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Abstract: In this paper we propose a varying coefficient model for sparse longitu-
dinal data that allows for error-prone time-dependent variables and time-invariant
covariates. We develop a new estimation procedure, based on covariance represen-
tation techniques, that enables effective borrowing of information across all subjects
in sparse and irregular longitudinal data observed with measurement error, a chal-
lenge for which there is no current adequate solution. Sparsity is addressed via a
functional analysis approach that considers the observed longitudinal data as noise
contaminated realizations of a random process that produces smooth trajectories.
This approach allows for estimation based on pooled data, borrowing strength from
all subjects, in targeting the mean functions and auto- and cross-covariances to
overcome sparse noisy designs. The resulting estimators are shown to be uniformly
consistent. Consistent prediction for the response trajectories are also obtained via
conditional expectation under Gaussian assumptions. Asymptotic distributions of
the predicted response trajectories are derived, allowing for construction of asymp-
totic pointwise confidence bands. Efficacy of the proposed method is investigated in
simulation studies and compared to the commonly used local polynomial smooth-
ing method. The proposed method is illustrated with a sparse longitudinal data
set, examining the age-varying relationship between calcium absorption and dietary
calcium. Prediction of individual calcium absorption curves as a function of age
are also examined.

Key words and phrases: Functional data analysis, local least squares, measurement
error, repeated measurements, smoothing, sparse design.

1. Introduction

Varying coefficient models (Cleveland, Grosse, and Shyu (1991); Hastie and
Tibshirani (1993)) are extensions of parametric regression models that have at-
tracted many applications in diverse scientific research areas in the last fifteen
years. An example is the modeling of the time-varying relationship between vi-
rologic response and immunologic status (as measured by viral load and CD4+
status) and other covariates in AIDS clinical studies. As recently reviewed by
Fan and Zhang (2008), estimation in varying coefficient models for longitudinal
data is based on three main approaches: polynomial splines (Huang, Wu, and
Zhou (2002, 2004)), smoothing splines (Hoover et al. (1998); Chiang, Rice, and
Wu (2001)), and perhaps the most natural approach of all, local polynomial
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smoothing (Wu, Chiang, and Hoover (1998); Hoover et al. (1998); Fan and Zhang
(2000) Wu and Chiang (2000)). Qu and Li (2006) proposed penalized spline and
quadratic inference functions for incorporating the correlation structure into the
estimation.

Although these approaches may be more effective for densely measured lon-
gitudinal data, sparse longitudinal data combined with measurement error poses
unique unresolved challenges. Here sparsity refers to the irregular measurement
times between subjects and the availability of only a few observed repetitions per
subject in longitudinal designs. With measurement error, estimates of the vary-
ing coefficient functions with existing methods are biased. Measurement error
is typical in studies of dietary intake (Carroll et al. (2006)), such as individual
calcium absorption and dietary calcium in adult women population as considered
in Section 4. Of particular interest is estimation of the age-varying relationship
between calcium absorption and dietary calcium and other baseline measures,
such as body surface area. In addition to inherent measurement errors, the data
is sparse with subject ages ranging from 39 to 58, and due to dropouts and missed
visits, about 40% of the subjects with only one or two measurements. For es-
timation of the varying coefficient function and prediction of individual calcium
absorption curves, an effective strategy for pooling information across subjects
is needed.

In this paper we take a functional analysis approach to multiple varying coef-
ficient modeling of noise-contaminated sparse longitudinal data, and we develop a
new estimation method that allows for both cross-sectional (time-invariant) and
longitudinal predictors. The main idea is to view the observed longitudinal data
as a noise contaminated realization of a stochastic process that produces smooth
trajectories; this allows for pooling of information across subjects in order to
strengthen the estimation. We note that functional data analysis has been ex-
tended to sparse longitudinal data in the context of functional regression models,
by Yao, Müller, and Wang (2005a). More recently, Şentürk and Müller (2010)
considered estimation in functional varying coefficient models with one covariate
process that incorporates a history index. However, as the authors point out,
their estimation approach is also useful for univariate varying coefficient models
relating a longitudinal response process to a single longitudinal predictor pro-
cess. The authors represent the varying coefficient functions using auto- and
cross-covariances of the underlying stochastic processes that are then estimated
based on all the data. We utilize similar representations for the varying coefficient
functions and propose an estimation procedure for multiple predictor processes,
which may include cross-sectional and longitudinal covariates. Several important
distinctions of the current proposal from Şentürk and Müller’s methodology are
as follows. First, the current proposal is designed for multiple predictor pro-
cesses. Second, cross-sectional predictors are included in the functional analysis
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approach proposed. We note that incorporation of cross-sectional predictor vari-
ables is not common in functional linear models and functional data analysis. We
develop the estimation method to accommodate these features and study its the-
oretical and finite sample properties. The proposed estimation procedure enables
a novel way of incorporating the within-subject correlation and the handling of
sparse noise-contaminated longitudinal designs, which leads to improved finite
sample performance relative to the commonly used local polynomial smoothing
methods for varying coefficient models.

In the next section we describe the proposed estimation procedure for the
multiple varying coefficient model with time-dependent and time-invariant co-
variates in its full generality, and provide uniform consistency of the proposed
estimators. Consistent predictors of response trajectories, via conditional expec-
tation obtained under Gaussian assumptions, are given in Section 3, along with
their asymptotic distributions and asymptotic pointwise confidence bands. In
Section 4 the method is illustrated with the aforementioned data set, where we
examine the age-varying relationship between calcium absorption and dietary cal-
cium. Simulation studies, including comparisons with local polynomial smooth-
ing, and concluding remarks follow in Section 5 and 6, respectively. Technical
assumptions and proofs are given in the Appendix.

2. Estimation in Multiple Varying Coefficient Models

2.1. Sparse data and model representation

Consider the observed data, consisting of p time-dependent and q time-
independent predictors along with a time-dependent response. The q time-
independent predictors Zgi, i = 1, . . . , n, g = 1, . . . , q are assumed to have fi-
nite variance. The time-dependent predictors Xri and response Yi, i = 1, . . . , n,
r = 1, . . . , p, are square integrable random realizations of the smooth random
processes Xr and Y , respectively, both defined on a finite and closed interval
domain [0, T ]. Predictor and response processes X and Y have smooth mean
functions µXr(t) = EXr(t), µY (t) = EY (t), and (auto-)covariance functions
GXrXr(s, t) = Cov {Xr(s), Xr(t)}, GY Y (s, t) = Cov {Y (s), Y (t)}, for s, t ∈ [0, T ]
and r = 1, . . . , p. Orthogonal expansions of the covariances, GXrXr(s, t) =∑∞

m=1 ρrmφrm(s)φrm(t) and GY Y (s, t) =
∑∞

k=1 λkψk(s)ψk(t) for s, t ∈ [0, T ] and
r = 1, . . . , p, follow under mild conditions, where φrm and ψk denote the eigen-
functions with nonincreasing eigenvalues ρrm and λk. The sparse design (SD),
after Şentürk and Müller (2010), can formally be described as follows.

(SD) For the i-th subject one has a random number Ni of repeated measure-
ments on the rth time-dependent predictor Xrij = Xri(Tij) + εrij , and
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on the response Yij = Yi(Tij) + εij , j = 1, . . . , Ni, obtained at i.i.d. ran-
dom time points Ti1, . . . , TiNi , where εrij , εij are zero mean, finite vari-
ance i.i.d. measurement errors. The Ni are assumed to be i.i.d., with
Ni, Tij , εrij , εij mutually independent, and independent of the underlying
processes Xri, Yi, as well as Zgi. Hence the predictor and response ob-
servations can be represented as Xrij = µXr(Tij) +

∑∞
m=1 ξrimφrm(Tij) +

εrij , Yij = µY (Tij) +
∑∞

k=1 ζikψk(Tij) + εij , where ξrim, ζik are uncorre-
lated, mean zero functional principal component scores with second mo-
ments equal to the eigenvalues ρrm and λk, respectively.

The representations in (SD) follow from the Karhunen-Loève expansion (see Ash
and Gardner (1975)), and we assume

∑
m ρrm < ∞ and

∑
k λk < ∞.

Consider the multiple varying coefficient model

E{Y (t) | X1(t), . . . , Xp(t), Z1, . . . , Zq} = β0(t) +
p∑

r=1

βr(t)Xr(t) +
q∑

g=1

αg(t)Zg,

(2.1)
where the varying coefficient functions, βr(t) and αg(t), are assumed to be smooth
functions. Note that for each fixed t, (2.1) reduces to a standard linear model.
Centering the predictor and response trajectories, i.e., XC

r (t) = Xr(t) − µXr(t),
ZC

g = Zg − E(Zg), and Y C(t) = Y (t) − µY (t), we can express (2.1) as

E{Y C(t) | X1(t), . . . , Xp(t), Z1, . . . , Zq} =
p∑

r=1

βr(t)XC
r (t) +

q∑
g=1

αg(t)ZC
g .

Note that, alternatively, β0(t) can be given as µY (t)−
∑

r βr(t)µXr(t)−
∑

g αg(t)
E(Zg).

2.2. Local linear smoothing

A standard method for fitting varying coefficient models (Fan and Zhang
(2008)) is local polynomial smoothing. For instance, local linear fitting would
minimize
n∑

i=1

Ni∑
j=1

K

(
Tij − t

h

)[
Y C

ij −
p∑

r=1

{θr,0+θr,1(t−Tij)}XC
rij−

q∑
g=1

{γg,0+γg,1(t−Tij)}ZC
gi

]2

,

(2.2)
with respect to θr,0, θr,1, γg,0, γg,1, leading to β̂r(t) = θ̂r,0 and α̂g(t) = γ̂g,0 (Hoover
et al. (1998)). The minimization at (2.2) requires a specified kernel function
K(·) that corresponds to a symmetric probability density function associated
with a bandwidth h. Şentürk and Müller (2010) point out that local polynomial
smoothing does not take advantage of the functional nature of the underlying
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processes. In other words, while (2.2) involves each repeated observation taken
on a subject, it does not involve the cross product terms between the repetitions
that would correspond to the underlying covariance structure. They also point
out that local polynomial smoothing is biased in the case of sparse and noise-
corrupted measurements. We will demonstrate that this bias is also present in
the multiple varying coefficient model, through simulations.

2.3. Proposed estimation procedure

The proposed approach utilizes the functional nature of the covariate pro-
cesses. We take

GY Xr(s, t) = Cov {Y (s), Xr(t)} =
∞∑

m=1

∞∑
k=1

E(ξrmζk)φrm(s)ψk(t),

GXrXr′ (s, t) = Cov {Xr(s), Xr′(t)} =
∞∑

m=1

∞∑
m′=1

E(ξrmξr′m′)φrm(s)φr′m′(t),

GY Zg(t) = Cov {Y (t), Zg} =
∞∑

k=1

E(ζkZg)ψk(t),

GXrZg(t) = Cov {Xr(t), Zg} =
∞∑

m=1

E(ξrmZg)φrm(t),

and GZgZg′ = Cov (Zg, Zg′). From (2.1),

GY Xr′ (t, t) =
p∑

r=1

βr(t)GXrXr′ (t, t) +
q∑

g=1

αg(t)GXr′Zg(t),

GY Zg′ (t) =
p∑

r=1

βr(t)GXrZg′ (t) +
q∑

g=1

αg(t)GZgZg′ ,

for r′ = 1, . . . , p and g′ = 1, . . . , q. Then the varying coefficient functions of
interest are

[β1(t), . . . βp(t), α1(t), . . . , αq(t)]T = X−1
t Ξt, (2.3)

where

Xt =



GX1X1(t, t) . . . GX1Xp(t, t) GX1Z1(t) . . . GX1Zq(t)
...

. . .
...

...
. . .

...
GX1Xp(t, t) . . . GXpXp(t, t) GXpZ1(t) . . . GXpZq(t)
GX1Z1(t) . . . GXpZ1(t) GZ1Z1 . . . GZ1Zq

...
. . .

...
...

. . .
...

GX1Zq(t) . . . GXpZq(t) GZ1Zq . . . GZqZq


(2.4)
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and Ξt = [GY X1(t, t), . . . , GY Xp(t, t), GY Z1(t), . . . , GY Zq(t)]T. Estimation of the
varying coefficient functions in (2.3) involves first obtaining estimates of the auto-
and cross-covariances in Xt and Ξt, and then using the plug-in estimator X̂−1

t Ξ̂t.
The special case of p = 1 and q = 0 is considered by Şentürk and Müller (2010),
based on the relations β1(t) = GY X(t, t)/GXX(t, t). The proposal here is adopted
for multiple predictor processes in addition to cross-sectional predictors. The
estimation algorithm is given as follows.

1. Mean functions. Estimate the mean functions for the predictor and re-
sponse processes by smoothing the aggregated data (Tij , Xrij) and (Tij , Yij)
for j = 1, . . . , Ni, and i = 1, . . . , n, with local linear fitting. Denote the
estimated mean functions by µ̂Xr and µ̂Y .

2. Raw covariances. Compute the raw covariances of Xr and Zg, and the
raw cross-covariances between (Y,Xr), (Xr, Zg), and (Y,Zg), based on all
observations from the same subject, as

GXrXr′ ,i(Tij , Ti`) = {Xrij − µ̂Xr(Tij)}{Xr′i` − µ̂Xr′ (Ti`)},
GZgZg′ ,i = (Zgi − Z̄g)(Zg′i − Z̄g′),

GY Xr,i(Tij , Ti`) = {Yij − µ̂Y (Tij)}{Xri` − µ̂Xr(Ti`)},
GXrZg,i(Tij) = {Xrij − µ̂Xr(Tij)}{Zgi − Z̄g} and

GY Zg,i(Tij) = {Yij − µ̂Y (Tij)}{Zgi − Z̄g},

for j, ` = 1, . . . , Ni and i = 1, . . . , n.

3. Smoothed covariances. (3A) The estimates of the two-dimensional auto-
and cross-covariances, ĜXrXr′ and ĜY Xr , are obtained by feeding the corre-
sponding two-dimensional raw covariances, GXrXr′ ,i and GY Xr,i, from Step 2,
into a two dimensional local least squares smoothing algorithm. (3B) The esti-
mates of the one-dimensional cross-covariances, ĜXrZg and ĜY Zg , are obtained
by feeding the corresponding one-dimensional raw cross-covariances, GXrZg,i

and GY Zg ,i, into a one-dimensional local polynomial smoothing algorithm. In
addition the variance estimator ĜZgZg′ is given as n−1

∑n
i=1 GZgZg′ ,i.

4. Plug-in estimator. Estimators for the varying coefficient functions are ob-
tained by using plug-in estimators for Xt and Ξt: [β̂1(t), . . . β̂p(t), α̂1(t), . . . ,
α̂q(t)]T = X̂−1

t Ξ̂t. The estimate of the intercept function can be given as
β̂0(t) = µ̂Y (t) −

∑p
r=1 β̂rµ̂Xr(t) −

∑q
g=1 α̂g(t)Z̄g, as noted in Section 2.1.

We note that this estimation procedure differs from the standard methods
for fitting varying coefficient models that do not take advantage of the covari-
ance structure of underlying processes. Using this structure in the estimation
process makes it possible to handle the sparsity of the longitudinal data, but also
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allows for incorporating additional information that is inherent in the underlying
covariance structure in the estimation step.

Remark 1. For estimation of the auto-covariances GXrXr , the diagonal of the
raw auto-covariance matrix is removed before the two-dimensional smoothing
step, in order to eliminate the effects of measurement error on the longitudinal
predictors. This covariance estimation step (inspired by the approach in Yao,
Müller, and Wang (2005a,b)) achieves two major objectives. First, it eliminates
the effect of the noise contamination on the longitudinal observations. Second,
through pooling of the data across subjects, it overcomes the problems associated
with the sparseness of the design. In addition, to guarantee that the estimator of
GXrXr is nonnegative definite, we propose an adjusted estimator in which we ex-
clude the negative estimates of the eigenvalues and corresponding eigenfunctions
in the functional principal component decomposition of the covariance function.
More precisely, a nonparametric functional principal component analysis step
employed on the smooth estimate of the auto-covariance surface yields estima-
tors for φrm(t) and ρrm; details are described in Appendix A.1. Then ĜXrXr is
given as

∑Mr
m:ρ̂rm>0 ρ̂rmφ̂rm(s)φ̂rm(t). The number Mr of included eigenfunctions

can be chosen by a one-curve-leave-out cross-validation, the Akaike information
criterion (AIC), fraction of variance explained, or similar criteria.

Remark 2. Explicit forms of all one- and two-dimensional smoothing estimators
are assembled in Appendix A.1.

2.4. Uniform consistency

The proposed estimators for the varying coefficient functions are uniformly
consistent, as summarized in Theorem 1. The assumptions and proof can be
found in the Appendix.

Theorem 1. Under Assumptions (A) in the Appendix, the varying coeffi-
cient function estimators satisfy supt∈[0,T ] |β̂r(t)−βr(t)| = Op(τn) and supt∈[0,T ]

|α̂g(t) − αg(t)| = Op(τn), for r = 0, . . . , p, and g = 1, . . . , q, where τn =
n−1/2(

∑p
r=1(hr1hr2)−1 +

∑p
r=1

∑p
r′=1(hXrhXr′ )

−1).

In the expression for τn, the bandwidths used in the two-dimensional smooth-
ing step of the raw covariances to obtain the cross-covariance function ĜY Xr

are hr1 and hr2. Similarly, the corresponding bandwidths used in the two-
dimensional smoothing step to obtain the cross-covariance surface ĜXrXr′ are
denoted by hXr and hXr′ . Details are given in Appendix A.1. The bandwidths
are required to converge to zero, and to satisfy some other restrictions as outlined
in Appendix A.2.
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3. Prediction of Response Trajectories

Of interest in our example, in addition to estimation of the varying coeffi-
cient functions, is the prediction of calcium absorption trajectories as a function
of age, based on dietary calcium (X∗) and body surface area (Z∗). More gener-
ally, prediction of an individual response trajectory Y ∗, based on a new subject’s
sparse observations from the longitudinal predictor trajectories X∗

1 , . . . , X∗
p and

the cross-sectional predictors Z∗
1 , . . . , Z∗

q , is of interest. In this section, we pro-
vide consistent predictors of individual response trajectories and provide their
asymptotic distribution for the construction of asymptotic pointwise confidence
intervals.

From (2.1), the predicted response trajectory would be obtained through the
conditional expectation

E{Y ∗(t)|X∗
1 (t), . . . X∗

p (t), Z∗
1 , . . . , Z∗

q }

= µY (t) +
p∑

r=1

βr(t)
∞∑

m=1

ξ∗rmφrm(t) +
q∑

g=1

αg(t)ZC∗
g , (3.1)

where ξ∗rm =
∫ T
0 {X∗

r (t) − µXr(t)}φrm(t)dt is the mth functional principal com-
ponent score of X∗

r . To estimate the predicted trajectory in (3.1), we note that
estimates of µY (t), βr(t) and αg(t) were given in the previous section. Also,
the nonparametric functional principal component analysis step employed in the
estimating the auto-covariance surface ĜXrXr yields estimators for φrm(t) and
ρrm; details are in the Appendix A.1. Thus, the only term remaining in (3.1)
that requires estimation is ξ∗rm.

Estimation of ξ∗rm =
∫ T
0 {X∗

r (t) − µXr(t)}φrm(t)dt is a challenging problem
since the integral cannot be approximated feasibly from the sparse trajectory
X∗

r (t). However, estimation is feasible under a Gaussian framework, following
the novel work of Yao, Müller, and Wang (2005b). More precisely, let X∗

rj =
X∗

r (Tj) be the jth measurement for the predictor function X∗
r and X̃∗

rj = X∗
rj +

ε∗rj be the observed noise-contaminated version of it at time T ∗
j , for a random

number of total measurements N∗, j = 1, . . . , N∗. Let X̃∗
r = (X̃∗

r1, . . . , X̃
∗
rN∗)T.

Assume that the functional principal component scores ξ∗rm, the measurement
errors ε∗rj , and Z∗

g are jointly Gaussian. Then the predicted ξ∗rm is given as
the best linear prediction conditional on the (N∗p + q) × 1 observation vector
U∗ = (X̃∗T

1 , . . . , X̃∗T

p , Z∗
1 , . . . , Z∗

q ), N∗, and locations of the observations T ∗ =
(T ∗

1 , . . . , T ∗
N∗)T, namely

ξ̃∗rm = H∗T

rmΣ−1
U∗(U∗ − µ∗

U ). (3.2)
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In (3.2) µ∗
U = (µ∗T

X1
, . . . , µ∗T

Xp
, µZ1 , . . . , µZq) is the (N∗p + q) × 1 mean vector with

µ∗
Xr

= {µXr(T ∗
1 ), . . . , µXr(T ∗

N∗)}T,

H∗T

rm =
{ ∞∑

m′=1

ρrm,1m′φ∗T

1m′ , . . . ,

∞∑
m′=1

ρrm,pm′φ∗T

pm′ , E(ξrmZ1), . . . , E(ξrmZq)
}
(3.3)

is the (N∗p + q) × 1 covariance vector with ρrm,r′m′ = Cov (ξrm, ξr′m′) and φ∗
rm =

{φrm(T ∗
1 ), . . . , φrm(T ∗

N∗)}T. The (N∗p + q) × (N∗p + q) covariance matrix ΣU∗

in (3.2) is

ΣU∗ =



G̃X1X1 . . . G̃X1Xp G̃X1Z1 . . . G̃X1Zq

...
. . .

...
...

. . .
...

G̃X1Xp . . . G̃XpXp G̃XpZ1 . . . G̃XpZq

G̃X1Z1 . . . G̃XpZ1 GZ1Z1 . . . GZ1Zq

...
. . .

...
...

. . .
...

G̃X1Zq . . . G̃XpZq GZ1Zq . . . GZqZq


,

where the N∗×1 vector G̃XrZg = Cov (X̃∗
r , Z∗

g | N∗, T ∗), the scalars GZgZg′ are as

defined Section 2.3, and the N∗×N∗ covariance matrix G̃XrXr′ = Cov (X̃∗
r , X̃∗

r′ |
N∗, T ∗) for r 6= r′, and G̃XrXr = Cov (X̃∗

r | N∗, T ∗) with the (j, `)th entry
(G̃XrXr)j,` = GXrXr(T ∗

j , T ∗
` ) + var(εr)δj` where δj` = 1 if j = ` and 0 if j 6= `.

Estimators of µ∗
U , φ∗

rm, G̃XrX′
r
, G̃XrZg , GZgZg′ , and G̃XrXr , based on the

entire data with ( ̂̃
GXrXr)j,` = ĜXrXr(T

∗
j , T ∗

` ) + v̂ar(εr)δj`, are then substituted
in (3.2) to obtain a plug-in estimator for ξ∗rm. Explicit forms of the estimator
of the variance of the measurement errors, v̂ar(εr), are given in Appendix A.1.
The covariance ρrm,r′m′ can be estimated via

∫
ĜXrXr′ (s, t)φ̂rm(s)φ̂r′m′(t)dsdt,

and E(ξrmZg) can be estimated by
∫

ĜXrZg(t)φ̂rm(t)dt using estimates of GXrXr′ ,
GXrZg , and φrm(t). Finally, Ĥ∗T

rm ={
∑M1

m′=1ρ̂rm,1m′ φ̂∗T

1m′ , . . . ,
∑Mp

m′=1ρ̂rm,pm′ φ̂∗T

pm′},
where the numbers M1, . . . ,Mp of included eigenfunctions can be chosen by one-
curve-leave-out cross-validation, the Akaike information criterion (AIC) or the
fraction of variance explained. This leads to ξ̂∗rm = Ĥ∗T

rmΣ̂−1
U∗(U∗ − µ̂∗

U ). Hence,
the predicted trajectories are

Ŷ ∗
M(t) = µ̂Y (t) +

p∑
r=1

β̂r(t)
Mr∑

m=1

ξ̂∗rmφ̂rm(t) +
q∑

g=1

α̂g(t)ZC∗
g , (3.4)

where M =
∑p

r=1 Mr. We look to the consistency of the prediction Ŷ ∗
M(t) for the

target trajectory Ỹ ∗(t) = µ(t) +
∑p

r=1 βr(t)
∑∞

m=1 ξ̃∗rmφrm(t) +
∑q

g=1 αg(t)ZC∗
g .
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Theorem 2. Under Assumptions (A) and (B) in the Appendix, given N∗ and
T ∗, for all t ∈ [0, T ], limn→∞ Ŷ ∗

M(t) = Ỹ ∗(t), in probability. Here the number
Mr = Mr(n) of eigen-components included in the eigen-decomposition of X∗

r for
r = 1, . . . , p, and hence M, all tend to infinity as n → ∞.

Next we consider construction of asymptotic confidence bands for the re-
sponse trajectory Y ∗, given the observed sparse and noisy data. For M1, . . . ,Mp ≥

1, let ξ∗
Mr

r = (ξ∗r1, . . . , ξ
∗
rMr

)T for r = 1, . . . , p, and ξ∗
M

= (ξ∗
MT

1

1 , . . . , ξ∗
MT

p

p )T.
Quantities ξ̃∗

Mr

r and ξ̃∗
M

are defined similarly. Under the Gaussian assumption,
given N∗ and T ∗, ξ̃∗

M − ξ∗
M ∼ N(0,ΩM), where the normality, covariance ma-

trix ΩM, and its plug-in estimator Ω̂M are derived in the proof of Theorem 3 in
Appendix A.2. Define φtM = {β1(t)φ11(t), . . . , β1(t)φ1M1(t), . . . , βp(t)φp1(t), . . . ,
βp(t)φpMp(t)}T for t ∈ [0, T ], and let φ̂tM be its estimate obtained from the
data. We establish the asymptotic distribution of the predicted trajectories
Ŷ ∗
M(t) = µ̂Y (t) + φ̂T

tMξ̂∗
M

+
∑q

g=1 α̂g(t)ZC∗
g , conditional on N∗ and T ∗.

Theorem 3. Under Assumptions (A), (B), and (C) in the Appendix, given N∗

and T ∗, for all t ∈ [0, T ], x ∈ R, the prediction for the response trajectory satisfies

lim
n→∞

P

[
Ŷ ∗
M(t) − E{Y ∗(t) | X∗

1 (t), . . . , X∗
p (t), Z∗

1 , . . . , Z∗
q }

ω̂tM
≤ x

]
= Φ(x),

where ωtM = φT
tMΩMφtM, ω̂tM = φ̂T

tMΩ̂Mφ̂tM, and Φ(·) denotes the Gaussian
cdf, and Mr, r = 1, . . . , p, and hence M, all tend to infinity as n → ∞.

Hence, ignoring bias resulting from truncation at M1, . . . ,Mp in Ŷ ∗
M, the (1−

α)100% asymptotic pointwise confidence interval for E{Y ∗(t) | X∗
1 (t), . . . , X∗

p (t),
Z∗

1 , . . . , Z∗
q } is given by Ŷ ∗

M(t) ± Φ(1 − α/2)
√

ω̂tM.

4. Application to Sparse Dietary Calcium Absorption Data

In a study of calcium deficiency, Heaney et al. (1989) showed a complex
inverse relation between calcium intake and calcium absorption, where age and
body surface area are among the variables that affect calcium absorption effi-
ciency. We examine the age-varying coefficient regression of calcium absorption
on intake and body surface area via the analysis of data from a longitudinal study
on factors affecting calcium absorption (Davis (2002, p.336)). Longitudinal mea-
surements were taken on absorption and intake among others, where repeated
measurement per subject were taken in roughly five-year intervals. We analyze
the data where patient ages are between 39 and 58, yielding 182 subjects with 1
to 4 repeated measurements per subject. The data is sparse and irregular, due
to measurement times between subjects that differed vastly, and the number of
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Figure 1. (a) Observed individual trajectories (dashed) and the smoothed
estimate of the mean function µ̂X (thick solid) for calcium intake. (b) Ob-
served individual trajectories (dashed) and the smoothed estimate µ̂Y of the
mean function for calcium absorption (thick solid). (c) Boxplot of baseline
body surface area values of the 182 female patients.

total repetitions per subject is small. Figure 1 displays the observed individual
trajectories of calcium intake X1(age) and absorption Y (age), along with the cor-
responding mean functions µ̂X and µ̂Y . An increasing trend with age is observed
for intake and a decreasing trend is observed for absorption.

We fit the age varying coefficient model

E{Y (age) | X1(age), Z1} = β0(age) + β1(age)X1(age) + α1(age)Z1

of Y (calcium absorption) on X1 (calcium intake) and Z1 (baseline body sur-
face area; see Figure 1) using the proposed estimation procedure and kernel
linear smoothing, as described in Section 2.2. The resulting estimated varying
coefficient functions from both methods are displayed in Figure 2, along with
90% bootstrap percentile confidence intervals. Bootstrap confidence intervals
were constructed from 500 bootstrap samples, generated by resampling subjects.
Bandwidths for the smoothing of the cross-sectional mean functions, the co-
variance functions (GX1Z1 and GY Z1), the covariance surface (GX1X1), and the
cross-covariance surface (GY X1) were selected by generalized cross-validation.

The estimated varying coefficient functions from both approaches, displayed
in Figure 2, suggest a significant negative relationship between calcium intake
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Figure 2. (a) Estimated varying coefficient function β0(age) from the pro-
posed varying coefficient model fit (solid) along with 90% bootstrap confi-
dence intervals (dotted) for the calcium absorption data. Estimated func-
tions from the varying coefficient model fits using kernel linear smooth-
ing (dashed) are also displayed. (b) Estimated varying coefficient function
β1(age), the slope function of calcium intake, from both fits, along with 90%
bootstrap confidence intervals. (c) Estimated varying coefficient function
α1(age), the slope function of the cross-sectional variable body surface area,
from both fits, along with 90% bootstrap confidence intervals.

and absorption. While the inverse relationship between intake and absorption is
declining with age (Figure 2b), especially after age 45 in the kernel linear fit, such
a decline is not observed in the proposed fit. Both methods indicate a significant
positive effect of baseline body surface area on absorption, for ages between 43
and 55. While the effect slowly becomes positive with age, in both methods,
the effect estimated by the kernel linear fit is much larger in magnitude. These
differences in the estimated varying coefficients for the kernel linear method are
attributed to its estimation bias because of potential measurement error and for
lack of efficiency since it does not incorporate the underlying correlation structure
into the estimation. These issues are further investigated in the simulation studies
of Section 5. The estimated positive and negative relations of calcium absorption
with intake and with body surface area, respectively, are consistent with earlier
findings (Heaney et al. (1989)).
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Figure 3. Observed values (circles) for calcium absorption (not used for
prediction), predicted curves (solid) and 90% pointwise confidence bands
(dotted), for four randomly selected patients, where bands and predicted
curves are based on one-curve-leave-out analysis. Also displayed (+) are
predicted values from the kernel linear smoothing estimation.

Next, we illustrate the prediction of calcium absorption trajectories, as de-
scribed in Section 3, based on sparse longitudinal intake trajectories, along with
baseline body surface area. The numbers of eigenfunctions used in the expansion
of the predictor trajectories given in (3.4) were chosen by AIC; further details
on these choices can be found in Yao, Müller, and Wang (2005a). The predicted
trajectories for four randomly selected subjects are given in Figure 3. The trajec-
tories show a decline in calcium absorption with age, which is the same pattern
as observed in the estimated smooth mean function of Figure 1. Overlaying the
predictions are 90% approximate confidence intervals, as proposed in Section 3,
along with observed calcium absorption values and predictions obtained from ker-
nel linear smoothing. Predictions and confidence intervals are obtained with the
subject’s predictor trajectory left out. The predicted values obtained from kernel
linear smoothing are similar to those obtained from the proposed method; the
average absolute prediction error from kernel linear smoothing and the proposed
method are 0.0612 and 0.0643, respectively.

Note that even though the kernel linear smoothing estimation procedure
cannot target the true underlying varying coefficient functions in the analysis
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of sparse noise-contaminated longitudinal data, as will be demonstrated in the
simulations of Section 5, it can produce predictions of the response values. This
is a well-known phenomenon in nonparametric measurement error models, where
in the nonparametric regression model Y = g(X)+ε, the predictor X is measured
with additive measurement error U yielding the observations W = X + U . Even
though the nonparametric estimation of g(·) needs to adjust for the additive
measurement error, the prediction of future response values can be obtained
without adjusting for the additive measurement error via estimation of E(Y |
X +U) = E(Y | W ). See Carroll et al. (2006), Carroll and Hall (1988), Stefanski
and Carroll (1990), and Carroll, Delaigle, and Hall (2009) for further details
and discussions on similar issues. Finally, we note an important distinction:
although kernel linear smoothing and the proposed estimation methodology yield
similar predictions, the proposed method has the distinct advantage of providing
predicted response trajectories for the entire length of the study, while kernel
linear smoothing and other methods can only provide pointwise predictions.

5. Simulation Studies

We assess the finite sample performance of the proposed estimation algo-
rithm and compare its performance to that of kernel linear smoothing via three
simulation studies. While the first set-up corresponds to highly sparse designs,
the second reflects denser longitudinal designs; they both involve a varying coeffi-
cient model with one longitudinal and one cross-sectional covariate, similar to our
data example. We also study a varying coefficient model with two longitudinal
and two cross-sectional predictors in the third simulation for sparse longitudinal
data. We report all results based on 500 Monte Carlo runs.

In the first study the number of measurements per subject was randomly
chosen with equal probability from {1, 2, 3, 4} for each of n = 182 subjects, similar
to the calcium absorption data, to reflect sparse designs. The locations Tij of
the measurements for the i-th subject were generated uniformly from [0, 10].
The predictor process X was generated according to (SD) of Section 2.1 with
mean function µX(t) = t + sin(t), two eigenfunctions, φ1(t) = cos(πt/10)/

√
5

and φ2(t) = sin(πt/10)/
√

5, for 0 ≤ t ≤ 10, and two eigenvalues, ρ1 = 2 and
ρ2 = 1, respectively. The functional principal components ξim (m = 1, 2) were
generated from N (0, ρm), and the mean zero additive measurement error εij were
Gaussian with variance 0.2. The cross-sectional variable Z1 was generated from
N (0, 1); this is the marginal component from a bivariate normal distribution for
(Z1i, ξi2) with Cov (Z1, ξ2) = 0.3, to allow for correlation between X1 and Z1.
The response trajectories were generated from

Yi(t) = β0(t) + β1(t)X1i(t) + α1(t)Z1i + Vi(t), (5.1)
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according to (2.1), where β0(t) = 10 sin(π + tπ/5), β1(t) = sin(πt/10), α1(t) =
t/10. The functional error Vi in (5.1) was constructed from the same two eigen-
functions as used for X(t), with Gaussian functional principal components gener-
ated with eigenvalues ρ1 = 0.2 and ρ2 = 0.1. The observed measurements on the
response were further contaminated with additive measurement errors according
to Yij = Yi(Tij) + εij , the εij i.i.d. zero mean Gaussian errors with variance
0.2. In the second simulation set-up, the variables were generated in the same
way as in the first, except at still irregular but denser (non-sparse) measurement
times, with the total number of repeated measurements generated uniformly from
{5, . . . , 15}. The average number of repeated measurements per subject was 10
for the dense case, compared to less than 3 observations per subject for the sparse
case.

We compare the performance of the proposed estimation algorithm with
the performance of kernel linear smoothing under the sparse and denser set-ups
using mean absolute deviation error (MADE) and weighted average squared error
(WASE),

MADE =
1

3T

[ 1∑
r=0

∫
|βr(t) − β̂r(t)|dt

range(βr)
+

∫
|α1(t) − α̂1(t)|dt

range(α1)

]
, and

WASE =
1

3T

[ 1∑
r=0

∫
{βr(t) − β̂r(t)}2dt

range2(βr)
+

∫
{α1(t) − α̂1(t)}2dt

range2(α1)

]
,

where T = 10, range(βr) is the range of the function βr(t), and range(α1) is
defined similarly. We also consider the unweighted average squared error (UASE)
to compare the estimators, where UASE is defined as is WASE, but without
weights in the denominator. Bandwidths involved in smoothing of the mean
functions and the auto- and cross-covariance surfaces were chosen by generalized
cross-validation.

Results from sparse and denser simulation set-ups are given in Figures 4 and
Figure 5, respectively. More specifically, plot (d) in both figures are boxplots
of logarithms of the ratios of MADE, WASE, and UASE values of the proposed
method over the kernel linear smoothing approach. The proposed estimators led
to improved finite sample performance for both sparse and denser cases with
respect to all three error criteria. More specifically, the proposed estimators had
improved performance in (85, 77, 71)% of the Monte Carlo runs for sparse de-
sign according to (MADE, WASE, UASE) criteria respectively, while they led to
improved performance in all Monte Carlo runs according to all three criteria in
the case of denser design. This can be attributed to the fact that the proposed
method adjusts for noise contaminated measurements and incorporates informa-
tion inherent in the underlying correlation structure of the longitudinal processes.
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Figure 4. First simulation set-up given in (5.1) with highly sparse de-
sign: (a) The cross-sectional median curves of the proposed estimates
(grey) along with 5% and 95% cross-sectional percentiles (dotted) overlay-
ing the true varying coefficient function β0(t) (solid). Also displayed are the
cross-sectional median curves from fits using kernel linear smoothing (dash-
dotted). Similarly, for (b) β1(t) and (c) α1(t). (d) Boxplots for the logarithm
of the ratios of error measures (MADE, WASE and UASE) for proposed esti-
mates over kernel linear smoothing. Values smaller than zero show that the
proposed method is superior.

The estimated varying coefficient functions based on the proposed method and
the kernel linear approach are provided in Figure 4 (a)-(c) and Figure 5 (a)-(c)
for both simulation scenarios. Displayed are the cross-sectional medians of the
estimated varying coefficient functions for the proposed method and the ker-
nel linear method together with estimated functions corresponding to the 5%
and 95% cross-sectional percentiles for the proposed method. The kernel linear
smoothing fits deviate from the underlying true functions for both sparse and
denser simulation set-ups. The bias is especially apparent in the estimation of
β1(t) (e.g. see Figure 5(b)), and is also apparent in the estimation of β0(t). The
(median) estimated functions of the proposed method target the corresponding
true functions closely for both simulation scenarios, and for the dense data case
note that they essentially coincide with the true functions. This is not surprising,
since from the sparse to the dense case, there is an average of 4-fold increase in
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Figure 5. Second simulation set-up given in (5.1) with denser design: (a) The
cross-sectional median curves of the proposed estimates (grey) along with 5%
and 95% cross-sectional percentiles (dotted) overlaying the true varying co-
efficient function β0(t) (solid). Also displayed are the cross-sectional median
curves from fits using kernel linear smoothing (dash-dotted). Similarly, for
(b) β1(t) and (c) α1(t). (d) Boxplots for the logarithm of the ratios of error
measures (MADE, WASE and UASE) for proposed estimates over kernel lin-
ear smoothing. Values smaller than zero show that the proposed method is
superior.

the number of repeated observations per subject. However, the bias of estimated
functions via the kernel linear method remains, due to the measurement error.

In addition, we studied the coverage level of the proposed asymptotic con-
fidence intervals for the predicted response trajectories given in Section 3 under
the sparse set-up of the first simulation. Pointwise confidence intervals were con-
structed at a grid of time points at the 95% level, with coverage levels averaged
over number of subjects in 100 Monte Carlo runs. The estimated coverage levels
are given in Figure 6, for sample sizes n = 182, 400, and 1,000. A boundary effect
is observed in the estimated coverage levels given over time, where the coverage
level approaches the targeted 95% for the middle time range, and the region for
the boundary effect gets smaller with increasing sample size. For example, ex-
cluding boundary regions (time 0-1 and 9-10), the coverage is between 83% and
96% for the time region 1-9 for n =1,000.
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Figure 6. Estimated coverage levels for the 95% asymptotic confidence in-
tervals of the predicted response trajectory proposed in Section 3 under the
sparse design of the first simulation for n = 182 (dotted), n = 400 (dash-
dotted) and n =1,000 (solid).

For the third simulation, the number of measurements per subject were ran-
domly chosen with equal probability from {4, 5, 6, 7, 8} for each of n = 400 sub-
jects; the locations Tij of the measurements for the i-th subject were generated
uniformly from [0, 10]. The first longitudinal predictor process X1 was generated
with the same mean function and eigenbasis as in the first two simulations, with
ρ1 = 1 and ρ2 = 1, while the second longitudinal predictor X2 was generated
with mean function µX2(t) = −(t − 5)2/2, two basis functions, φ1(t) = (t − 5)/5
and φ2(t) = 3((t − 5)/5)2 − 1)/2, for 0 ≤ t ≤ 10, and with mean zero variance 1
Gaussian coefficients. The mean zero additive measurement error εrij was taken
to be Gaussian with variance 0.2 for both predictor processes. In order to allow
for correlations between the two longitudinal and two cross-sectional predictors,
the two cross-sectional variables Z1 and Z2 were generated from Gaussian distri-
butions with means 1 and 2, variances 2 and 2, respectively; these are marginal
components from a six-dimensional multivariate normal vector containing the two
random coefficients of the two longitudinal predictors and the two cross-sectional
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Figure 7. Third simulation set-up given in (5.2): (a) The cross-sectional
median curves of the proposed estimates (grey) along with 5% and 95%
cross-sectional percentiles (dotted) overlaying the true varying coefficient
function β0(t) (solid). Also displayed are the cross-sectional median curves
from fits using kernel linear smoothing (dash-dotted). Similarly, for (b)
β1(t) (c) β2 (d) α1(t) (e) α2(t). (f) Boxplots for the logarithm of the ratios
of error measures (MADE, WASE and UASE) for proposed estimates over
kernel linear smoothing. Values smaller than zero show that the proposed
method is superior.

predictors, i.e. (ξ1i1, ξ1i2, ξ2i1, ξ2i2, Z1i, Zg2). The 6 × 6 covariance matrix was

1 0 0.2 0 0.2 0.3
0 1 0 0.2 0.4 0
0.2 0 1 0 0 0.1
0 0.2 0 1 0.5 0
0.2 0.4 0 0.5 2 0.2
0.3 0 0.1 0 0.2 2


.

The response trajectories were generated from

Yi(t) = β0(t) + β1(t)X1i(t) + β2(t)X2i(t) + α1(t)Z1i + α2(t)Z2i + Vi(t), (5.2)

according to (2.1), where β0(t) = 50 sin(π + tπ/5), β1(t) = 5 sin(πt/10), β2(t) =
5 cos(πt/4), α1(t) = t/2, and α2(t) = (t−5)2/20. The functional error Vi in (5.2)
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was constructed from the same two eigenfunctions as used for X1(t), with Gaus-
sian functional principal components generated with eigenvalues ρ1 = 0.2 and
ρ2 = 0.1. The additive measurement error on the response was generated as zero
mean Gaussian with variance 0.2. Boxplots of logarithms of the ratios of MADE,
WASE, and UASE values of the proposed method over the kernel linear smoothing
approach, along with cross-sectional medians and 5% and 95% percentiles of the
estimated varying coefficient functions based on the proposed method and the
medians of the kernel linear approach, are provided in Figure 7. The proposed
method performs better than the kernel linear smoothing according to all three
criterion in 95% of the total Monte Carlo runs. The superior performance of the
proposed method can be seen especially in the estimated β0 and the two slope
varying coefficient functions β1 and β2 corresponding to longitudinal predictors
measured with additive measurement error. The estimated median curves for
the kernel linear smoother deviate from the true curves, not being able to handle
measurement error in covariates.

6. Discussion

In this work we propose a multiple varying coefficient model in the context
of highly sparse longitudinal data, where the longitudinal response and predic-
tor processes are measured with error. Our estimation algorithm is applicable
to cases with possibly different time grids for each longitudinal covariate of a
subject, whereas most longitudinal regression methods are not. In our estima-
tion procedure, observed measurements with missing pairs also contribute to the
estimation due to the unique representation of the varying coefficient functions
and the component-wise nature of the algorithm. This could lead to favorable
estimation properties in case of missing covariates, especially for sparse designs
where imputation via smoothing techniques are not feasible.
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Appendix

A.1. Details on estimation procedures

Explicit forms of the proposed mean and covariance estimators, functional
principal components decompositions, and measurement error variance estima-
tors are given as follows. The local linear scatterplot smoother for µXr(t) is
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obtained by minimizing

n∑
i=1

Ni∑
j=1

K1

(
Tij − t

bXr

)
{Xrij − η0 − η1(t − Tij)}2,

with respect to η0 and η1, leading to µ̂X(t) = η̂0. Other one-dimensional smooth-
ing estimators of the proposed estimation algorithm, namely µ̂Y (t), ĜXrZg and
ĜY Zg can be obtained similarly.

For the two-dimensional smoothers, recall GXrX′
r,i(Tij , Ti`) = {Xrij−µ̂Xr(Tij)}

{Xr′i` − µ̂Xr′ (Ti`)}, and take the local linear surface smoother for GXrXr′ (s, t) to
minimize

n∑
i=1

∑
1≤j,`≤Ni

K2

(
Tij − s

hXr

,
Ti` − t

hXr′

)
[GXrXr′ ,i(Tij , Ti`) − f{η, (s, t), (Tij , Ti`)}]2,

(5.3)
where f{η, (s, t), (Tij , Ti`)} = η0 + η1(s − Tij) + η2(t − Ti`), with respect to η =
(η0, η1, η2), yielding ĜXrXr′ (s, t) = η̂0. The two-dimensional smoother in the
estimation of GY Xr is found similarly.

For the estimation of the auto-covariance GXrXr , the second sum in (5.3) is
taken over 1 ≤ j 6= ` ≤ Ni to leave the noise contaminated diagonal raw covari-
ance elements out of the smoothing procedure. For the eigen-decomposition of
the auto-covariance surface GXrXr , the eigenquations,

∫ T
0 Ĝ∗

XrXr
(s, t)φ̂rm(s)ds =

ρ̂rmφ̂rm(t) are solved under orthonormal constraints on the eigenfunctions, where
Ĝ∗

XrXr
is the smooth estimator of the covariance function. To arrive at the auto-

covariance estimator, we exclude the negatively estimated eigenvalues and corre-
sponding eigenfunctions in the functional principal component decomposition of
the covariance function, i.e., ĜXrXr =

∑Mr
m:ρ̂rm>0 ρ̂rmφ̂rm(s)φ̂rm(t).

In the original smoothing estimator of the auto-covariance surface leading to
Ĝ∗

XrXr
, for estimation of var(εr), a local quadratic component is fit orthogonal

to the diagonal of GXrXr and a local linear component is fit in the direction of
the diagonal, resulting in a surface estimate; the diagonal is denoted by Gr(s).
In addition, a separate local linear smoother is fit only to the diagonal values
{GXrXr(t, t) + var(εr)}, denoted by V̂X(t). The estimator of var(εr) is taken
as the difference between the above two smoothing estimators for the diagonal
terms, v̂ar(εr) = (2/T )

∫ 3T/4
T/4 {V̂ (s) − Gr(t)}dt if var(εr) > 0, and var(εr) = 0

otherwise.

A.2. Assumptions and proofs

Assumptions (A1–A6) are needed for all three theorems, (B1–B2) are needed
for Theorem 2 and Theorem 3, while (C) is only needed for Theorem 3.
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(A1) The cross-sectional predictors Zgi are iid for i = 1, . . . , n, with var(Zgi) > 0
for g = 1, . . . , q.

(A2) The covariance matrices Xt defined in (2.4) are nonsingular for t ∈ [0, T ].

The longitudinal predictor and response trajectories (Tij , Xrij) and (Tij , Yij),
i = 1, . . . , n, j = 1, . . . , Ni, r = 1, . . . , p, are assumed to have the same distri-
bution as (T , Xr) and (T , Y ), with joint densities gr(t, x) and h(t, y). The ob-
servation times Tij are i.i.d. with density fT (t). Let T1 and T2 be i.i.d. T and
Xr1 and Xr2 be the repeated measurements of Xr made on the same subject at
times T1 and T2, and assume (Tij , Ti`, Xrij , Xri`), 1 ≤ j 6= ` ≤ Ni, is distributed
as (T1, T2, Xr1, Xr2), with joint density function gXrXr(t1, t2, x1, x2). It is analo-
gously assumed that the response measurements (Tij , Ti`, Yij , Yi`), 1 ≤ j 6= ` ≤
Ni, are identically distributed with joint density function gY Y (t1, t2, y1, y2). The
following regularity conditions are assumed on fT (t), gr(t, x), h(t, y), gXrXr(t1, t2,
x1, x2), and gY Y (t1, t2, y1, y2).
(A3) Let p1 and p2 be integers with 0 ≤ p1, p2 ≤ p = p1 +p2 = 2. The derivative

(dp/dtp)fT (t) exists and is continuous on [0, T ] with fT (t) > 0 on [0, T ],
(dp/dtp)gr(t, x) and (dp/dtp)h(t, y) exist and are continuous on [0, T ]×R,
and {dp/(dtp1

1 dtp2
2 )}gXrXr(t1, t2, x1, x2) and {dp/(dtp1

1 dtp2
2 )}gY Y (t1, t2, y1,

y2) exist and are continuous on [0, T ]2 × R2.
(A4) The numbers of measurements made on subjects are i.i.d. N , where N is

discrete with P (N > 1) > 0. Observation times and measurements are
independent of the number of observations for any subset Ji ∈ {1, . . . , Ni}
and for all i = 1, . . . , n.

Let K1(·) be the nonnegative, mean zero, finite variance, compactly sup-
ported kernel function used in estimating µXr , µY , GY Zg , and GXrZg , and K2(·, ·)
be the bivariate kernel function with similar properties used in estimating the
covariance surfaces GXrXr′ and GY Xr . Explicit forms for the estimators of these
quantities are given in Appendix A.3.

(A5) The Fourier transform κ1(t) =
∫

e−iutK1(u)du of K1(u) and κ2(t, s) =∫
e−(iut+ivs)K2(u, v)dudv of K2(u, v) are absolutely integrable.

Let bXr , bY be the bandwidths used for estimating µ̂Xr and µ̂Y , (hXr , hXr′ ) be
the bandwidths for estimating ĜXrXr′ , (hr1, hr2) be the bandwidths for obtaining
ĜY Xr , hg for obtaining ĜY Zg , and hrg for ĜXrZg′ , where all bandwidths depend
on n.

(A6) As n → ∞, bXr → 0, bY → 0, hg → ∞ and hrg → ∞, nb4
Xr

→ ∞,
nb4

Y → ∞, nh4
g → ∞, nh4

rg → ∞ and nb6
Xr

< ∞, nb6
Y < ∞, nh6

g < ∞ and
nh6

rg < ∞. Without loss of generality hXr/hXr′ → 1, hr1/hr2 → 1 and
nh6

Xr
→ ∞, nh6

r1 → ∞ and nh8
Xr

< ∞ and nh8
r1 < ∞.
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(A7) The fourth moments of Y and X, centered at µY (t) and µX(t), are finite.
(A8) The number of included eigenfunctions in (3.4), M1, . . . ,Mp, are integer-

valued sequences that depend on sample size n such that inft∈[0,T ] Mr(n) →
∞ and both inft∈[0,T ] Mr(n) and supt∈[0,T ] Mr(n) satisfy the rate conditions
given in Assumption (B5) of Yao, Müller, and Wang (2005a).

(A9) The autocovariance operator AGr generated by the continuously differen-
tiable covariance function GXrXr(s, t) is positive definite.

(B1) The number and locations of the measurements for a subject or cluster
remain unaltered as the sample size n → ∞.

(B2) For all 1 ≤ i ≤ n, m ≥ 1, 1 ≤ r ≤ p, 1 ≤ g ≤ q, and 1 < j < Ni, the
functional principal component scores ξrim, the cross-sectional predictors
Zgi, and the measurement errors εrij in (SD) are jointly Gaussian.

(C) There exists a continuous positive definite function ωt such that ωtM, as
defined in Theorem 3, satisfies ωtM → ωt as M1, . . . ,Mp → ∞.

Proof of Theorem 1. Uniform consistency of µ̂Xr(t) and µ̂Y (t) follow from
Theorem 1 of Yao, Müller, and Wang (2005b), and that of ĜXrZg(t) and ĜY Zg(t)
can be shown similarly for r = 1, . . . , p, g = 1, . . . , q. The properties of AGr

in (A9) imply that the ρrm are all positive. Hence
∑Mr

m:ρ̂rm>0 ρ̂rmφ̂rm(s)φ̂rm(t)
and

∑Mr
m ρ̂rmφ̂rm(s)φ̂rm(t) are asymptotically equivalent since |ρ̂rm − ρrm| =

Op{1/(
√

nh2
Xr

)}, by Theorem 2 of Yao, Müller, and Wang (2005b). The uniform
consistency of ĜXrXr(s, t) follows from uniform consistency of the eigenvalue and
eigenfunction estimators shown in Theorem 2 of Yao, Müller, and Wang (2005b).
For the rate conditions on Mr, we refer the reader to assumption (B5) of Yao,
Müller, and Wang (2005b), and note that further details on theoretical properties
of functional principal component analysis can be found in Silverman (1996),
Hall and Hosseini-Nasab (2009), and Hall, Müller, and Wang (2006). Uniform
consistency of the cross-covariance estimators ĜXrXr′ (s, t) and ĜY Xr(s, t) follow
from Lemma A1 of Yao, Müller, and Wang (2005a). Combining these results
implies uniform consistency of X̂t and Ξ̂t, and Theorem 1 follows.

Proof of Theorem 2. For fixed M1, . . . ,Mp and M, let Ỹ ∗
M(t) = µY (t) +∑p

r=1 βr(t)
∑Mr

m=1 ξ̃∗rmφrm(t) +
∑q

g=1 αg(t)ZC∗
g , and recall that Ỹ ∗(t) = µY (t) +∑p

r=1 βr(t)
∑∞

m=1 ξ̃∗rmφrm(t)+
∑q

g=1 αg(t)ZC∗
g . Since |Ŷ ∗

M(t)− Ỹ ∗(t)| ≤ |Ŷ ∗
M(t)−

Ỹ ∗
M(t)| + |Ỹ ∗

M(t) − Ỹ ∗(t)|, it follows, as in Lemma 3 of Yao, Müller, and Wang
(2005b), that Ỹ ∗

M(t)
p→ Ỹ ∗(t) as M1, . . . ,Mp → ∞ and n → ∞. The uniform

consistency of µ̂Y (t) follows from Theorem 1 of Yao, Müller, and Wang (2005b).
Hence, using Theorem 1 of Section 2.4, Theorem 3, (17) of Yao, Müller, and
Wang (2005b) and Slutsky’s Theorem, it follows that |Ŷ ∗

M(t) − Ỹ ∗
M(t)| → 0 as

n → ∞ and Theorem 2 follows.
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Proof of Theorem 3. Write EM{Y ∗(t)|X∗
1 (t), . . . , X∗

p (t), Z∗
1 , . . . , Z∗

q } = µY (t)
+

∑p
r=1 βr(t)

∑Mr
m=1 ξ∗rmφrm(t) +

∑q
g=1 αg(t)ZC∗

g , and note that

Ŷ ∗
M(t) − EM{Y ∗(t)|X∗

1 (t), . . . , X∗
p (t), Z∗

1 , . . . , Z∗
q }

= Ŷ ∗
M(t) − Ỹ ∗

M(t) + Ỹ ∗
M(t) − EM{Y ∗(t)|X∗

1 (t), . . . , X∗
p (t), Z∗

1 , . . . , Z∗
q }.

It follows from the proof of Theorem 2 that limn→∞ supt∈[0,T ] |Ŷ ∗
M(t)− Ỹ ∗

M(t)| →
0.

Let the M×(N∗p+q) matrix H = Cov (ξ∗
M

, U∗ | N∗, T ∗) = [H∗
11, . . . ,H

∗
1M1

,
. . . ,H∗

p1, . . . ,H
∗
pMr

]T, where H∗T

rm is as defined in (3.3). Since ξ̃∗
M

= HΣ−1
U∗(U∗−

µ∗
U ), Cov (ξ̃∗

M |N∗, T ∗) = Cov (ξ̃∗
M

, ξ∗
M | N∗, T ∗) = HΣ−1

U∗HT. Hence, Cov
(ξ̃∗

M − ξ∗
M |N∗, T ∗) = Cov (ξ∗

M |N∗, T ∗) −Cov (ξ̃∗
M |N∗, T ∗) = D−HΣ−1

U∗HT ≡
ΩM, where D = Cov (ξ∗

M |N∗, T ∗) is the M×M matrix with (r, r′)th partition,
an Mr × Mr′ matrix (D)rr′ = Drr′ = Cov (ξ∗

Mr

r , ξ∗
Mr′

r′ |N∗, T ∗). Let Ω̂M =
D̂ − ĤΣ̂−1

U∗ĤT, where D̂, Ĥ = (Ĥ∗
11, . . . , Ĥ∗

1M1
, . . . , Ĥ∗

p1, . . . , Ĥ
∗
pMr

)T, and Σ̂U∗

are estimated based on the entire data with Ĥ∗T

rm, Ê(ξrmZg) and ξ̂rm,r′m′ as
defined in Section 3. It follows that, under the Gaussian assumption for a fixed
M1, . . . ,Mp ≥ 1, ξ̃∗

M − ξ∗
M ∼ N (0, ΩM). Hence,

Ŷ ∗
M(t) − EM{Y ∗(t)|X∗

1 (t), . . . , X∗
p (t), Z∗

1 , . . . , Z∗
q }

D→ ZM ∼ N (0, ωtM).

Under Assumption (C), letting M1, . . . ,Mp → ∞ leads to ZM
D→ Z ∼ N (0, ωt).

From the Karhunen-Loéve Theorem, we have

|EM{Y ∗(t)|X∗
1 (t), . . . , X∗

p (t), Z∗
1 , . . . , Z∗

q }

−E{Y ∗(t)|X∗
1 (t), . . . , X∗

p (t), Z∗
1 , . . . , Z∗

q }|
P→ 0

as M1, . . . ,Mp → ∞. Hence, limM1,...,Mp→∞ limn→∞[Ŷ ∗
M(t)−E{Y ∗(t)|X∗

1 (t), . . .,

X∗
p (t), Z∗

1 , . . . , Z∗
q }]

D= Z. From Theorem 1 of Section 2.4 and Lemma 1 of Yao,
Müller, and Wang (2005a), it follows that limM1,...,Mp→∞ limn→∞ ω̂tM = ωt.
Theorem 3 follows by Slutsky’s Theorem.
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