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Abstract: Most of the known solutions (linear and nonlinear) of the ill-posed EEG

Inverse Problem can be interpreted as the estimated coefficients in a penalized

regression framework. In this work we present a general formulation of this problem

as a Multiple Penalized Least Squares model, which encompasses many of the

previously known methods as particular cases (e.g., Minimum Norm, LORETA).

New types of inverse solutions arise since recent advances in the field of penalized

regression have made it possible to deal with non-convex penalty functions, which

provide sparse solutions (Fan and Li (2001)). Moreover, a generalization of this

approach allows the use of any combination of penalties based on l1 or l2-norms,

leading to solutions with combined properties such as smoothness and sparsity.

Synthetic data is used to explore the benefits of non-convex penalty functions (e.g.,

LASSO, SCAD and LASSO Fusion) and mixtures (e.g., Elastic Net and LASSO

Fused) by comparing them with known solutions in terms of localization error,

blurring and visibility. Real data is used to show that a mixture model (Elastic

Net) allows for tuning the spatial resolution of the solution to range from very

concentrated to very blurred sources.
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1. Introduction

The identification of the neural current sources inside the brain generating
the voltage field measured over an array of sensors distributed on the scalp surface
is known as the Inverse Problem (IP) of the Electroencephalography (EEG).
The mathematical relation between these voltages (v) and the Primary Current
Density (PCD, j) is given by

v(Ne×1) = K(Ne×3Ng)j(3Ng×1) + ε(Ne×1), (1.1)

where the noisy nature of the EEG recordings is explicitly taken into account
through the vector of errors (ε). The number of sensors or electrodes is Ne

and the number of sources Ng correspond to the number of grid points of the
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discretization of the source space inside the brain. The 3Ng elements of the
column vector j = [j1x, j1y, j1z, . . . , jNgx, jNgy, jNgz]T correspond to the three
components of the PCD vector field for each point in the grid. The matrix K
is known as the electric lead field, and summarizes the geometric and electric
properties of the conducting media (brain, skull and scalp).

Usually Ng À Ne and so the IP of the EEG is an ill-posed problem in the
sense of Hadamard, due to the non-uniqueness of the solution (Hadamard (1923)).
The non-uniqueness naturally arises from the underdetermination of the system,
but the Lead Field matrix K is usually ill-conditioned as well, which means that
small changes in the data can lead to totally different PCD configurations as
inverse solutions. To overcome the non-uniqueness one is forced to use additional
data-independent information, also known as prior information, which can reflect
anatomical, physical and/or mathematical properties of the current sources inside
the head.

Current methods for solving the IP of EEG are based on different kind of
prior information used, and can be divided into two groups: dipole solutions
which assume that the PCD is a set of current dipoles (Scherg and von Cramon
(1986) and Scholz and Schwierz (1994)), and distributed inverse solutions
which assume that the current density is distributed widely within the brain
(Hämäläinen and Ilmoniemi (1994) and Pascual-Marqui, Michel and Lehmann
(1994)). The former are appropriate in cases where small areas are expected
to be activated but suffer from a subjective bias since the number of dipoles is
fixed by the researcher. On the other hand, distributed inverse solutions are
more plausible in cognitive states involving wide areas in the brain as well as
in spontaneous and pathological activities. The modelling in this group has
dramatically evolved from simple 2D approaches (Hämäläinen and Ilmoniemi
(1994)) to more sophisticated 3D implementations (Fuchs, Wagner, Wischman
and Dossel (1995), Pascual-Marqui, Michel and Lehmann (1994), Valdés-Sosa,
Marti, Garcia and Casanova (2000) and Trujillo-Barreto, Aubert-Vázquez and
Valdés-Sosa (2004)).

Several distributed inverse solutions are found through the use of Tikhonov
regularization. Some of them are presented in Table 1 of the supplemental ma-
terial (online) with the abbreviation to be used for referring to them. They are
computed as the PCD which minimizes a particular functional of the form

ĵ = arg min
{
‖v − Kj‖2

2 + λ2‖Hj‖2
2

}
(1.2)

for a given regularization parameter λ. This parameter represents the relative
weight between the data fitting error and prior terms, and can be calculated by
cross validation (Craven and Wahba (1979)) or by the L-curve method (Hansen
(1992)). Herein the symbol ‖·‖p denotes the lp-norm. Different prior assumptions
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about the solution are given by the choice of H (see Pascual-Marqui (1999) for
a review). Two important and popular cases are known as Minimum Norm
(MN) (Hämäläinen and Ilmoniemi (1994)) and Low Resolution Electromagnetic
Tomography (LORETA) (Pascual-Marqui, Michel and Lehmann (1994)), which
choose H as the identity matrix and the discrete Laplacian operator, respectively
(see the definition in Table 2 of the online supplemental material).

The functional (1.2) can also be interpreted as a penalized least squares re-
gression, in which the penalty term (prior) is a quadratic function of coefficients
to estimate (j). This is known in the linear regression field as ridge regression with
different operators H (Hoerl and Kennard (2000)), that offer smooth solutions.
However, recent advances in penalized least squares regression have brought at-
tention to the use of non-convex penalty functions, which can produce sparser or
more concentrated solutions (Fan and Li (2001)). Definitions and properties of
non-convex functions are recalled in the Section 1 of the online supplemental ma-
terial. These are non-quadratic functions of the coefficients to estimate, usually
based on their l1-norm. Moreover, it has been shown that they are especially
useful when the number of unknowns is much greater than the amount of data
(Tibshirani, Saunders, Rosset, Zhu and Knight (2005)), which is the case in the
estimation of the PCD in tens of thousands of generators from only tens of data
sensors.

Only a few approaches have attempted to use non-quadratic penalty terms,
for example the Focal Underdetermined System Solver (FOCUSS) (Gorodnitsky
and Rao (1997)) and the Controlled Support MEG (CSMEG) (Nagarajan, Port-
niaguine, Hwang, Johnson and Sekihara (2006)). Another approach added an
autoregressive term to the LORETA functional to impose spatiotemporal con-
straints to the solution, giving rise to Dynamic LORETA, which is estimated via
recursive penalized least squares regression (Yamashita, Galka, Ozaki, Biscay
and Valdés-Sosa (2004)). Finally, some more sophisticated methods combine the
penalized regression (or Tikhonov regularization) approach with other techniques
using the Bayesian formalism, as is the case of the Bayesian Model Averaging
solution presented in Trujillo-Barreto, Aubert-Vázquez and Valdés-Sosa (2004).

In this paper we use the penalized regression framework to introduce a gen-
eral formulation of the IP of the EEG that contains several previous approaches
as particular cases. This is called the multiple penalized least squares (MPLS)
model and it allows one to address combinations of any number of penalty terms,
quadratic or not (Valdés-Sosa, Sánchez-Bornot, Vega-Hernández, Melie-Garćıa,
Lage-Castellanos and Canales-Rodŕıguez (2006)). The paper is structured as
follows. In the next section we present the general MPLS model for the IP of
the EEG, and we reinterpret the estimators given by using non-convex penalties
as new types of inverse solutions. Some details on the algorithm used, and the
quality measures for comparing different inverse solutions, are also presented.
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The results of the comparative study are presented in the first half of the Section
3. The second half shows the application of the methodology to EEG recordings
from a visual attention experiment. A final section is devoted to the discussion
of results and conclusions of the study.

2. Multiple Penalized Least Squares Model

A general penalized linear regression can be written in the form (1.2), with
a penalty term represented generically by P (j):

ĵ = arg min
{
‖v − Kj‖2

2 + λP (j)
}

.

The first term in the parentheses is a quadratic term that corresponds to the
log-likelihood. The second term represents the constraint or penalization (known
as prior information in the Bayesian framework), and λ is a weighting parameter
that establishes the relative importance of the constraint. Different types of
penalization can be imposed by introducing the corresponding additive terms in
the functional leading to a general formulation of an EEG inverse solution as

ĵ = arg min
{
‖v − Kj‖2

2 +
∑

λmPm(j)
}

, (2.1)

where
∑

λmPm(j), with m = 1 . . .M , includes all prior information through the
M penalty functions Pm. Each penalty term has a corresponding regularization
parameter λm. Equation (2.1) sets forth the multiple penalized least squares
(MPLS) model.

This formulation contains as particular cases several known inverse solutions,
such as MN (̂j = arg min{‖v − Kj‖2

2 + ‖Ij‖2
2}, with I the identity matrix) and

LORETA (̂j = arg min{‖v −Kj‖2
2 + ‖Lj‖2

2}, with L a discrete version of the 3D
Laplacian operator, Table 2 of the supplemental material). All inverse solutions
presented in Table 1 of the supplemental material, as well as FOCUSS, CSMEG
and Dynamic LORETA can also be rewritten in the form of (2.1) and thus are
particular cases of this formulation. In the latter case, unlike our approach,
the temporal information of the solution is also taken into account which leads
to a state-space model that is solved with a recursive penalized least squares
regression. However, the spatiotemporal model may also be estimated by Kalman
filtering which can be combined with non-convex penalty functions in order to
decrease the computational burden.

The use of non-convex penalty functions defines several new types of inverse
solutions. In this work we explore the performance of a subset of the best known
in the linear regression field, together with the LORETA and MN solutions. The
new solutions, according to penalty term, are as follows.

• Least Absolute Shrinkage Selection Operator (LASSO) (Tibshirani
(1996)). The LASSO penalty is the l1-norm of the coefficients to estimate; thus,
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the estimator takes the form ĵLASSO = arg min{‖v−Kj‖2
2+λ‖j‖1}. This penalty

forces the solution to be sparse, so as an inverse solution it should provide con-
centrated sources.

• LASSO Fusion (LFusion) (Land and Friedman (1996)). The LFusion
is similar to LASSO but, in this case, the penalty function is the l1-norm of a
linear operation on the coefficients. It can be written as ĵLFusion = arg min{‖v−
Kj‖2

2 + λ‖Dj‖1}, where D is the 3D gradient operator, given in Table 2 of the
supplemental material online. This choice makes LFusion capable of dealing with
group behavior by minimizing the first-order finite differences of coefficients, and
providing piece-wise flat solutions. It can be seen that LFusion and LASSO are
members of the family of methods using a penalty function of the form ‖Hj‖1,
where H can be any positive definite matrix. Of particular interest is the case of
higher order difference operators, due to ease of interpretation.

• Smoothly Clipped Absolute Deviation (SCAD) (Fan and Li (2001)).
This method is defined by its penalty’s derivative as p′SCAD(|ji|) = λ{=(|ji| ≤
λ) + ((aλ − |ji|)+/(a − 1)λ)=(|ji| > λ)} for some a > 2, i = 1, . . . , 3Ng, where
(x)+ = x, (for x ≥ 0), (x)+ = 0, (for x < 0) and =(·) is the indicator func-
tion. This penalty function is designed to not excessively penalize large value
coefficients and to make the solution continuous. Again, a general formulation is
possible with the use of a linear operator Hj replacing j in the expression above.
Here we use the discrete 3D Laplacian operator for finding an inverse solution
that will be called SCAD L.

• LASSO Fused (LFused) (Tibshirani, Saunders, Rosset, Zhu and Knight
(2005)). This is a penalty derived from the combination of LASSO and LFusion.
The solution is then given by ĵLFused = arg min{‖v−Kj‖2

2 +λ1‖j‖1 +λ2‖Hj‖1}.
The idea here is to be able to recover sparse solutions in which there is group
behavior, in addition to some isolated nonzero points. The use of different linear
operators H leads to the recovery of different properties for those points in the
groups. Here we use the 3D Laplacian operator.

• Ridge Fused (RFused). In the same flavor of the previous method, we
propose a penalty that combines the penalties for MN and LORETA, which are
two versions of Ridge. Analogously, we call it Ridge Fused and the estimator is
ĵRFused = arg min{‖v−Kj‖2

2 +λ1‖j‖2
2 +λ2‖Lj‖2

2}. It is obvious that this penalty
will not lead to sparse solutions but, depending on the weighting parameter, it
can offer blurred solutions with intermediate properties between LORETA and
MN.

• Elastic Net (ENET) (Zou and Hastie (2005)). This method is based
on the combined use of a quadratic penalty and an l1-norm term. The original
estimator is ĵENET = arg min{‖v−Kj‖2

2+λ1‖j‖1+λ2‖j‖2
2}. However, we take the

more general formulation ĵENET = arg min{‖v−Kj‖2
2 + λ1‖H1j‖1 + λ2‖H2j‖2

2},
where H1 and H2 are full rank matrices. The version of ENET we test here
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uses the discrete 3D Laplacian operator for both H1 and H2, we refer to it as
ENET L. This kind of combination is trying to achieve solutions in which there
are patches of nonzero coefficients with smooth behavior, thus trying to get at
the same time a mixture of smoothness and sparsity.

2.1. Implementation by a modified MM algorithm and selection of the
regularization parameter

The MPLS model can be identified with the use of modified Newton-Raphson
(NR) algorithms, such as Minorization-Maximization (MM) which extends the
central idea of Expectation-Maximization algorithms to situations not necessar-
ily involving ‘missing data’, nor even maximum likelihood estimation (Hunter
and Li (2005) and Hunter and Lange (2004)). This algorithm inherits the virtues
of the NR method, but cannot deal with the simultaneous use of several different
penalties. To overcome this difficulty, our group recently introduced a generalized
MM method for use in the estimation of massive autoregressive models of neu-
roimaging data (Valdés-Sosa, Sánchez-Bornot, Vega-Hernández, Melie-Garćıa,
Lage-Castellanos and Canales-Rodŕıguez (2006)). We use it here for estimating
the various inverse solutions.

An important issue in finding any inverse solution is the selection of the reg-
ularization parameter. In this paper, we use a grid of regularization parameters,
and choose the value minimizing the generalize cross-validation function (GCV)
(Golub, Heath and Wahba (1979)). It should be noted that, in the case of inverse
solutions that use more than one penalty term, one must look for optimal values
of all regularization parameters at the same time, requiring a multi-dimensional
grid search. This is the case for LFused, RFused and ENET, for each of which
we use a convenient reformulation of the problem for avoiding an exhaustive
search that would increase computations prohibitively. The parameters involved
are rewritten as λ1 = λf1 and λ2 = λf2. We then select only a few pairs of
proportions f1 and f2 such that f1 + f2 = 1, and estimate an optimal value of
λ by GCV. This allows the study of the dependence of the method on relative
weights of quadratic and non-convex penalties, while keeping the same relative
weight between the error fitting and total prior information.

2.2. Quality measures for evaluating inverse solutions

We use three measures (Pascual-Marqui (1999) and Trujillo-Barreto, Aubert-
Vázquez and Valdés-Sosa (2004)) to evaluate the reconstruction of a simulated
PCD by the methods in study. The first measures the ability to correctly localize
the maximum value of the PCD. It is known as Localization Error, and defined
as the Euclidean distance (in mm) between the maximum values of the estimated
and real current densities: Err = ‖rtrue−r‖, where rtrue and r denote the vector
position of the maximum of real and estimated PCD, respectively.
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The spatial dispersion of the solution can be measured by the Blurring.
Here we compute the ratio between the full width at half maximum (FWHM)
of the estimated and real current densities: Blurr = FWHM/FWHMtrue

(Trujillo-Barreto, Aubert-Vázquez and Valdés-Sosa (2004)). The FWHM was
defined in Fuchs, Wagner, Kohler and Wischman (1999) as the volume of vox-
els with strength above 50% of the maximum PCD (number of voxels times the
volume of a voxel) divided by the total volume of the brain.

The third measure is the Visibility, defined as the ratio between the maxi-
mum values of estimated and simulated PCD: V is=max(PCD)/max(PCDtrue).
Due to conservation of energy, this measure is related to Blurring, since more con-
centrated sources tend to have higher values and, similarly, the more distributed
the sources, the lower the maximum value of the PCD. For a convenient pre-
sentation of the results, these measures were transformed to values between 0
and 1, being 1 only when the measure has the same value for the real and esti-
mated PCD. The transformed measures are as follows: EN = 1 − (Err/2Rb);
BN = exp(2 − (Blurr + (1/Blurr))); V N = exp(2 − (V is + (1/V is))), where
Rb is the radius of the brain (95 mm for the fitted sphere used in this work).
Hereinafter we refer to these magnitudes as the normalized quality measures.

3. Validation of the Methodology

3.1. Simulation study

A grid of 3,862 points defined in the gray matter of the Brain Atlas of the
Montreal Neurological Institute (Evans, Collins, Mills, Brown, Kelly and Peters
(1993)) was used for constructing four different sets of current density distribu-
tions. Each set consisted of 5 simulated PCDs: a “central” PCD with maximum
located in a particular anatomical structure, and the others derived from this one
by moving the maxima in just one grid point. Maxima values of the “central”
simulated PCDs were located in the cingulate region left (Cingulate), inferior
temporal gyrus right (Temporal), occipital pole left (Occipital) and postcentral
gyrus (Postcentral), as shown in Figure 3.1 of the supplemental material (on-
line). All PCDs were simulated as a three-dimensional Gaussian source with
the same amplitude and spatial dispersion. The Talairach coordinates for the
twenty simulations are shown in Table 3 of the supplemental material (online).
The Lead Field for this brain was computed as described in Riera and Fuentes
(1998) for an array of 19 electrodes from the 10/20 system. The simulated volt-
ages were obtained through equation (1.1), adding white noise in order to have
a signal-to-noise ratio (SNR) of 30.

Eight different inverse solutions (MN, LORETA, RFused, LASSO, LFusion,
LFused, SCAD L and ENET L) were computed for each simulated data set.
Sagital views in the coordinate of the maximum value of PCDs estimated by
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Figure 1. Top row: Sagital views of the four central simulated PCD as three-
dimensional Gaussians with maxima in different regions inside the brain. In
all cases the amplitude and width of the Gaussians are fixed to 10 nA/mm2

and 10 mm, respectively. Orthogonal views and coordinates of the max-
ima are shown in Figure 3.1 of the supplemental material (online). Middle
and button rows: Sagital views of eight different inverse solutions from the
“central” simulated data in the anatomical locations cingulate, postcentral,
temporal and occipital. Grayscale plotting uses white for zero current den-
sity and black for the maximum value of the PCD. These solutions can be
viewed in color in Figure 3.2 of the supplemental material (online).

each method for every “central” simulated data set are presented in Figure 1.
In all cases the optimal regularization parameter was found automatically by
minimizing the GCV, and the proportions between weights for different penalties
in LFused, RFused and ENET L were set to 1, i.e. f1 = f2 = 0.5.

Three-dimensional maps defined by the normalized quality measures com-
puted for all inverse solutions found from the four “central” simulated data set
are shown in Figure 2. In these plots the method with better general perfor-
mance is the one with coordinates nearest to [1, 1, 1]. Also, in order to study
the stability of the estimated solutions, we computed the mean and standard
deviation of the normalized quality measures across the 5 inverse solutions com-
mon to a simulation set. These values, and the mean coefficient of variation, are
shown in Table 1 of this manuscript and Table 4 of the supplemental material
(online) respectively. The corresponding mean values of optimal λ’s and GCV’s
are shown also in Table 4 of the supplemental material (online).
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Table 1. Mean ± standard deviation of normalized Localization Error (EN),
Blurring (BN) and Visibility (VN) of the five inverse solutions for each syn-
thetic data set. Best and second best numbers are bold faced.

OCCIPITAL POSTCENTRAL

EN BN VN EN BN VN

MN
0.51

±0.36
0.54

±0.12
0.70 × 10−3

±1.51 × 10−3

0.59
±0.09

0.59
±0.19

3.43 × 10−3

±4.57 × 10−3

LORETA
0.51

±0.30
0.41

±0.08
2.60 × 10−5

±5.79 × 10−5

0.60
±0.15

0.48
±0.08

4.04 × 10−3

±6.35 × 10−3

RFused
0.51

±0.36
0.53

±0.12
0.69 × 10−3

±1.48 × 10−3

0.59
±0.09

0.59
±0.19

3.37 × 10−3

±4.49 × 10−3

LASSO
0.40

±0.31
0.71

±0.18
1.12 × 10−2

±0.99 × 10−2

0.63
±0.17

0.58
±0.21

4.39 × 10−3

±9.21 × 10−3

LFusion
0.41

±0.31
0.58

±0.22
0.41

±0.26
0.58

±0.14
0.54

±0.22
0.23

±0.15

LFused
0.47

±0.37
0.67

±0.17
0.45

±0.34
0.69

±0.18
0.60

±0.19
0.34
±0.26

SCAD L
0.56

±0.37
0.72

±0.15
5.55 × 10−2

±4.90 × 10−2

0.62
±0.09

0.65
±0.18

4.97 × 10−2

±3.18 × 10−2

ENET L
0.47

±0.37
0.96

±0.07
0.45

±0.21
0.70

±0.18
0.94

±0.08
0.62

±0.12

CINGULATE TEMPORAL

EN BN VN EN BN VN
0.61

±0.25
0.50

±0.14
1.68 × 10−3

±2.30 × 10−3

0.45
±0.06

0.52
±0.14

1.43 × 10−5

±1.90 × 10−5

LORETA
0.73

±0.20
0.30

±0.07
0.89 × 10−3

±1.57 × 10−3

0.54
±0.15

0.36
±0.10

2.04 × 10−5

±4.55 × 10−5

RFused
0.61

±0.25
0.50

±0.14
1.65 × 10−3

±2.26 × 10−3

0.45
±0.06

0.52
±0.14

1.40 × 10−5

±1.92 × 10−5

LASSO
0.72

±0.15
0.76

±0.20
1.27 × 10−2

±1.77 × 10−2

0.42
±0.05

0.75
±0.13

0.21
±0.26

LFusion
0.84

±0.02
0.83

±0.15
0.43

±0.26
0.50

±0.16
0.55

±0.24
0.63

±0.30

LFused
0.83

±0.02
0.84

±0.16
0.45

±0.33
0.46

±0.07
0.71

±0.12
0.68

±0.17

SCAD L
0.74

±0.21
0.54

±0.13
0.06

±0.11
0.53

±0.09
0.72

±0.19
0.11

±0.19

ENET L
0.84

±0.01
0.90

±0.09
0.55

±0.20
0.54

±0.14
0.99

±0.01
0.30

±0.21
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Figure 2. 3D maps of inverse solutions on the space of normalized quality
measures (values between 0 and 1). Axes are chosen to get the best view
of the position of each inverse solution in the graph. Better reconstruction
performances correspond to higher values of all normalized quality measures.

The MN, LORETA and RFused always offered more blurred solutions than
the simulated PCD, and correspondingly less Visibility. On the other hand,
LASSO, LFusion and LFused gave very concentrated solutions; they do not allow
for correct estimation of the blurring of the real PCD, and usually give maximum
values of the PCD higher than simulated ones. Therefore, in all these cases, BN
and VN have values far from 1. The SCAD L and ENET L methods offer solutions
with middle values for blurring, nearer to the real one while the visibility and
localization errors are acceptable. In a general view, ENET L seems to show the
best performance among these eight methods.

3.2. Source localization of evoked potentials

We analyzed the data provided by the EEGLAB Toolbox (Delorme and
Makeig (2004)), which is freely available at http://sccn.ucsd.edu/eeglab/eeglabtut.
html. This data set corresponds to the study of the attention modulation of the
early visual components. Other details of the experiment and processing of the
data can be found in Section 4 of the supplemental material (online). The topog-
raphy was obtained at the latency corresponding to the so-called N1 peak (281
ms after the presentation of the stimulus) for source localization through three
inverse solutions: LORETA, LFusion and ENET L. The optimal regularization
parameters were selected by minimization of the GCV criterion. In the case of
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Figure 3. Estimated PCD of the N1 peak by LORETA, LFusion and ENET
L. In the case of ENET L, five solutions are shown for different proportions of
weights corresponding to non-quadratic and quadratic penalties. The color
scale indicates maximum and minimum values for each solution. Note that
concentrated sources have higher maximum values. Corresponding values
of optimal regularization parameters and GCV are shown in Table 5 of the
supplemental material (online).

ENET, we explored different proportions of weights for quadratic and non-
quadratic terms in order to control the amount of smoothness and sparsity of
the solution.

Figure 3 shows the maximum projection in orthogonal planes of the esti-
mated PCD by the three methods. It can be seen that the as the proportion
between weights in ENET L (λ1/λ2 = f1/f2) decreases, the estimated solution
goes from a very sparse to a very smooth one showing in essence the same sources.
In other words, tuning the proportion λ1/λ2 in ENET L allows intermediate so-
lutions to LORETA and LFusion, controlling the blurring of the PCD. Optimal
values for the regularization parameters and corresponding GCV can be found
in Table 5 of the supplemental material (online).

In spite of the extended use of inverse solutions for localizing neural sources
of evoked components, the noisy nature of the data and the ill-posed character of
the IP have raised the requirement of a statistical post-processing for assessing
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the significant activations of neural sources (Bosch-Bayard, Valdés-Sosa, Virués-
Alba, Aubert-Vázquez, John, Harmony, Riera-Dı́az and Trujillo-Barreto (2001)
and Pascual-Marqui, Esslen, Kochi and Lehmann (2002)). It has been also argued
that this can help to eliminate ghost sources commonly offered by linear inverse
solutions (Grave de Peralta and González (1998)). In this work we computed a
Hotelling’s T2 statistic in each voxel from the inverse solutions for 80 trials of the
N1 peak to find significant activations (Carbonell, Galá, Valdés-Sosa, Worsley,
Biscay, Dı́az-Comas, Bobes and Parra (2004)).

Figure 4 shows the Hotelling’s T2 images for the same methods presented in
Figure 3. The images have been thresholded with a Bonferroni correction for the
comparison of 3,862 voxels with a p-value of 0.05. Significant activations were
localized mainly in the occipital areas in all cases, although other sources are

Figure 4. Images of the Hotelling’s T2 statistic from inverse solutions of 80
trials of the N1 peak. The methods LORETA, LFusion and ENET L are
shown in the same way as in Figure 3. The color scale shows the global max-
imum value of the T2 among all statistical images and the lower threshold,
which corresponds to a p-value of 0.05 corrected for multiplicity (Bonfer-
roni). Talairach coordinates of the voxel with maximum T2 statistic in each
case are shown below the corresponding images.
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also present in the cases of such very sparse solutions as LFusion and ENET L,
with the highest ratio of weights. The Talairach coordinates of the voxel with
maximum T2 value are also shown.

4. Discussion and Conclusions

The simulations support the following general view: LASSO and LFusion can
be interpreted as the concentrated versions of MN and LORETA, respectively,
since they presented similar localization of the maximum PCD. Conservation
of energy implies that concentrated sources have higher values, thus generally
improving the visibility of the solutions. These solutions have better spatial
resolution and are good choices in those cases in which the existence of small
activated areas are known a priori. However, this effect also enhances ghost
sources (alredy present in MN and LORETA as part of the main activation, see
Figure 1 and Figure 3.3 of the suplemental material (online)) that appear more
clearly and with higher values. This is also the case for SCAD L (at least in the
study presented here), which produced less blurred solutions than LORETA with
similar localization error. On the other hand, methods based on combination of
penalties such as RFused and LFused offer more adaptive solutions, but depend
strongly on the regularization parameters. They always showed solutions very
similar to LASSO and MN, respectively, with maxima in voxels at the surface of
the brain, thus biasing deep sources. Furthermore, ENET L was able to recover
solutions with almost the same blurringas as the simulated PCD.

In the comparative study among these inverse solutions (for the “central”
simulated data) in terms of normalized quality measures, ENET L always showed
the best Blurring and LFusion the best Visibility, while both have similar Local-
ization Error (see Figure 2). In Table 1 the two highest means in each column
are highlighted. ENET L was the best or the second-best method in 10 of the
12 cases. Since this penalty consists of a mixture of the LORETA penalty and
LFusion penalty, it preserves the good localization properties of LORETA, dimin-
ishing the blurring of the solution and, correspondingly, increasing the visibility.
This improvement of the combined penalty with respect to each penalty sepa-
rately (LORETA and LFusion) has been previously described for ENET by Zou
and Hastie (2005). Moreover, in terms of the stability of solutions, we found
that ENET L showed the lowest average coefficient of variation (across the three
quality measures) in three simulation sets, being the second lowest in the remain-
ing set. LFusion, LFused and SCAD L also showed low values of coefficient of
variation. In contrast, the GCV procedure was not so stable. Optimal values
of regularization parameters varied over a wide range for different solutions, as
shown in Table 4 of the supplemental material (online). This is a well-known
problem of the regularization approach that requires further development.



1548 MAYRIM VEGA-HERNÁNDEZ ET AL.

The combined properties of ENET L solutions were more apparent in the
analysis of sources of the N1 peak appearing in the average evoked potential of
a visual attention experiment (Figure 4). It is evident that tuning the propor-
tion of penalties in ENET L produces solutions ranging from pure LORETA to
pure LFusion. The maximum activation was found in the lateral occipitotem-
poral gyrus, which is consistent with previous reports in the literature (Makeig,
Westerfield, Jung, Enghoff, Townsend, Courchesne and Sejnowskii (2002) and Di
Russo, Mart́ınez, Sereno, Pitzalis and Hillyard (2001)). However, what seems to
be a unique source widely spread from occipital to parietal and temporal areas,
as shown by LORETA, becomes an image of several small concentrated sources
in all those areas as shown by LFusion. Therefore, in the latter case the appear-
ance of ghost sources (sources with no physiological meaning) is made clearer
by the requirement of sparsity of the solution. In this sense, ENET L allows
intermediate solutions in terms of the blurring and appearance of ghost sources.
Particularly, in our example, we could say that the solution corresponding to a
ratio of 102−1 (f1 = 0.99, f2 = 0.01) between weights of l1 and l2-norm terms, is
the one with the more concentrated main source without showing ghost sources.
This selection is made here by visual inspection, since these data are used for
illustration purposes, although some criteria should be sought for selecting which
is the most appropriate proportion of weights acoording to the data at hand.

In summary, in this work we have introduced a general formulation of the
EEG inverse problem, in the form of a multiple penalized least squares model.
With MPLS the use of non-convex penalties leads to new inverse solutions which
are sparse, i.e., show concentrated sources, improving the spatial resolution and
interpretability of separate generators. Furthermore, the combination of several
penalties produces more adaptive solutions. In particular, we found that the
ENET inverse solution showed the best general performance among all tested
methods and was able to recover adaptively concentrated and blurred sources by
tuning the proportion of corresponding weights parameters. This property makes
ENET L a promising method for the search of generators of a wide variety of
neurocognitive processes.

However, it should be said that a full exploration of the validity of the new
methods as inverse solutions was not addressed here. We hope that the prelimi-
nary studies carried out motivate a more thorough study on the use of non-convex
penalties and combination of them as inverse solutions. Several drawbacks still
affect the methodology presented. For example, although the inverse solutions
based on combination of penalties showed better performance than individual
solutions separately, it should be noted that they are more dependent on the
appropriate selection of regularization parameters. On the other hand, the mod-
ified MM algorithm used here is still not optimal in terms of efficiency, and it
could take several minutes to estimate a solution based on mixtures of penalties.
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This, together with the need for 50 to 100 runs with different regularization pa-
rameters in order to evaluate the GCV function, makes the search for a more
efficient and fast algorithm a goal for future research. Finally, other penalties
which have been proposed from a Bayesian point of view for achieving sparsity,
can be introduced in the proposed model, for example the double exponential
(Vidakovic (1998)) and Normal-Jeffrey (Kiiveri (2003)) prior.
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