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Abstract: Latin hypercube designs (LHDs) have found wide applications in com-

puter experiments. Some methods have been proposed to construct orthogonal (or

nearly orthogonal) LHDs. This paper proposes methods for expanding a fold-over

orthogonal (or nearly orthogonal) LHD to a nearly orthogonal LHD which is able to

accommodate many factors. The number of factors is flexible and can be almost as

twice large as the number of factors of the original LHD, while the run size remains

unchanged. It is shown that the upper bound of the maximum correlation between

any two distinct columns of the resulting design is very small (smaller than 0.10 for

most cases). The proposed methods can be applied to any fold-over LHDs.

Key words and phrases: Computer experiment, correlation, Latin hypercube design,

orthogonality.

1. Introduction

Designs of computer experiments have received a great deal of attention

in the past decades. Scientists are increasingly using experiments on computer

simulators to help understand complicated physical phenomena (Fang, Li, and

Sudjianto (2006)). Latin hypercube designs (LHDs), introduced by McKay,

Beckman, and Conover (1979), have been popularly used for computer exper-

iments because of their uniform coverage property. An n × k LHD, denoted by

LHD(n, k), is a matrix of k columns each being a permutation of n equally-

spaced levels. In this paper, the n levels of an LHD(n, k) are taken to be

{−(n− 1)/2,−(n− 3)/2, . . . , (n− 1)/2}. Orthogonality is an important criterion

for evaluating LHDs. An LHD is called orthogonal if the correlation coefficient

between any two distinct columns in the design is zero. For any design L =

(l1, . . . , lk), where li is the ith column of L, we define ρij(L) = l′ilj/(l
′
ilil

′
jlj)

1/2.

If the sum of the elements in li for all i = 1, . . . , k is zero (i.e., centerized),

then ρij(L) is simply the correlation coefficient between li and lj . A design

L is called column-orthogonal if ρij(L) = 0 for all i ̸= j. Otherwise, take

ρM (L) = maxi<j |ρij(L)| to be the maximum correlation of L. For an LHD

in this paper, column-orthogonality is equivalent to orthogonality since it has

centered levels.
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For first-order polynomial models, orthogonal LHDs are useful because they

ensure the estimates of linear effects are uncorrelated. Construction of orthogonal

LHDs has been widely studied, see e.g., Ye (1998), Steinberg and Lin (2006),

Cioppa and Lucas (2007), Bingham, Sitter, and Tang (2009), Pang, Liu, and

Lin (2009), Georgiou (2009), Lin, Mukerjee, and Tang (2009), Sun, Liu, and

Lin (2009, 2010), Lin et al. (2010), Sun, Pang, and Liu (2011), Georgiou and

Stylianou (2011) (and its corrigendum Georgiou and Stylianou (2012)), Yang and

Liu (2012), and Georgiou and Efthimiou (2014), among others. Note that some

of them considered LHDs with fold-over structures, which makes sure that the

sum of elementwise product of any three columns is zero. However, the resulting

LHDs of these methods usually have severe restrictions on the design dimensions.

Georgiou and Stylianou (2011), Yang and Liu (2012), and Efthimiou, Georgiou,

and Liu (2014) constructed nearly orthogonal LHDs by adding runs to existing

LHDs. Inevitably, these methods increase experimental costs. By contrast, our

studies show how to accommodate more design columns while keeping (near)

orthogonality and the same run size. The resulting designs have larger factor-to-

run ratios and are more economical.

We propose new methods to construct nearly orthogonal LHDs with flexible

run sizes. The number of possible factors is flexible, and can be almost as large

as the run size. Bingham, Sitter, and Tang (2009) Lin, Mukerjee, and Tang

(2009), Lin et al. (2010), Sun, Pang, and Liu (2011), and Gu and Yang (2013)

also constructed nearly orthogonal LHDs. In particular, the method of adding

columns to the fold-over LHDs of Sun, Liu, and Lin (2009), proposed by Gu and

Yang (2013), can be regarded as a special case of ours. As will be seen in Section

3, the resulting LHDs in this paper can study more factors than the existing

designs with the same run sizes (under the restriction of small correlations).

In addition, though there are some algorithmic methods intended for searching

nearly orthogonal LHDs of any sizes, they are not always able to find designs with

good properties and are too cumbersome for finding designs even with moderate

sizes. The proposed methods are shown to have high efficiency even for LHDs

with large sizes, and the resulting designs have small correlations between distinct

columns.

This paper is organized as follows. Section 2 proposes the new construction

methods. The upper bound of the maximum correlation of the resulting LHDs is

also provided. Section 3 shows some results and comparisons among the existing

methods and the proposed methods. Concluding remarks are provided in Section

4. All proofs are deferred to the Appendix.
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2. The Construction Methods

A design is fold-over if when d is one of its rows, −d is also one of its rows. In

this section, we consider adding columns (H) to a fold-over orthogonal or nearly

orthogonal LHD (L), such that the combined design (L,H) is an LHD with a

small correlation between distinct columns. The run size is unchanged.

2.1. Construction by adding columns to a 2n-run LHD

Consider the case that L is an LHD(2n,m) with L = (D′,−D′)′. Let h be

any column of H. Here, to reduce the correlation between h and any column of

L, it is natural to assign the two closest levels of h to the ith and (n+ i)th rows,

i = 1, . . . , n (Gu and Yang (2013)). It is then desirable that the 2n × 1 column

h satisfies

(a) h is a permutation of {−(2n− 1)/2,−(2n− 3)/2, . . . , (2n− 1)/2}; and
(b) for i = 1, . . . , n, |hi − hn+i| = 1.

Theorem 1. For n ≥ 2, if ρhj is the correlation coefficient between a column h

satisfying (a) and (b) and the jth column of L, j = 1, . . . ,m, then

|ρhj | ≤
3n

4n2 − 1
. (2.1)

The upper bound in (2.1) is less than 0.1 when n ≥ 8. We now provide an

algorithm to generate the design H such that any column h of H satisfies (a)

and (b).

Algorithm 1 (Construction of H when L has a run size of 2n).

Step 1. Take X to be an orthogonal or nearly orthogonal LHD(n, k).

Step 2. Take E = 2X−Jnk/2 and F = 2X+Jnk/2, where Jnk is an n×k matrix

with all elements unity.

Step 3. Take H = (E′, F ′)′.

Theorem 2. For an H constructed via Algorithm 1,

(i) each column of H satisfies (a) and (b);

(ii) H is a nearly orthogonal LHD(2n, k) with

ρij(H) =
4(n2 − 1)ρij(X) + 3

4n2 − 1
, for any i ̸= j; and (2.2)

(iii) if X has a fold-over structure, so does H.
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Corollary 1. For n ≥ 2, suppose L is a fold-over orthogonal or nearly orthogonal
LHD(2n,m). The design (L,H) formed by combining L and an H in Algorithm
1 is a nearly orthogonal LHD(2n,m+ k) with

ρM ((L,H)) ≤ max

{
ρM (L),

3n

4n2 − 1
,
4(n2 − 1)ρM (X) + 3

4n2 − 1

}
.

Example 1. Suppose L is the fold-over orthogonal LHD(24, 12) in Georgiou and
Efthimiou (2014), and X is the nearly orthogonal LHD(12, 11) with ρM (X) =
0.056 constructed by the algorithm of Lin (2008) (L and X are listed in Tables S1
and S2, respectively, in the supplementary materials). Algorithm 1 gives a nearly
orthogonal LHD(24, 23) of H (Table S3 in the supplementary materials) with
ρM (H) = 0.0609. According to Theorem 1, the maximum correlation between
any column of H and any column of L is less than 3n/(4n2 − 1) = 0.0626
(in fact, it is 0.0365). Thus (L,H) is a nearly orthogonal LHD(24, 23) with
ρM ((L,H)) = 0.0609. This design is apparently new and not a product of any
existing method.

Algorithm 1 is easy to implement. ThoughH is generally not orthogonal, the
correlation between any two distinct columns of H is quite small and is smaller
than the upper bound in (2.1) if ρM (X) < 3/(4(n + 1)), thus will not increase
the maximum correlation of the whole matrix (L,H). However, sometimes it is
desirable to have a much smaller maximum correlation ρM (H). To accomplish
this, we offer a modified algorithm.

Definition 1. The sign matrix of an n×m matrix A = (aij) is an n×m matrix
SA = (sij) with

sij =

{
1, if aij ≥ 0;

−1, if aij < 0.

Algorithm 2 (Modified construction of H when L has a run size of 2n).

Step 1. Take X = (xij) to be an orthogonal or nearly orthogonal LHD(n, k) with
SX = (sij) as its sign matrix.

Step 2. Take E = (eij) with

eij =

{
sij(2|xij | − 1

2), for 1 ≤ i ≤ ⌈n2 ⌉;

sij(2|xij |+ 1
2), for ⌈n2 ⌉+ 1 ≤ i ≤ n,

where ⌈c⌉ is the smallest integer not less than c.

Step 3. Take F = (fij) with

fij =

{
sij(2|xij |+ 1

2), for 1 ≤ i ≤ ⌈n2 ⌉;

sij(2|xij | − 1
2), for ⌈n2 ⌉+ 1 ≤ i ≤ n.
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Step 4. Take H = (E′, F ′)′.

Theorem 3. For an H constructed via Algorithm 2,

(i) each column of H satisfies (a) and (b);

(ii) H is a nearly orthogonal LHD(2n, k) with

ρij(H) =
4(n2 − 1)ρij(X) + 3ρij(SX)

4n2 − 1
, for any i ̸= j; and (2.3)

(iii) if X has a fold-over structure, so does H.

Corollary 2. For n ≥ 2, suppose L is a fold-over orthogonal or nearly orthogonal

LHD(2n,m). The design (L,H) formed by combining L and an H in Algorithm

2 is a nearly orthogonal LHD(2n,m+ k) with

ρM ((L,H)) ≤ max

{
ρM (L),

3n

4n2 − 1
,
4(n2 − 1)ρM (X) + 3ρM (SX)

4n2 − 1

}
.

Corollary 3. For the H constructed via Algorithm 2, if SX is column-orthogonal,

then

ρij(H) =
4(n2 − 1)ρij(X)

4n2 − 1
, for any i ̸= j.

Furthermore if X is orthogonal, then so is H.

Remark 1. In Algorithm 2, let the matrices E and F be specified by

eij =



sij(2|xij | − 1
2), for i ≤ ⌈n2 ⌉ and j ≤ ⌈k2⌉,

sij(2|xij |+ 1
2), for i ≥ ⌈n2 ⌉+ 1 and j ≤ ⌈k2⌉,

sij(2|xij |+ 1
2), for i ≤ ⌈n2 ⌉ and j ≥ ⌈k2⌉+ 1,

sij(2|xij | − 1
2), for i ≥ ⌈n2 ⌉+ 1 and j ≥ ⌈k2⌉+ 1;

fij =



sij(2|xij |+ 1
2), for i ≤ ⌈n2 ⌉ and j ≤ ⌈k2⌉,

sij(2|xij | − 1
2), for i ≥ ⌈n2 ⌉+ 1 and j ≤ ⌈k2⌉,

sij(2|xij | − 1
2), for i ≤ ⌈n2 ⌉ and j ≥ ⌈k2⌉+ 1,

sij(2|xij |+ 1
2), for i ≥ ⌈n2 ⌉+ 1 and j ≥ ⌈k2⌉+ 1.

Theorem 3 still holds. Algorithm 4 in Gu and Yang (2013) is a special case of

Algorithm 2.

Example 2. Let L and X be the fold-over orthogonal LHD(64, 32) and LHD(32,

16) constructed in Sun, Liu, and Lin (2009) (see Tables S4–S6 in the supplemen-

tary materials). From Lemma 1 in Sun, Liu, and Lin (2009), ρM (SX) = 0.
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Then Algorithm 2 gives an orthogonal LHD(64, 16) of H. In addition, H has

a fold-over structure. The maximum correlation between any column of H and

any column of L is 0.0234. Thus (L,H) is a nearly orthogonal LHD(64, 48)

with ρM ((L,H)) = 0.0234; this is smaller than the 0.0238 of the LHD(64, 48)

constructed by Lin, Mukerjee, and Tang (2009).

The condition that SX is column-orthogonal is rather common for an or-

thogonal or nearly orthogonal LHD X. Most of the fold-over orthogonal LHDs

with even run sizes constructed by, for example, Ye (1998), Sun, Liu, and Lin

(2009, 2010), Georgiou (2009), Georgiou and Stylianou (2011), Yang and Liu

(2012), and Georgiou and Efthimiou (2014) satisfy this condition. Even if SX is

not column-orthogonal, the value ρij(SX) in (2.3) is usually quite small. Thus

the value in (2.3) is usually much smaller than that in (2.2). Hence, Algorithm

2 provides an LHD with a lower maximum correlation than Algorithm 1 does. If

the bound given in Theorem 2 is acceptable, we recommend Algorithm 1, as it

is a much straightforward approach.

2.2. Construction by adding columns to a (2n+ 1)-run LHD

Consider the case that L is an LHD(2n + 1,m) with L = (D′, 0m,−D′)′,

where 0m denotes an m × 1 vector with all entries zero. Let h be any column

of H. To reduce the correlation between h and any column of L, we require the

(2n+ 1)× 1 column h to satisfy (see, Gu and Yang (2013))

(c) the column h is a permutation of {−n,−(n− 1), . . . , n}; and
(d) for i = 1, . . . , n, |hi − hn+1+i| = 1 and hn+1 = 0.

Theorem 4. For n ≥ 2, if ρhj is the correlation coefficient between a column h

satisfying (c) and (d) and the jth column of L, j = 1, . . . ,m, then

|ρhj | ≤
3

4n+ 2
. (2.4)

The upper bound in (2.4) is less than 0.1 when n ≥ 7.

Algorithm 3 (Construction of H when L has 2n+ 1 runs).

Step 1. Take X = (xij) to be an orthogonal or nearly orthogonal LHD(n, k) with

SX = (sij) as its sign matrix (note that the sum of the elements in each

column of SX is zero if n is even).

Step 2. Take E = (eij) with

eij =

{
2xij , for 1 ≤ i ≤ ⌈n2 ⌉;

sij(2|xij |+ 1), for ⌈n2 ⌉+ 1 ≤ i ≤ n.
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Step 3. Take F = (fij) with

fij =

{
sij(2|xij |+ 1), for 1 ≤ i ≤ ⌈n2 ⌉;

2xij , for ⌈n2 ⌉+ 1 ≤ i ≤ n.

Step 4. If n is even, let H = (E′, 0k, F
′)′; otherwise, let H = (E′,−1k, F

′)′, where

1k denotes a k × 1 vector with all entries unity.

Theorem 5. For an H constructed in Algorithm 3,

(i) each column of H satisfies (c) and (d);

(ii) H is a nearly orthogonal LHD(2n+ 1, k) with

|ρij(H)| ≤ 2(n− 1)|ρij(X)|
2n+ 1

+
3n+ 3|ρij(SX)|
2n2 + 3n+ 1

; (2.5)

(iii) for an even n, if both X and SX are orthogonal and S′
XX +X ′SX = n2Ik/2,

where Ik denotes the identity matrix of order k, then H is orthogonal;

(iv) for an odd n, if X is orthogonal (note that SX cannot be column-orthogonal

in this case) and S′
XX +X ′SX = (n2 − 1)Ik/2, then

|ρij(H)| ≤ 3|ρij(SX)|
2n2 + 3n+ 1

+
3

n(2n2 + 3n+ 1)
; and

(v) if X has a fold-over structure, so does H.

Corollary 4. For any n ≥ 2, suppose L is a fold-over orthogonal or nearly

orthogonal LHD(2n+ 1,m). The design (L,H), formed by combining L and an

H constructed in Algorithm 3, is a nearly orthogonal LHD(2n+ 1,m+ k) with

ρM ((L,H)) ≤ max

{
ρM (L),

3

4n+ 2
,
2(n− 1)ρM (X)

2n+ 1
+

3n+ 3ρM (SX)

2n2 + 3n+ 1

}
.

Remark 2. In Algorithm 3, if we exchange the right ⌈k/2⌉ columns of E and

F as in Remark 1, Theorem 5 still holds. In this case, Algorithm 3 in Gu and

Yang (2013) is a special case of Algorithm 3.

Remark 3. There are many fold-over LHDs satisfying the conditions in Theorem

5(iii) and (iv); see, for example, the orthogonal LHDs constructed by Ye (1998),

Sun, Liu, and Lin (2009, 2010), Georgiou (2009), Georgiou and Stylianou (2011),

Yang and Liu (2012), and Georgiou and Efthimiou (2014).

Example 3. Suppose L is the fold-over orthogonal LHD(49, 24) (Table S7 in the

supplementary materials) constructed in Georgiou and Stylianou (2011), and X

is the nearly orthogonal LHD(24, 23) constructed in Example 1. It can be checked
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Table 1. Some existing methods for constructing the L.

Method Run size N Number of factors
Ye 2r+1 or 2r+1 + 1 2r
CL 2r+1 or 2r+1 + 1 1 + r +

(
r
2

)
Ge 4, 5, 8, 9, 16, 17 2, 2, 4, 4, 8, 8, respectively
SLL c2r+1 or c2r+1 + 1 2r

YL c2r+1 + i, i = 0, 1, 2, 3 2r

GS 7, 8k + 3 3, 4k(k = 1, . . . , 6), respectively
8k + i, i = 0, 1, 2 4k(k = 1, . . . , 6, 8)

GE 2mk or 2mk + 1 m = 12, 16, 20, 24
EGL 2mk + 2 or 2mk + 3 m = 2, 4, 8, 12, 16, 20, 24

that ρM (SX) = 0.3333. Algorithm 3 gives a nearly orthogonal LHD(49, 23) of H

with ρM (H) = 0.0580. The maximum correlation between any column of H and

any column of L is 0.0306. Thus (L,H) is a nearly orthogonal LHD(49, 47) with

ρM ((L,H)) = 0.0580. This design is new.

3. Some Results and Comparisons

The methods in the previous section are able to accommodate more columns

to nearly orthogonal LHDs. To apply them, we need fold-over orthogonal (or

nearly orthogonal) LHDs L with N = 2n or 2n + 1 runs, and orthogonal (or

nearly orthogonal) LHDs X with n runs. The existences of these two classes of

designs are thus critical to the proposed methods. Table 1 provides some existing

methods for constructing L. For the simplicity, denote the methods of Ye (1998),

Cioppa and Lucas (2007), Georgiou (2009), Sun, Liu, and Lin (2009, 2010), Geor-

giou and Stylianou (2011), Yang and Liu (2012), Georgiou and Efthimiou (2014),

and Efthimiou, Georgiou, and Liu (2014) by Ye, CL, Ge, SLL, GS, YL, GE, and

EGL, respectively. They can all be used to construct the design L. For the

design X, any orthogonal or nearly orthogonal LHDs with n runs can be used,

for example the designs systematically constructed by the methods mentioned in

Table 1, and by Steinberg and Lin (2006), Lin, Mukerjee, and Tang (2009), Lin

et al. (2010), and Gu and Yang (2013). There are also some algorithmic meth-

ods for searching such designs, including particle swarm optimization (Chen et

al. (2013); Leatherman, Dean, and Santner (2014)), simulated annealing (Morris

and Mitchell (1995)), some versions of genetic algorithms (e.g., Bates, Sienz, and

Toropov (2004); Liefvendahl and Stocki (2006)), the search algorithm proposed

by Lin (2008), and so on. These algorithmic methods could be used to search for

a nearly orthogonal LHD of any size. However, the resulting designs often have

relatively large correlation coefficients. In addition, even for moderate n (n > 30,

say), the algorithmic methods may fail to produce LHDs with small correlations

and relatively large column sizes because of the cost of computation. By contrast,
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Table 2. Some nearly orthogonal LHDs with N < 100 runs.

Generated design L [source] X [source] Method
LHD(16, 15) LHD(16, 8) [YL] LHD(8, 7) [Lin] Algorithm 1 or 2
LHD(17, 15) LHD(17, 8) [YL] LHD(8, 7) [Lin] Algorithm 3
LHD(18, 16) LHD(18, 8) [YL] LHD(9, 8) [Lin] Algorithm 1 or 2
LHD(19, 16) LHD(19, 8) [YL] LHD(9, 8) [Lin] Algorithm 3
LHD(24, 23) LHD(24, 12) [GE] LHD(12, 11) [Lin] Algorithm 1 or 2
LHD(25, 23) LHD(25, 12) [GE] LHD(12, 11) [Lin] Algorithm 3
LHD(26, 24) LHD(26, 12) [GS] LHD(13, 12) [Lin] Algorithm 1 or 2
LHD(27, 24) LHD(27, 12) [GS] LHD(13, 12) [Lin] Algorithm 3
LHD(32, 31) LHD(32, 16) [YL] LHD(16, 15) [Lin] Algorithm 1 or 2
LHD(33, 31) LHD(33, 16) [YL] LHD(16, 15) [Lin] Algorithm 3
LHD(34, 32) LHD(34, 16) [YL] LHD(17, 16) [Lin] Algorithm 1 or 2
LHD(35, 32) LHD(35, 16) [YL] LHD(17, 16) [Lin] Algorithm 3
LHD(48, 47) LHD(48, 24) [GE] LHD(24, 23) Algorithm 1 or 2
LHD(49, 47) LHD(49, 24) [GE] LHD(24, 23) Algorithm 3
LHD(50, 47) LHD(50, 24) [GS] LHD(25, 23) Algorithm 1 or 2
LHD(51, 47) LHD(51, 24) [GS] LHD(25, 23) Algorithm 3
LHD(64, 63) LHD(64, 32) [SLL] LHD(32, 31) Algorithm 1 or 2
LHD(65, 63) LHD(65, 32) [SLL] LHD(32, 31) Algorithm 3
LHD(66, 63) LHD(66, 32) [YL] LHD(33, 31) Algorithm 1 or 2
LHD(67, 63) LHD(67, 32) [YL] LHD(33, 31) Algorithm 3
LHD(96, 71) LHD(96, 24) [GE] LHD(48, 47) Algorithm 1 or 2
LHD(97, 71) LHD(97, 24) [GE] LHD(48, 47) Algorithm 3

Note: YL=Yang and Liu (2012); Lin=Lin (2008); GE=Georgiou and Efthimiou (2014);

GS=Georgiou and Stylianou (2011); SLL=Sun, Liu, and Lin (2009).

the proposed methods in Section 2 offer a systematic procedure for constructing

nearly orthogonal LHDs with smaller correlations as well as the ability to ac-

commodate more columns. The procedure is easy to implement and outperforms

other algorithmic methods (especially for large run sizes). Nevertheless, other

algorithmic methods can be straightforwardly incorporated into our proposed al-

gorithms for generating the design X as well. For example, Lin (2008) provided

the smallest maximum correlations of some orthogonal and nearly orthogonal

LHDs according to her algorithm. Based on these designs and our proposed

methods, we can obtain other nearly orthogonal LHDs.

Table 2 presents some nearly orthogonal LHDs constructed via the proposed

methods. The first column displays the newly generated nearly orthogonal LHDs.

The second and third columns list the designs L and X used for the construction

of the corresponding generated LHDs with the contents in the brackets being their

sources. Note that the designs X without sources are the generated designs with

the same sizes from the first column of the same table. The last column lists

the corresponding construction algorithms. Table 2 reveals that the proposed
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methods can produce designs which are able to accommodate a large number of

factors. The numbers of factors of the generated LHDs are almost as large as

the corresponding run sizes, which indicates that the LHDs we obtain have more

flexible choices for the numbers of factors.

4. Concluding Remarks

We have proposed methods to expand a fold-over orthogonal (or nearly or-

thogonal) LHD to a nearly orthogonal LHD of a larger column size. The method

is easy to implement. The number of possible factors of the resulting design is

flexible—it can be made as large as nearly the run size while maintaining the

run size. The upper bound of the maximum correlation of any of the resulting

LHDs is quite small. Since only the fold-over structure is required for the origi-

nal designs, the proposed methods work for expanding any fold-over LHDs, not

restricted to the ones referred in this paper.

Efthimiou, Georgiou, and Liu (2014) and some other references constructed

nearly orthogonal LHDs by adding runs to the existing LHDs, while we accom-

modate more design columns while keeping the same run size and preserving

near orthogonality. This is important as computer experiments often look at

more factors than existing orthogonal LHDs can afford (Butler (2005)).

This paper focuses on expanding fold-over LHDs while still keeping their near

orthogonality. For LHDs without fold-over structure, the proposed methods do

not work. How to extend our work to enlarge LHDs without fold-over structure

is an issue worth further study.
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Appendix: Proofs

A.1. Proof of Theorem 1

The proof is similar to that of Theorems 1 and 2 in Gu and Yang (2013),

and is omitted. Note that n = 2c is required in Gu and Yang (2013), while the

result here works for any positive integer greater than 1.



NEARLY ORTHOGONAL LATIN HYPERCUBE DESIGNS 1609

A.2. Proof of Theorem 2

Each column of X is a permutation of {−(n − 1)/2,−(n − 3)/2, . . . , (n −
3)/2, (n−1)/2}. Thus each column of E is a permutation of {−(2n−1)/2,−(2n−
5)/2, . . . , (2n − 7)/2, (2n − 3)/2}, and each column of F is a permutation of

{−(2n− 3)/2,−(2n− 7)/2, . . . , (2n− 5)/2, (2n− 1)/2}. Parts (i) and (iii) follow

from the structures of E and F in Step 2 of Algorithm 1. Hence, we need only to

prove Part (ii). It is clear that H is an LHD. From the structure of H, we have

H ′H = E′E + F ′F

= (2X − 1

2
Jnk)

′(2X − 1

2
Jnk) + (2X +

1

2
Jnk)

′(2X +
1

2
Jnk)

= 8X ′X +
1

2
J ′
nkJnk

= 8X ′X +
n

2
Jkk.

This indicates that

ρij(H) =
8n(n+ 1)(n− 1)ρij(X)/12 + n/2

n(2n+ 1)(2n− 1)/6

=
4(n2 − 1)ρij(X) + 3

4n2 − 1

by noting that x′x = n(n+ 1)(n− 1)/12 for any column x of X. This completes

the proof.

A.3. Proof of Theorem 3

For j = 1, . . . , k, the jth column of H is a permutation of {s1j(2|x1j | −
1/2), . . . , snj(2|xnj | − 1/2), s1j(2|x1j | + 1/2), . . . , snj(2|xnj | + 1/2)}, which is in

fact a permutation of {−(2n − 1)/2,−(2n − 3)/2, . . . , (2n − 3)/2, (2n − 1)/2}.
Part (i) follows from the structures of E and F in Steps 2 and 3 of Algorithm

2. For Part (ii), it is clear that H is an LHD. For i, j = 1, . . . , k and i ̸= j, the

inner product between the ith and jth columns of H is

n∑
t=1

(
sti(2|xti| −

1

2
)stj(2|xtj | −

1

2
)
)
+

n∑
t=1

(
sti(2|xti|+

1

2
)stj(2|xtj |+

1

2
)
)

=

n∑
t=1

(
8stistj |xti||xtj |+

1

2
stistj

)
=

n∑
t=1

(
8xtixtj +

1

2
stistj

)
.
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Thus

ρij(H) =
8n(n+ 1)(n− 1)ρij(X)/12 + nρij(SX)/2

n(2n+ 1)(2n− 1)/6

=
4(n2 − 1)ρij(X) + 3ρij(SX)

4n2 − 1
.

For Part (iii), if X is a fold-over design, without loss of generality, sup-
pose X = (X ′

1,−X ′
1)

′ if n is even and X = (X ′
1, 0k,−X ′

1)
′ if n is odd. Then

for the tth row, say et, of E, et = (st1(2|xt1| − 1/2), . . . , stk(2|xtk| − 1/2))
for t ≤ ⌈(n − 1)/2⌉, the (t + ⌈n/2⌉)th row of F is (s(t+⌈n/2⌉)1(2|x(t+⌈n/2⌉)1| −
1/2), . . . , s(t+⌈n/2⌉)k(2|x(t+⌈n/2⌉)k| − 1/2)) = −et. Similarly, for t > ⌈n/2⌉, the
(t − ⌈n/2⌉)th row of F is −et. When n is odd, the ⌈n/2⌉th row of E is
(−1/2, . . . ,−1/2) and the ⌈n/2⌉th row of F is (1/2, . . . , 1/2). Thus H has a
fold-over structure.

A.4. Proof of Theorem 4

The proof is similar to that of Theorem 1 of Gu and Yang (2013), and is
omitted. Note that n = 2c is required in Gu and Yang (2013), while the result
here works for any positive integer greater than 1.

A.5. Proof of Theorem 5

The proofs of Parts (i) and (v) are similar to that of Theorem 3 and are
omitted. For Part (ii), we need only prove (2.5). For i, j = 1, . . . , k and i ̸= j,
the inner product between the ith and jth columns of H is

n∑
t=1

(sti(2|xti|+ 1)stj(2|xtj |+ 1)) +
n∑

t=1

4sti|xti|stj |xtj |+ δ

= 8
n∑

t=1

xtixtj + 2

(
n∑

t=1

xtistj +
n∑

t=1

stixtj

)
+

n∑
t=1

stistj + δ,

where

δ =

{
0, if n is even;

1, if n is odd.

By noting that
∑n

t=1 xtistj +
∑n

t=1 stixtj ≤ 2
∑n

t=1 |xti| = (n2 − δ)/2, we have

|ρij(H)| ≤ 8n(n+ 1)(n− 1)|ρij(X)|/12 + n2 + n|ρij(SX)|
n(n+ 1)(2n+ 1)/3

=
2(n− 1)|ρij(X)|

2n+ 1
+

3n+ 3|ρij(SX)|
2n2 + 3n+ 1

.

Parts (iii) and (iv) are now obvious.
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