0061 0.0829 0.0707 0.9400 0.0050 0.1454 0.0550 0.0623
β3 0.0054 0.0712 0.0715 0.9500 0.0061 0.1284 0.0440 0.0655
β4 0.0215 0.0676 0.0714 0.9600 0.0879 0.1388 0.0851 0.0758

ε ∼ Extreme value distribution
p = 2 β1 0.0073 0.0729 0.0853 0.9600 0.2398 0.1577 0.3679 0.0523

β2 0.0098 0.0951 0.0845 0.9500 0.1814 0.1798 0.2580 0.0728
p = 4 β1 0.0012 0.0699 0.0721 0.9600 0.1451 0.1258 0.1898 0.0685

β2 0.0018 0.0751 0.0702 0.9500 0.1109 0.2250 0.1769 0.0659
β3 0.0211 0.0707 0.0715 0.9600 0.1440 0.1256 0.2033 0.0690
β4 0.0050 0.0773 0.0730 0.9500 0.1079 0.1755 0.0863 0.0886

less than −1.5 or greater than 2.5 were drawn. The bias of the estimate was

0.0302. The empirical and estimated standard deviations were 0.1591 and 0.1479,

respectively. The proposed method may still work without assuming the log-

concavity of the error distribution.

The third simulation used a rather extreme example to demonstrate that a

biased sampling could be much more efficient than prospective sampling. Con-

sider the model

Y = Z + β′X + ε,

where β = 1, ε ∼ N(0, 10−4), Z ∼ N(0, 1), and X follows a distribution with

density function

fX(x) =


5 ∗ 10−5, if −105 ≤ x ≤ −5;

9.99, if −0.05 ≤ x ≤ 0.05;

5 ∗ 10−5, if 5 ≤ x ≤ 105.

For a response-selective sampling that only takes observations with responses
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larger than 4.5 or smaller than −4.5, the mean and standard deviation of the

estimates of β were 1.0004 and 0.0038, respectively. For prospective sampling,

the mean and standard deviation of the estimates of β were 1.0108 and 0.0576,

respectively. The relative efficiency for the response-selective sampling versus

the prospective sampling was 230. This indicates the possibility that response-

selective sampling can be designed more efficiently than prospective sampling in

terms of parameter estimation.

We conducted simulations with non-trivial transformation functions to show

the robustness of the proposed method. We generated data from the model:

H2(Y ) = Z +X1β1 +X2β2 + ε,

where H2(t) = {|t|λsgn(t) − 1}/λ with λ = 3, and (β1, β2), Z,X1, X2 the same

as in (4.1). We also generated data from the same model as (4.2) except with

the transformation function H2(·). The samples were obtained with the sam-

pling schemes 2 and 3 of the first simulation. The sample size was 200 and the

simulation results were based on 100 replications. We summarize the results

in Table 4, which contains strong evidence that the proposed method is indeed

robust/insensitive to the transformation function.

Overall, the results of simulation studies agree with the theory, and the

consistency and asymptotic normality established in Theorem 1 might hold in

more general scenarios without the technical conditions.

5. Application

We applied the proposed method to the Forbes Global 2000 data published

in 2012. The data set contains the profits, assets, and market value for com-

panies of the Forbes Global 2000. It is commonly known that profits measure

the financial performance of the companies and assets indicate their size. The

purpose here was to analyze the relationship among market value, profits, and

assets of companies with the existing Forbes Global 2000 data. The companies

on the Forbes Global 2000 list, the biggest and most powerful companies in the

world, are in fact a biased sampling from the general population. We deleted

four records with zero values for market value, profits, and assets. The sample

size was n = 1996. We fit the transformation model to the data with covariates

X1 = assets/250, Z = profits, and response Y=market value with the proposed

method. For identifiability, we set the coefficient of Z to 1. The random weights

were generated from the standard exponential distribution with resampling times

N = 500. The estimate of the coefficient of X1 was 0.2912 and the estimated
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Table 4. Simulation results with the non-trivial transformation function H2(·).

Sampling Proposed
scheme BIAS SE SEE CP

ε ∼ Standard extreme value distribution
p = 2 Scheme 2 β1 0.0014 0.1025 0.0948 0.9500

β2 0.0094 0.1016 0.0928 0.9400
p = 4 Scheme 2 β1 0.0072 0.0830 0.0733 0.9600

β2 0.0101 0.0869 0.0737 0.9400
β3 0.0045 0.0882 0.0748 0.9600
β4 0.0093 0.0861 0.0743 0.9700

p = 2 Scheme 3 β1 0.0073 0.0847 0.0807 0.9600
β2 0.0103 0.0892 0.0863 0.9400

p = 4 Scheme 3 β1 0.0072 0.0707 0.0723 0.9500
β2 0.0063 0.0732 0.0723 0.9500
β3 0.0153 0.0751 0.0711 0.9400
β4 0.0012 0.0738 0.0707 0.9500

ε ∼ Standard normal distribution
p = 2 Scheme 2 β1 0.0106 0.1684 0.1758 0.9600

β2 0.0101 0.1670 0.1623 0.9600
p = 4 Scheme 2 β1 0.0080 0.0992 0.0995 0.9700

β2 0.0100 0.1003 0.1024 0.9500
β3 0.0080 0.1035 0.1005 0.9500
β4 0.0090 0.0975 0.1003 0.9600

p = 2 Scheme 3 β1 0.0055 0.0874 0.0817 0.9500
β2 0.0048 0.0849 0.0796 0.9400

p = 4 Scheme 3 β1 0.0080 0.0761 0.0682 0.9400
β2 0.0111 0.0716 0.0677 0.9500
β3 0.0024 0.0720 0.0685 0.9500
β4 0.0077 0.0757 0.0698 0.9600

standard error was 0.0503. For comparison, we also fit the same model with

known logarithmic transformation function with the IPW method, in which the

least squares estimating equation was weighted by the reciprocal of the market

value divided by the maximum observed value of market value. We estimated

the standard error by the random weighting resampling method. The IPW gave

the estimate of the coefficient of X1 as 0.4872 with the estimated standard error

0.6878.

6. Concluding Remarks

This paper gives a general method of regression analysis based on the method

of MRC for transformation models with response-selective sampling. For identi-

fiability of the model, the first component of the parameter is fixed as ±1, and
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then the comparison between the proposed method and other methods is essen-

tially to compare the relative ratios of the coefficients when the data is simulated

with more general set of coefficients, say, the first component not necessarily ±1.

Consistency and asymptotic normality of the proposed estimator are shown.

Simulation studies show that response-selective sampling gives a more efficient

estimation than prospective sampling in certain situations, and the proposed es-

timator works well for a variety of sampling schemes and models. In addition,

the nature of the MRC method implies that the estimation does not vary with

different monotonic transformations, avoiding the estimation of the transforma-

tion functions. Furthermore, this method can be applied to general models of

the form

Y ∗ = D · F (θ′0W
∗, ε∗), (6.1)

where Y ∗, W ∗, θ0 and ε∗ are defined as in Section 2. D : R → R is a non-

degenerate, monotonic function and F : R2 → R is strictly monotonic in each of

the variables. Though we cannot separate the covariate term and the error term

in this model, our estimation and inference procedure can still be applied as long

as the monotonicity assumptions of the composite transformation D ·F are valid.

Supplementary Materials

Supplementary materials include proof of Theorem 1.
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Appendix: Regularity Conditions

We assume the regularity conditions hold:

C1) The unknown parameter β lies in a bounded space B ⊂ Rd;
C2) Both of Z∗ and X∗ have continuously differentiable density functions to the
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second order;

C3) fε∗ is log-concave (i.e., log fε∗ is concave);

C4) (Identifiability condition) ξ(β) := (β − β0)′(X∗2 − X∗1 ) = 0 almost surely if

and only if β = β0.

Let Ω = (Y, Z,X) denote an observation from the distribution P on the set

S ⊆ R⊗ R⊗ Rd. For each ω = (y, z, x) in S and each β in B, define

τ(ω, β) = E[I{Y < y}I{βX +Z < βx+ z}] +E[I{Y > y}I{βX +Z > βx+ z}].

Write ∇m for the mth-partial derivative operator of a function σ with respect to

θ = (θ1, . . . , θd) ∈ Rd, and

|∇m|σ(θ) =
∑

i1,...,im

∣∣∣∣ ∂m

∂θi1 · · · ∂θim
σ(θ)

∣∣∣∣ .
The next two conditions guarantee a Taylor expansion of τ(ω, ·) about β0:

C5) E|∇1τ(·, β0)|2 <∞;

C6) E|∇2|τ(·, β0) <∞.
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