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Abstract: Estimating the number of species from multiple incidence-based subsam-

ples is of great importance in ecological and environmental sciences. The problem

is investigated in a mixture model of multivariate binomial densities. A sequence

of algebraic lower bounds to the odds that a species is unseen in the survey is pro-

posed. Estimating a lower bound leads to an estimator for the number of species.

The nonparametric bootstrap method can be used to compute lower confidence

limits. The asymptotic standard error for the first order estimator is provided. An

example is investigated and a simulation experiment is carried out to assess the

proposed estimators.
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1. Introduction

Conservation or management of biodiversity has been a central problem in

the ecological and environmental sciences. Among a variety of measures of bio-

diversity (Colwell and Coddington (1994), Magurran (2004) and Mao (2007)),

the number of species is the most important one. Estimating the number of

species can be based on incomplete surveys (Bunge and Fitzpatrick (1993) and

Colwell and Coddington (1994)). Survey data are either abundance-based or

incidence-based. Abundance-based data concern the number of individuals from

each species found in the survey, and incidence-based data concern the oc-

currence of species over selected representative sites in a species assemblage

(Colwell and Coddington (1994)).

A single sampling method can access only a certain number of species that

constitute a latent subuniverse. Scientists often use a variety of methods to access

species in a species assemblage (e.g., Longino, Coddington and Colwell (2002)).

One method yields a single subsample from its subuniverse. These subuniverses

are overlapping in the sense that some species are accessible to two or more

methods. Analysis of a survey with multiple subsamples has been a long-time

challenging task.

For an abundance-based sample with a random size, the number of individu-

als from a species is usually treated as a Poisson random variable. The numbers
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of individuals from the same species in multiple subsamples are Poisson random

variables with possibly different means, and their sum is also a Poisson random
variable. This means that multiple abundance-based subsamples can be pooled

to form a single aggregated sample to which existing estimators can be applied.

When an abundance-based sample has a fixed size, a multinomial model arises.

For example, Chao, Hwang, Chen and Kuo (2000) developed an estimator for
the number of species shared by two subsamples in a multinomial model, which

can be used to derive an estimator for the total number of species. Note that a

Poisson model can still be useful for a multinomial sample, similar to the practice

of using log-linear models to analyze multinomial data.
We focus on multiple incidence-based subsamples. Consider that, in a species

assemblage, there are s species labeled by a = 1, . . . , s. Let a survey contain

K subsamples labeled by b = 1, . . . ,K. In the bth subsample, there are mb

representative sites. Let Xab denote the number of representative sites where the
ath species is detected. Assume that a species has the same probability of being

detected in each site of the same subuniverse, so that Xab is a binomial random

variable with detection probability πab. Note that, for each a,
∑K

b=1 Xab is not a
binomial random variable unless the πab are identical over b. This means that it

is usually inappropriate to pool multiple incidence-based subsamples.

The detection pattern of the ath species is Xa = (Xa1, . . . ,XaK)′. If Xa = 0,

then the ath species is unseen in the survey, where 0 is the origin of RK . The Xa

arise as a random sample from a mixture when the Λa are assumed to follow a

mixing distribution P , where Λa = (Λa1, . . . ,ΛaK)′ and Λab = πab/(1−πab). The

special case with mb = 1 for all b has been extensively studied in the capture-

recapture literature (e.g., Chao (2001)). The case with mb > 2 for all b will be
investigated here. Let n+ =

∑s
i=1 I(Xi 6= 0) be the number of observed species,

where I(·) is the indicator function. Conditioning on n+, the problem of esti-

mating the number of species s can be reduced to estimating the odds that a

species is unseen in the survey. On the one hand, the odds is nonparametrically
nonidentifiable, and an arbitrarily small perturbation to the mixture can be as-

sociated with an arbitrarily large increment in the odds. On the other hand,

it is appropriate to develop lower bounds to the odds, and to construct lower

confidence limits. To this end, a truncated moment problem will be formulated,
in which the odds becomes the total mass of a measure over the positive half

line, and finitely many higher order moments of this measure are functionals of a

mixture. Based on such a truncated moment sequence, we consider an algebraic

approach to construction of lower bounds to the odds. Estimating an algebraic
lower bound leads to a pseudo maximum likelihood estimator for the number of

species. The bootstrap method can be used to obtain lower confidence limits.

For the first order lower bound estimator, the asymptotic standard error is also

given.
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This article is organized as follows. The mixture model is formulated in

Section 2. The estimation method is presented in Section 3. In Section 4, an

example is studied, and a simulation experiment is reported.

2. A Mixture Model

Let m = (m1, . . . ,mK)′. A multivariate binomial density is given, depen-

dence on m being suppressed for notational convenience, by

fx(λ) =
K
∏

b=1

(

mb

xb

)

λxb

b

(1 + λb)mb

, x ∈ F ,

where F is the set of all detection patterns, as a finite subset of the mesh I

of non-negative integer-coordinated vectors in the first closed orthant of RK .

Let nx =
∑s

a=1 I(Xa = x) for x ∈ F . Because the Xa arise from a mixture

fx(P ) =
∫

fx(λ) dP (λ), with n+ = s − n0, the full likelihood of the number of

species s and the mixing distribution P is, with G = F\{0},

L(s, P ) =
s!

(s − n+)!
∏

x∈G
nx!

{f0(P )}s−n+

∏

x∈G

{fx(P )}nx . (1)

To reformulate the problem, we reparameterize P by Q, where

dQ(λ) = {1 − f0(P )}−1{1 − f0(λ)} dP (λ). (2)

This yields a mixture g = g(Q) of truncated multivariate densities g(λ), where

gx(Q) =

∫

gx(λ) dQ(λ), gx(λ) = fx(λ)/{1 − f0(λ)},x ∈ G .

Note that gx(Q) = fx(P )/{1− f0(P )} for x ∈ G . Let θ = f0(P )/{1− f0(P )} be

the odds that a species is unseen in the survey, which can be written as

θ = θ(Q) =

∫

f0(λ)/{1 − f0(λ)} dQ(λ). (3)

Because the number of observed species n+ is a binomial random variable with

size s and probability 1 − f0(P ) = (1 + θ)−1, the maximum likelihood estimator

(MLE) for the number of species s given Q is ⌊n+ + n+θ⌋ (Lindsay and Roeder

(1987)), where ⌊x⌋ stands for the greatest integer no larger than x ∈ R. An

estimator for θ yields a pseudo MLE for s (Gong and Samaniego (1981)).

In the nonparametric mixture model, the number of support points, the

support points and the mixing weights of Q are treated as unknown parameters.

The odds θ is nonidentifiable in the sense that there exist two mixing distributions
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Q and O such that gx(Q) = gx(O) for all x ∈ G , but θ(Q) 6= θ(O). The odds θ

can also change dramatically. For example, consider Qε =
√

ε∆(ε1)+(1−√
ε)Q,

ε ∈ (0, 1), where 1 = (1, . . . , 1) ∈ RK and ∆(λ) is a distribution degenerate at

λ. By choosing a sufficiently small ε, the two mixture densities g(Q) and g(Qε)

can be arbitrarily close while θ(Qε) can be arbitrarily large, because

∑

x∈G

|gx(Qε) − gx(Q)| =
√

ε
∑

x∈G

|gx(∆(ε1)) − gx(Q)| 6 2
√

ε,

θ(Qε) =
√

εθ(∆(ε1)) + (1 −
√

ε)θ(Q) >

[√
ε
{

‖m‖ +

‖m‖
∑

i=2

(‖m‖
i

)

εi−1
}]−1

,

where ‖x‖ =
∑K

b=1 |xb| is the ℓ1 norm of x ∈ RK . One consequence is the nonex-

istence of genuine two-sided nonparametric confidence intervals (Mao and Lindsay

(2004)). These observations invite us to develop lower bounds to θ.

3. Algebraic Lower Bounds

Given Q, the sharpest lower bound to the odds θ is

ϕ = ϕ(g) = inf{θ(O) : gx(Q) = gx(O),∀x ∈ G ,∀O}. (4)

Because it is difficult to calculate ϕ, it is of interest to develop lower bounds to

θ that can be easily calculated, although maybe smaller than ϕ. To achieve this

goal, we consider generalized moments of functions of λ. In particular, we focus

on ‖λ‖ with a weight function θ(∆(λ)) = f0(λ)/{1 − f0(λ)}.
Write a discrete mixing distribution as Q =

∑ι
i=1 πi∆(λi), where Q has ι

distinct support points λi with corresponding mixing weights πi, i = 1, . . . , ι.

There are κ distinct values among the ‖λi‖, denoted by ωk, k = 1, . . . , κ. The

mixing distribution Q induces a finite univariate measure ν, where

ν = νQ =

κ
∑

k=1

{

ι
∑

i=1

θ(∆(λi))πiI(‖λi‖ = ωk)
}

∆(ωk). (5)

The moments µ(h) of ν are generalized moments of Q, where

µ(h) = µ(h, ν) =

∫

ωh dν(ω) =

∫

‖λ‖hθ(∆(λ)) dQ(λ), h = 0, 1, . . . . (6)

There is a multinomial expansion of ‖λ‖h, i.e.,

‖λ‖h =
{

K
∑

b=1

λb

}h

=
∑

{x∈I : ‖x‖=h}

ux

K
∏

b=1

λxb

b , h = 0, 1, . . . , (7)
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where ux = ‖x‖!∏K
b=1(xb!)

−1 is a multinomial coefficient. For h = 1, . . . ,m,

because {x ∈ G : ‖x‖ = h} = {x ∈ I : ‖x‖ = h}, write

∑

{x∈G :‖x‖=h}

wxgx(Q) =

∫

{

∑

{x∈I :‖x‖=h}

ux

K
∏

b=1

λxb

b

}

θ(∆(λ))dQ(λ), (8)

where m = min(m1, . . . ,mK) > 2 and

wx = ux

K
∏

b=1

(

mb

xb

)−1

=
(

K
∑

b=1

xb

)

!

K
∏

b=1

(mb − xb)!

mb!
. (9)

It is clear that (3), (6), (7) and (8) yield the following.

Proposition 1. The moments µ(0), . . . , µ(m) satisfy

µ(0) = θ, (10)

µ(h) =
∑

{x∈G :‖x‖=h}

wxgx(Q), h = 1, . . . ,m. (11)

There are numerous families of moments of univariate measures induced by

real-valued functions of λ. For example, given d ∈ RK , consider

(d′
λ)h =

{

K
∑

b=1

dbλb

}h

=
∑

{x∈I :‖x‖=h}

{

ux

K
∏

b=1

dxb

b

}

K
∏

b=1

λxb

b .

While µ(h), for h = 1, . . . ,m, is nonparametrically identifiable, µ(h) for

h > m is not identifiable, since there exists x ∈ I with ‖x‖ = h but x 6∈ G , or

µ(h) =
∑

{x∈I :‖x‖=h}

ux

∫ K
∏

b=1

λxb

b θ(∆(λ))dQ(λ) >
∑

{x∈G :‖x‖=h}

wxgx(Q).

From Proposition 1, we consider determining lower bounds to the total mass

of a finite measure from its truncated higher order moment sequence, an issue in

the scope of the truncated Stieltjes moment problem (Curto and Fialkow (1991)).

By the Cauchy-Schwartz inequality, µ(0)µ(2) > µ2(1), which implies that

µ(0) has a lower bound µ2(1)/µ(2). This lower bound is identical to θ if ν in (5)

is degenerate, which means that, while the support points of Q has the same ℓ1

norm, Q is not necessarily degenerate.

To present more lower bounds to µ(0), for any natural number k = 1, . . .,

⌊m/2⌋, consider the moment matrices

Hk(g) = (µ(i + j))k
i,j=0 , ak(g) = (µ(j))k

j=1 , Bk(g) = (µ(i + j))k
i,j=1 .
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The moment matrix Hk(g) is non-negative definite (Curto and Fialkow (1991)).

When Hk(g) is positive definite, we define

γk = γk(g) = a′k(g)B−1
k (g)ak(g). (12)

Note that γ1 = µ(1)2/µ(2). For each k, γk 6 µ(0), because it is the unique zero

of |Hk(g)| as a function of µ(0), and |Hk(g)| > 0 for µ(0) > γk. Let

χ = max
{

k ∈ {1, . . . , ⌊m

2
⌋} : |Bk(g)| > 0

}

.

Theorem 2. For k = 1, . . . , χ, γk exists and

γk = γk(g(Q)) = inf{θ(O) : µ(h, νO) = µ(h, νQ), h = 0, . . . , 2k,∀O}. (13)

As an application of Mao and Lindsay (2007), Theorem 2 provides the con-

dition under which γk can be defined. For each k, γk is also the infimum of the

odds over all mixing distributions whose induced univariate measures have 2k

specified moments identical to those of νQ induced from Q. From (13), it is clear

that

γ1 6 γ2 6 · · · 6 γχ 6 ϕ. (14)

The γk will be called algebraic lower bounds. The γk lead to a sequence of

lower bounds sk to the number of species s, where

sk = E (n+) · (1 + γk) =
c(1 + γk)

1 + θ
6 c, k = 1, . . . , χ. (15)

Because nx/n+ estimates gx(Q), the empirical moment µ̂(h) estimates µ(h),

µ̂(h) = n−1
+

∑

{x∈G :‖x‖=h}

wxnx, h = 1, . . . ,m. (16)

When µ(h) in the algebraic lower bound γk is replaced with µ̂(h), we obtain γ̂k,

which leads to a pseudo MLE ŝk for the number of species s,

ŝk = n+ + n+γ̂k, k = 1, . . . , ⌊m

2
⌋. (17)

Because the µ̂(h) do not necessarily arise as moments from a finite measure

over (0,∞), the γ̂k may not share the same properties as the γk. For each

k = 1, . . . , ⌊m/2⌋, ŝk can be calculated when the estimate for the matrix Bk(g)

is non-singular, so that the ŝk may be not non-decreasing and they can even be

smaller than n+. A monotonized sequence of estimators can be defined by

ŝk =

{

n+ + n+ max(0, γ̂1) (k = 1),

max(ŝk−1, n+ + n+γ̂k) (k > 2).
(18)
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The nonparametric bootstrap method can be used to construct lower confidence

limits for sk, which can be treated as conservative lower confidence limits for s.

Finally, we will further investigate the first order estimator ŝ1. Write

ŝ1 = n+ +
{

K
∑

b=1

n
e(b)

mb

}2{
K

∑

b=1

K
∑

ℓ=b

n
e(b)+e(ℓ)

mb(mℓ − δbℓ)2−1

}−1
, (19)

where {e(b)}K
b=1 is the set of standard bases of RK and δbℓ = I(b = ℓ). The

following theorem can be easily obtained by the delta method.

Theorem 3. The pseudo MLE ŝ1 is asymptotically normally distributed with

mean s1 and variance σ2, where

σ2 = sf0(P ) + 4
α12α

2
11

α2
21

+
α22α

4
11

α4
21

− s−1

{

α2
11

α21
− sf0(P )

}2

,

α1t =
K

∑

b=1

sf
e(b)(P )

mt
b

, α2t =
K

∑

b=1

K
∑

ℓ=b

sf
e(b)+e(ℓ)(P )

{mb(mℓ − δbℓ)2−1}t
, t = 1, 2.

When s is estimated by ŝ1, the asymptotic standard error se (ŝ1) is given by

se (ŝ1) =

{

α̂2
11

α̂21
+

4α̂12α̂
2
11

α̂2
21

+
α̂22α̂

4
11

α̂4
21

}

1

2

, (20)

where, for t = 1 and 2, and for i = 1 and 2, α̂it estimates αit, with

α̂1t =

K
∑

b=1

n
e(b)

mt
b

, α̂2t =

K
∑

b=1

K
∑

ℓ=b

n
e(b)+e(ℓ)

{mb(mℓ − δbℓ)2−1}t
, t = 1, 2.

The asymptotic normality of ŝ1 or that of log ŝ1 can be used to construct confi-

dence intervals. For example, the 1 − α lower confidence limit is given by

ŝ1 exp{−z1−αŝ−1
1 se (ŝ1)}, (21)

where z1−α is the 1 − α quantile of the standard normal distribution.

The special case K = 1 corresponds to a single incidence-based sample.

When K = 1, with m = m1 and e(1) = 1, (19) and (20) are written as

ŝ1 = n++
n2

1

2n2
· m − 1

m
, se (ŝ1) =

{

n2
1

2n2
· m − 1

m
+

(

n3
1

n2
2

+
n4

1

4n3
2

)

(m − 1)2

m2

}

1

2

,

which can be compared with the estimator and standard error in Chao (1989):

ŝChao
1 = n+ +

n2
1

2n2
, se (ŝChao

1 ) =

{

n2
1

2n2
+

n3
1

n2
2

+
n4

1

4n3
2

}

1

2

.
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The results in Chao (1989) are obtained via (m − 1)/m ≈ 1 for a large m.

4. Numerical Studies

4.1. An example

An example is taken from a rain forest ant study at the La Selva Biological

Station in Costa Rica (Longino et al. (2002)). There were several methods used

to sample ant species, among which the Barger and Malaise subsamples are

considered here. The Barger subsample was obtained by N. Barger who used a

mixture of honey and solid vegetable oil as the bait. The Malaise subsample was

obtained using Malaise traps. The size of the Barger subsample is m1 = 40 and

that of the Malaise subsample is m2 = 62. The number of observed species is

n+ = 157, among which 54 were found only in the Barger subsample, 92 only in

the Malaise subsample, and 11 in both subsamples. The counts are presented in

Table 1.

Table 1. The ant data. There are 38 observed detection patterns x with nx 6= 0.

x1 x2 nx x1 x2 nx x1 x2 nx x1 x2 nx

1 0 24 15 0 2 0 4 7 9 14 1

2 0 6 25 0 1 0 5 4 0 15 1

3 0 7 0 1 37 0 6 2 4 15 1

4 0 2 3 1 1 0 7 1 2 16 1
5 0 2 14 1 1 0 9 3 0 18 1

6 0 3 0 2 17 2 9 1 0 19 2

7 0 2 5 2 1 0 10 2 0 20 1

8 0 3 0 3 10 0 12 1 5 29 1

9 0 1 1 3 2 0 13 1 – – –
11 0 1 23 3 1 0 14 2 – – –

The first order lower bound estimate is ŝ1 = 242 = ⌊242.9⌋, with a standard

error se (ŝ1) = 31.3. The estimate ŝ2 calculated from (17) is negative (−26.1).

The 95% asymptotic lower confidence limit for the number of species s from (21)

is 196. Although the standard error of ŝ1 from 1,000 resamples is 35.5, a little

larger than the asymptotic counterpart 31.3, the 95% bootstrap lower confidence

limit for s from these resamples is 200, also a little larger than the asymptotic

counterpart 196. This happens because the distribution of log ŝ1 can be skewed.

4.2. Simulation

The simulation experiment consisted of eight trials from a 23 design of three

factors for a fixed K = 3. The number of species s was 200 or 1,000. The vector

of binomial sizes m was m1 = (10, 10, 10)′ or m2 = (20, 20, 20)′ . The mixing
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distribution P was P1 or P2, where P1 and P2 are uniform distributions with six

support points. The support points of P1 were 0.05e1, 0.05e2, .05e3, 0.1e1, 0.1e2,

and 0.1e3, and those of P2 were 0.1e1, 0.1e2, 0.1e3, 0.1(e1 + e2), 0.1(e1 + e2),

and 0.1(e2 + e3). The measure ν in (5) determined by either P1 or P2 had two

support points.

The lower bounds γk in (12) do not depend on the number of species. The

first two lower bounds γ1 and γ2 were given, respectively, by 0.786 and 0.900

(m1, P1), 0.277 and 0.316 (m2, P1), 0.274 and 0.307 (m1, P2), and 0.068 and

0.073 (m2, P2). The odds θ was identical to γ2 for all pairs of (m, P ), which

implies that γ2 was also identical to the sharpest lower bound ϕ in (4). There was

no approximation bias when γ2 was used, while there is a negative approximation

bias when γ1 was used.

For each trial, the results from 1,000 samples that concerned the number

of observed species n+, and the monotonized estimates ŝ1 and ŝ2 in (18) are

presented in Table 2. Both ŝ1 and ŝ2 have a positive estimation bias. The

estimation bias and the standard error of ŝ2 are larger than those of ŝ1. While

ŝ1 has a non-positive total bias, ŝ2 has a positive total bias. The 5% quantiles

of ŝ1 and ŝ2 are smaller than those of s1 and s2 = s, respectively. The difference

between the 5% quantile of ŝ1 and that of ŝ2 is small.

Table 2. Simulation results. Note that s2 = s, and “ave”, “se” and “lq”

stand for the sample mean, the standard error, and the lower 5% quantile,

respectively.

s = 200 s = 1, 000

P1 P2 P1 P2

m1 m2 m1 m2 m1 m2 m1 m2

s1 188 194 195 199 940 970 975 995

ave (n+) 105 152 153 186 526 760 765 932

se (n+) 7 6 6 3 16 13 14 8

ave (ŝ1) 194 194 196 200 945 972 976 996

se (ŝ1) 30 14 14 6 59 32 31 14

lq (ŝ1) 151 172 174 190 849 925 926 974

ave (ŝ2) 212 207 211 205 1,106 1,044 1,039 1,038
se (ŝ2) 92 78 65 26 1,957 464 417 478

lq (ŝ2) 157 177 178 191 868 930 932 976

5. Discussion

A multivariate binomial mixture model is developed for an incomplete survey

with multiple incidence-based subsamples. A sequence of lower bound estimators

for the number of species is proposed. The approximation bias of a lower bound



1600 CHANG XUAN MAO

estimator has a known direction. These lower bounds have analytic expressions

that can be easily computed. Although higher order lower bounds have smaller

approximation bias, it may be difficult to estimate them accurately, the first

order lower bound estimator ŝ1 is recommended.

The proposed estimators ŝk are developed based on the method of moments.

There are other possibilities, such as the nonparametric maximum likelihood

method, that may be computationally challenging, but deserve further investiga-

tion. There may be alternative approaches by which lower bounds to the number

of species can be defined (e.g., Mao (2006)).
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