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Abstract: We consider testing for main treatment effects and interaction effects in

crossed two-way layouts when one or both factors have large number of levels. Ran-

dom errors are allowed to be nonnormal and heteroscedastic. In the heteroscedastic

case, we propose new test statistics. The asymptotic distributions of our test statis-

tics are derived under both the null hypothesis and local alternatives. The sample

size per treatment combination can either be fixed or tend to infinity. Numerical

simulations indicate that the proposed procedures have good power properties and

maintain approximately the nominal α-level with small sample sizes. A data set

from a study evaluating forty varieties of winter wheat in a large-scale agricultural

trial is analyzed.
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1. Introduction

In many experiments, data are collected in the form of a crossed two-way

layout. If we let Xijk denote the kth response associated with the ith level of

factor A and j th level of factor B , then the classical two-way ANOVA model

specifies that

Xijk = µ + αi + βj + γij + εijk, (2.1)

where i = 1, . . . , a, j = 1, . . . , b, k = 1, . . . , nij, and to be identifiable the pa-

rameters are restricted by conditions such as
∑a

i=1 αi =
∑b

j=1 βj =
∑a

i=1 γij =
∑b

j=1 γij = 0. The classical ANOVA model assumes that the error terms εijk are

iid normal with mean 0, in which case the F statistics for testing the null hy-

potheses of no treatment effects or no interaction effects have certain optimality

properties (cf., Arnold (1981, Chap. 7)).

The study of properties of F-tests under violation of the classical assump-

tions of normality and homoscedasticity has a long history. See for example

Box (1954), Box and Anderson (1955), Scheffé (1959, Chap. 10), Miller (1986,

Chap. 4). However, these studies are restricted to the case with small number

of treatment levels. In this case, Arnold (1980) showed that the classical F-test
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is robust to normality if in addition the sample size per treatment level tends

to infinity. Portnoy (1984, 1986) investigated the asymptotic behavior of M -

estimators in the general linear model when the number of treatment levels goes

to infinity with the sample size. Li, Lindsay and Waterman (2003) discussed ad-

justed maximun likelihood estimator for multistratum data, in which both the

number of strata and the number of within-stratum replications go to ∞.

Recently, there has been some interest in investigating the behavior of testing

procedures when the number of treatment levels is large, see Boos and Brownie

(1995), Akritas and Arnold (2000), Bathke (2002), Akritas and Papadatos (2004).

The results in the present paper can be applied in many disciplines. For exam-

ple, in agricultural trials it is not uncommon to see large number of treatments

(such as cultivars, pesticides, fertilizers) but limited replications per treatment

combination. In a recent statewide agricultural study performed by Washing-

ton State University, 40 different varieties/lines of winter wheat are investigated.

This data set will be analyzed in Section 5. Our tests can also be applied to cer-

tain types of microarray data, where one factor corresponds to a large number

of genes. Dudoit, Yang, Callow and Speed (2002) described a replicated cDNA

microarray experiment to compare the expression of genes in the livers of SR-BI

transgenic mice with that of the corresponding wild-type mice. The data were

summarized in a two-way layout, and our method can be applied to test for main

and interaction effects.

The asymptotic theory of ANOVA test statistics when the number of levels

tends to infinity is more complex than that when the levels are fixed and the

sample sizes tend to infinity. For example, the test statistic for no main factor

A effects in the balanced case (so nij = n) is MSTA/MSE, where MSTA =

b(a−1)−1
∑

i n(X i··−X ···)
2 and MSE = [ab(n−1)]−1

∑
i

∑
j

∑
k(Xijk −X ij·)

2.

Thus it is easily guessed that its limiting distribution, as n → ∞ and a, b are

fixed, is a constant multiple of a χ2 distribution. On the other hand, when a → ∞

the degrees of freedom of both MSTA and MSE tend to infinity, and finding the

limiting distribution requires that we study a1/2(MSTA/MSE − 1). Except for

the one-way design, the aforementioned papers have considered only balanced

homoscedastic models and showed that the usual F -procedure is asymptotically

correct.

Hypothesis testing in an unbalanced design is much more complex than in

balanced case. For the general situation, a closed-form expression for the test

statistic may not be available (Arnold (1981)). Besides, one often needs to spec-

ify appropriate weights for the hypothesis. Different methods have been pro-

posed (mostly for the homoscedastic case) and there still remain many contro-

versies. Arnold (1981) reviewed five different methods and also discussed the
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problem of choosing appropriate weights for the hypotheses, see also discussions

in Ananda and Weerahandi (1997), Rencher (2000) and Sahai and Ageel (2000).

In this paper, we are interested in unbalanced heteroscedastic two-way ANOVA

design when at least one of the factor levels tends to infinity. The cell sizes can be

fixed or tend to infinity. For the homoscedastic model, we consider test statistics

based on the method of unweighted means, originally proposed by Yates (1934),

see also Searle (1971) and Hocking (1996). Since the method of unweighted means

is valid only in the homoscedastic case, we propose and study a new statistic when

the errors are heteroscedastic. One interesting aspect of the new statistic is that

its limiting distribution does not depend on the fourth moment. Since higher

moments are typically more difficult to estimate accurately, the new statistic is

computationally competitive even when homoscedasticity can be ascertained.

We focus on the hypotheses of no main factor A effects and no interaction

effects:

H0(A) : αi = 0, i = 1, . . . , a, and H0(C) : γij = 0, i = 1, . . . , a, j = 1, . . . , b.

When both a and b tend to infinity, the problem of testing H0(B) : βj = 0, j =

1, . . . , b, is symmetric to that of testing H0(A). When only a tends to infinity but

b stays fixed, it can be shown that the test statistic for H0(B) has asymptotically

a chi-square distribution. This result is different because the numerator has fixed

degrees of freedom, and it will not be presented here. Finally, similar techniques

apply for testing for no simple effects. For the sake of brevity, these results are

not presented here but can be found in Wang (2003).

The rest of the paper is organized as the following. In Section 2, we present

the main results for the homoscedastic and heteroscedastic cases, including a

limiting result under local alternatives. The projection method is discussed in

Section 3. Numerical results and a data analysis are given in Sections 4 and 5,

respectively. Section 6 discusses conclusions and further work, while a sketch of

the technical proofs is given in the Appendix.

2. Main Results

Throughout, the Xijk are assumed to be iid in each cell (i, j). But the errors

εijk in (2.1) are not assumed to be iid. We write X = (X111, . . . , X11n11
, . . . , X1b1,

. . . , X1bn1b
, . . . , Xab1, . . . , Xabn11

)′, Xi = (Xi11, . . . , Xi1ni1
, . . . , Xib1, . . . , Xibnib

)′,

Xij = (Xij1, . . . , Xijnij
)′, Xij. = n−1

ij

∑nij

k=1 Xijk, X̃i.. = b−1
∑b

j=1 Xij., X̃... =

(ab)−1
∑a

i=1

∑b
j=1 X ij and X̃.j. = a−1

∑a
i=1 Xij., N =

∑
i

∑
j nij . If the cell

sizes tend to infinity with a or b, we can also write nij(a, b) instead of nij , we set

n(a, b) = min{nij ; i = 1, . . . , a, j = 1, . . . , b}, κ(a, b) = max{nij; i = 1, . . . , a, j =
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1, . . . , b}, and assume that n(a, b) → ∞ and κ(a, b)/n(a, b) ≤ C < ∞, for all a, b,

for some C ≥ 1. In the case when only a → ∞, we also use the notations: nij(a),

n(a) and κ(a) without confusion. Finally, 1d and Id denote the d × 1 column

vector of 1’s and the d-dimensional identity matrix, respectively, Jd = 1d1
′
d and

Pd = Id − Jd/d.

2.1. Homoscedastic model

The test statistics for testing hypotheses H0(A) and H0(C) are

QA =
MSTA

MSE
and QC =

MSTC

MSE
, (2.1)

respectively, where

MSTA =
b

a−1
ab

∑a
i=1

∑b
j=1

1
nij

a∑

i=1

(
X̃i·· − X̃···

)2
,

MSTC =
1

(a−1)(b−1)
ab

∑a
i=1

∑b
j=1

1
nij

a∑

i=1

b∑

j=1

(
Xij. − X̃i·· − X̃·j· + X̃···

)2
,

MSE =
1

N − ab

a∑

i=1

b∑

j=1

nij∑

k=1

(
Xijk − X ij.

)2
.

In the balanced case, QA and QC are the same as the classical F test statistics.

In the unbalanced case, they correspond to the test statistics of Yates, also known

as the method of unweighed, or harmonic means.

Theorem 2.1.(Balanced case) Let Var (Xijk) = σ2 > 0 and assume that E(X4
ijk)

are uniformly bounded.

(a) Suppose for all i, j, nij = n ≥ 2 remains fixed.

1. Under H0(A), a1/2(QA − 1) → N (0, 2 + 2/(b(n − 1))), as a → ∞ and b

is fixed, a1/2(QA − 1) → N (0, 2), as a → ∞ and b → ∞.

2. Under H0(C), a1/2(QC − 1) → N (0, 2/(b − 1) + 2/(b(n − 1))), as a → ∞

and b is fixed, (ab)1/2(QC − 1) → N (0, 2 + 2/(n − 1)) , as a → ∞ and

b → ∞.

(b) Suppose for all i, j, nij = n = n(a) → ∞, as a → ∞.

1. Under H0(A), a1/2(QA−1) → N (0, 2) , as a → ∞ and b is fixed, a1/2(QA−

1) → N (0, 2), as a → ∞ and b → ∞,

2. Under H0(C), a1/2(QC − 1) → N (0, 2/(b − 1)), as a → ∞ and b is fixed,

(ab)1/2(QC − 1) → N (0, 2), as a → ∞ and b → ∞.
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Remark 2.1.

(a) If we assume all the errors εijk are iid then the result of Theorem 2.1 requires

only finite second moments.

(b) Results for the balanced case with fixed sample sizes when a → ∞ and b is

fixed overlap with those of Akritas and Arnold (2000), but our assumptions

are weaker.

Theorem 2.2.(Unbalanced case) Let Var (Xijk) = σ2 > 0. Assume that for

some δ > 0, E
(
|Xijk|

4+δ
)

< ∞ are uniformly bounded, and set µ4 = E(Xijk −

EXijk)
4/σ4.

(a) Suppose lim sup (ab)−1
∑a

i=1

∑b
j=1 n2+δ

ij < ∞ for some δ > 0. And write

1

ab

a∑

i=1

b∑

j=1

nij → b1 ∈ (1,∞),
1

ab

a∑

i=1

b∑

j=1

1

nij
→ b2,

1

ab

a∑

i=1

b∑

j=1

1

n2
ij

→ b3,

1

ab

a∑

i=1

b∑

j=1

1

n3
ij

→ b4,
1

ab2

a∑

i=1

( b∑

j=1

1

nij

)2
→ b5, and

τ2
1 = τ∗ +

2bb5

b2
2

, τ2
2 = τ∗ +

2(b3b
2 − 2bb3 + bb5)

b2
2(b − 1)2

, τ2
3 = τ∗ +

2b3

b2
2

,

where τ ∗=[(b2−b1)(b1−1)−2+b4b
−2
2 +2b3b

−1
2 (b1−1)−1](µ4−3)+2/(b1−1).

1. Under H0(A), a1/2(QA − 1) → N
(
0, τ2

1 /b
)
, as a → ∞ and b is fixed,

a1/2(QA − 1) → N
(
0, 2b5/b

2
2

)
, as a → ∞ and b → ∞.

2. Under H0(C), a1/2(QC − 1) → N
(
0, τ2

2 /b
)
, as a → ∞ and b is fixed,

(ab)1/2(QC − 1) → N
(
0, τ2

3

)
, as a → ∞ and b → ∞.

(b) Suppose nij also tends to infinity with a or b. And write

a
(∑a

i=1

∑b
j=1 n−1

ij

)2

a∑

i=1

( b∑

j=1

n−1
ij

)2
→ τ2

4 ,

ab
(∑a

i=1

∑b
j=1 n−1

ij

)2

a∑

i=1

b∑

j=1

n−2
ij → τ2

5 .

1. Under H0(A), a1/2(QA − 1) → N
(
0, 2τ2

4

)
, as a → ∞ and b is fixed,

a1/2(QA − 1) → N
(
0, 2τ2

4

)
, as a → ∞ and b → ∞.

2. Under H0(C), a1/2(QC −1) → N(0, 2τ 2
4 /(b−1)2 +(2τ2

5 /b)(1− (b−1)−2)),

as a → ∞ and b is fixed. (ab)1/2(QC − 1) → N
(
0, 2τ2

5

)
, as a → ∞ and

b → ∞.
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Remark 2.2. The exact distribution of the unweighted means statistic in the

unbalanced case is not known even under normality and homoscedasticity. Neter,

Wasserman and Kutner (1985, p.753) indicate that the usual F critical points

give satisfactory approximation provided the ratios of sample sizes do not ex-

ceed 2, with most nij agreeing more closely. Contrary to the balanced case, the

presence of β2 in the limiting distribution given in Theorem 2.2 for fixed sample

sizes implies that the unweighted means procedure (i.e., using the unweighted

means test statistic with critical points from the F distribution) is not robust to

departures from the normality assumption even under homoscedasticity. If the

sample sizes also tend to infinity, the contribution of µ4 in the limiting distri-

bution becomes negligible, but even then Theorem 2.2 shows that the procedure

is not valid asymptotically. To see this, let N =
∑

i

∑
j nij, suppose that only

a → ∞ while b remains fixed, and set n = lima→∞(ab)−1N . Let Uab have an

Fa−1,N−ab distribution, the approximate distribution of the unweighted means

statistic for no main factor A effects under homoscedasticity and normality. It is

easily verified that if n < ∞, a1/2(Uab − 1) → N(0, 2 + 2/[b(n − 1)]) as a → ∞,

while if N/a also tends to infinity with a then a1/2(Uab −1) → N(0, 2). It follows

that the unweighted means procedure for testing for no main factor A effects will

be asymptotically valid if the limiting distribution of a1/2(MSTA/MSE − 1) is

as above. Similarly the usual F -procedure for testing for no interaction effects

will be asymptotically valid if the limiting distribution of a1/2(MSTC/MSE−1)

as a → ∞ is N(0, 2/(b−1)+2/[b(n−1)]) if n < ∞, and is N(0, 2/(b−1)) if N/a

also tends to infinity with a. According to Theorem 2.2 the limiting distributions

of a1/2(MSTA/MSE − 1) and a1/2(MSTC/MSE − 1) are different.

To appreciate the difference, and to see if Neter, Wasserman and Kutner’s

recommendation applies also to the case where one of the factors has many lev-

els, we considered the test for no factor A effects using normal observations (i.e.,

β2 = 3) in a design with a = 100, b = 4, and nij = 4 for i = 1, . . . , 50 and all j,

and nij = 8 for i = 51, . . . , 100 and all j. Then the 95th percentiles of the limiting

distribution of a1/2(MSTA/MSE − 1) and the limit of its approximate distribu-

tion are W1,0.05 = 2.51 and W2,0.05 = 2.38, respectively. Use of W1,0.05 results in

an approximate rejection rate of 0.059 under the null hypothesis. Changing the

sample size 8 to 12, 16 and 20, the rejection rates become 0.070, 0.079, and 0.085,

respectively. Thus, Neter, Wasserman and Kutner’s recommendation seems valid

even with many levels, provided the normality assumption holds.

Remark 2.3.

(a) It can be shown that if nij = n, then in Theorem 2.2, τ 2
1 = 2(n − 1)−1 + 2b

and τ2
2 = 2(n − 1)−1 + 2b(b − 1)−1, 2b5b

−1
2 = 2 and τ 2

3 = 2 + 2(n − 1)−1.

The results are therefore consistent with those in Theorem 2.1 if the design

is balanced.



TWO-WAY ANOVA 1393

(b) We need not assume, as we do in Theorem 2.2, that the kurtosis µ4ij is the

same in all cells (i, j). In this more general case, the test statistics will have

more complex variance expressions, but the asymptotic normality still holds

under similar assumptions.

2.2. Heteroscedastic model

In the balanced heteroscedastic case, we still have E(MSE) = E(MSTA),

E(MSE) = E(MSTC), under H0(A), H0(C), respectively. Thus, we may still

use QA, QC as test statistics. This, however, is not true in the unbalanced case.

A simple remedy is to replace MSE by a different linear combination of the cell

sample variances. This yields

TA = (ab)−1/2
a∑

i=1

b∑

j=1

[(
X̃i·· − X̃···

)2
−

1

b

(
1 −

1

a

)
S2

ij

nij

]
, (2.2)

TC = (ab)−1/2
a∑

i=1

b∑

j=1

[(
Xij. − X̃i·· − X̃·j· + X̃···

)2
−

(a − 1)(b − 1)

ab

S2
ij

nij

]
, (2.3)

where S2
ij = (nij − 1)−1

∑nij

k=1(Xijk −Xij·)
2, as test statistics for H0(A), H0(C),

respectively.

In the balanced case, TA and TC are related to QA and QC by

TA = (ab)−
1

2

a−1

n
(QA − 1)MSE, TC = (ab)−

1

2

(a−1)(b−1)

n
(QC−1)MSE.

Theorems 2.3 deals with both the balanced and unbalanced case.

Theorem 2.3. Let 0 < Var (Xijk) = σ2
ij < ∞. Then,

(a) For nij ≥2 fixed, suppose for some δ>0, lim sup(1/(ab))
∑a

i=1

∑b
j=1 E|Xij1−

E(Xij1)|
4+δ < ∞, and write

1

ab

a∑

i=1

b∑

j=1

σ4
ij

nij(nij − 1)
→ φ4,

1

ab2

a∑

i=1

b∑

j1 6=j2

σ2
ij1

nij1

σ2
ij2

nij2

→ η4.

1. Under H0(A), TA → N
(
0, 2(φ4 + bη4)/b2

)
, as a → ∞ and b is fixed,

b1/2TA → N
(
0, 2η4

)
, as a → ∞ and b → ∞.

2. Under H0(C), TC → N
(
0, 2(b − 1)2φ4/b2 + 2η4/b

)
, as a → ∞ and b is

fixed, TC → N
(
0, 2φ4

)
, as a → ∞ and b → ∞.

(b) Suppose the nij also tend to infinity with a or b, and lim sup(1/(ab))
∑a

i=1
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∑b
j=1 E|Xij1 − E(Xij1)|

4+δ < ∞ for some δ > 0. And write

n2(a, b)

ab

a∑

i=1

b∑

j=1

σ4
ij

nij(a, b)(nij(a, b) − 1)
→ φ4

1,

n2(a, b)

ab2

a∑

i=1

b∑

j1 6=j2

σ2
ij1

nij1(a, b)

σ2
ij2

nij2(a, b)
→ η4

1 .

1. Under H0(A), n(a, b)TA → N
(
0, 2(φ4

1 + bη4
1)/b

2
)
, as a → ∞ and b is

fixed, n(a, b)b1/2TA → N
(
0, 2η4

1

)
, as a → ∞ and b → ∞.

2. Under H0(C), n(a, b)TC → N
(
0, 2(b − 1)2φ4

1/b
2 + 2η4

1/b
)

as a → ∞ and

b is fixed, n(a, b)TC → N
(
0, 2φ4

1

)
, as a → ∞ and b → ∞.

Remark 2.4. To be able to apply the above theorem, we need to estimate φ4,

η4, φ4
1 and η4

1 . We estimate η4 by (ab2)−1
∑a

i=1

∑b
j1 6=j2

n−1
ij1

n−1
ij2

s2
ij1

s2
ij2

, where

s2
ij denotes the sample variance for cell (i,j). This estimator is consistent. For

consistent estimation of η4, we need to be able to estimate σ4
ij unbiasedly. We

used a U-statistic to estimate σ4
ij :

(
nij

4

)−1 1

12

∑[
(Xijk1

− Xijk2
)2(Xijk3

− Xijk4
)2

+(Xijk1
− Xijk3

)2(Xijk2
− Xijk4

)2 + (Xijk1
− Xijk4

)2(Xijk2
− Xijk3

)2
]
,

where the sum is over all subsets of distinct values of (k1, k2, k3, k4), kl ∈ [1, nij ],

l = 1, . . . , 4. φ4
1 and η4

1 are estimated similarly. For the consistency of U -statistics,

we refer to Lee (1990).

We next investigate the asymptotic distributions of TA and TC under local

alternatives. We consider only the case that a → ∞ but b remains fixed, and thus

we denote the smallest cell size by n(a). It is convenient to represent the random

variables under local alternatives as simple translations of random variables that

satisfy the null hypotheses. Thus, to test for the null hypothesis of no main row

effect, we consider the local alternatives

Yijk = Xijk + αi(a), i = 1, . . . , a, j = 1, . . . , b, k = 1, . . . , nij , (2.4)

where Xijk is a sequence of random variables satisfying H0(A), and

αi(a) = a
3

4 n(a)−
1

2

∫ i
a

i−1

a

g(t)dt, (2.5)

where g is a continuous function on [0,1] such that
∫ 1
0 g(t)dt = 0.
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To test for the null hypothesis of no interaction effect, we consider the local

alternatives

Yijk = Xijk + γij(a), i = 1, . . . , a, j = 1, . . . , b, k = 1, . . . , nij, (2.6)

where Xijk is a sequence of random variables satisfying H0(C), and

γij(a) = a
3

4 n(a)−
1

2

∫ i
a

i−1

a

gj(t)dt, (2.7)

where gj(t) are continuous on [0,1] such that
∑b

j=1 gj(t) = 0,∀ t, and
∫ 1
0 gj(t)dt =

0,∀ j.

Let TA(Y), TC(Y) be the statistics TA, TC evaluated on the Yijk.

Theorem 2.4. Assume max{σ2
ij ; 1 ≤ i ≤ a, 1 ≤ j ≤ b} = o(a−1/2) and set

θ2
A =

∫ 1

0
g2(t)dt and θ2

C =
1

b

b∑

j=1

∫ 1

0
g2
j (t)dt.

(a) Suppose nij ≥ 2 remains fixed and that Xijk satisfy the conditions of Theorem

2.3(a).

1. If the Yijk are given in (2.4) with αi(a) given by (2.5), then

TA(Y) → N

(
b

1

2 θ2
A

n(∞)
,

2(φ4 + bη4)

b2

)
as a → ∞ and b is fixed.

2. If the Yijk are given in (2.6) with γij(a) given by (2.7), then with n(∞) =

limn(a),

TC(Y) → N

(
b

1

2 θ2
C

n(∞)
,

2(b − 1)2φ4

b2
+

2η4

b2

)
as a → ∞ and b is fixed.

(b) Suppose n = n(a) → ∞ as a → ∞ and that the Xijk satisfy the conditions of

Theorem 2.3(b).

1. If the Yijk are given in (2.4) with αi(a) given by (2.5), then

n(a)TA(Y) → N

(
b

1

2 θ2
A,

2(φ4
1 + bη4

1)

b2

)
as a → ∞ and b is fixed.

2. If the Yijk are given in (2.6) with γij(a) given by (2.7), then

n(a)TC(Y) → N

(
b

1

2 θ2
C ,

2(b − 1)2φ4
1

b2
+

2η4
1

b2

)
as a → ∞ and b is fixed.
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3. Projection Method

In this section we apply Hájek’s projection method to linearize our test statis-

tics. If the statistic S is based on independent random vectors U1, . . . ,Un and

has finite second moment, then its projection onto the class of random variables

of the form
∑n

i=1 gi(Ui), where gi are measurable with Eg2
i (Ui) < ∞, is given

by Ŝ =
∑n

i=1 E(S|Ui) − (n − 1)ES. See, for example, van der Vaart (1998,

Chap. 11). If Ŝ is asymptotically equivalent to S, then it can be used for finding

the asymptotic distribution of S. To achieve asymptotic equivalence, the space

onto which we project has to be chosen appropriately. Akritas and Papadatos

(2004) demonstrated that an appropriate space can be chosen for projecting

quadratic forms that arise in one-way ANOVA designs. In this paper we show

that the appropriate spaces on which to project the statistics QA and TA is that

of random variables of the form
∑a

i=1 gi(Xi). The same space works also for QC

and TC if b is fixed, but if b → ∞ the appropriate space for projecting QC and

TC is that of
∑a

i=1

∑b
j=1 gij(Xij).

The first lemma and proposition below consider the projection of MSTA −

MSE and MSTC − MSE. The projection of TA and TC is considered in the

following lemma and proposition. Note that by Slutsky’s theorem the asymptotic

distribution of QA − 1 and QC − 1 follows from that of MSTA − MSE and

MSTC − MSE, respectively.

Lemma 3.1.

(a) Under H0(A), the projection ŜA =
∑a

i=1 E (MSTA − MSE|Xi) of MSTA −

MSE is given by

a∑

i=1

b∑

j=1

( 1
∑a

i=1

∑b
j=1 n−1

ij

1

n2
ij

X′
ijJnij

Xij +
1

N − ab

1

nij
X′

ijJnij
Xij

−
1

N − ab
X′

ijXij

)
+

1
∑a

i=1

∑b
j=1 n−1

ij

a∑

i=1

b∑

j1 6=j2

1

nij1nij2

X′
ij11nij1

1′
nij2

Xij2 . (3.1)

(b) Under H0(C), the projection Ŝ1C =
∑a

i=1 E (MSTC − MSE|Xi) of MSTC −

MSE is given by

a∑

i=1

b∑

j=1

( 1
∑a

i=1

∑b
j=1 n−1

ij

1

n2
ij

X′
ijJnij

Xij+
1

N−ab

1

nij
X′

ijJnij
Xij−

1

N−ab
X′

ijXij

)

−
1

(b − 1)
∑a

i=1

∑b
j=1n

−1
ij

a∑

i=1

b∑

j1 6=j2

1

nij1nij2

X′
ij11nij1

1′
nij2

Xij2 ,

while that of Ŝ2C =
∑a

i=1

∑b
j=1 E (MSTC − MSE|Xij) is given by
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a∑

i=1

b∑

j=1

( 1
∑a

i=1

∑b
j=1n

−1
ij

1

n2
ij

X′
ijJnij

Xij+
1

N−ab

1

nij
X′

ijJnij
Xij−

1

N−ab
X′

ijXij

)
.

Proposition 3.2. Under homoscedasticity, and with nij either fixed or going to

∞,

(a) when a → ∞, b is fixed or both a and b go to ∞, a1/2
(
MSTA − MSE − ŜA

)

p
→ 0, under H0(A);

(b) under H0(C), when a → ∞ and b is fixed, a1/2
(
MSTC − MSE − Ŝ1C

)
p
→ 0,

and when both a and b tend to infinity, (ab)1/2
(
MSTC − MSE − Ŝ2C

)
p
→ 0.

Lemma 3.3.

(a) Under H0(A), the projection T̃A =
∑a

i=1 E(TA|Xi) of TA is

(ab)−
1

2

a∑

i=1

a − 1

ab

[( b∑

j=1

X ij.

)2
−

b∑

j=1

S2
ij

nij

]
. (3.2)

(b) Under H0(C), the projection T̃1C =
∑a

i=1 E(TC |Xi) of TC is

(a − 1)(b − 1)

(ab)
3

2

a∑

i=1

b∑

j=1

(
X

2
ij. −

S2
ij

nij

)
−

a − 1

(ab)
3

2

a∑

i=1

b∑

j1 6=j2

X ij1.Xij2. ,

while that of T̃2C =
∑a

i=1

∑b
j=1 E(TC |Xij) is given by

(a − 1)(b − 1)

(ab)
3

2

a∑

i=1

b∑

j=1

(
X

2
ij. −

S2
ij

nij

)
.

Proposition 3.4. Assume (1/(ab))
∑a

i=1

∑b
j=1 σ2

ij → σ2 ∈ (0,∞).

(a) Under H0(A), n(a, b)b1/2(TA − T̃A)
p
→ 0, in all cases considered.

(b) Under H0(C), n(a, b)(TC − T̃1C)
p
→ 0 and n(a, b)(TC − T̃2C)

p
→ 0 when b stays

fixed and tends to infinity, respectively, in all cases.

Propositions 3.2 and 3.4 are used in the Appendix for proving the main

results.

4. Numerical Results

All simulations pertain to main row effects when only a is large; similar

results are obtained for interaction effects and also for both a and b large, but

are not reported here. They are based on 5,000 runs. Software Matlab 6.1
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is used to generate random data. The results reported in the tables pertain

to balanced designs, with n = 4 and b = 2. In the following, “CF” denotes

the classical F test, “BHOM”, “BHET”, “UBHOM”, “UBHET” denote tests for

the balanced homoscedastic, balanced heteroscedastic, unbalanced homoscedastic

and unbalanced heteroscedastic situations, respectively.

Table 1 investigates the achieved levels using iid normal(0,1) and lognor-

mal(0,1) random variables. In this case the statistics used in the “CF”, “BHOM”

and “BHET” procedures are equivalent (see also the comment preceding Theo-

rem 2.3. Thus, the three procedures differ only because they use different cut-off

points (which are asymptotically equivalent), and that explains the difference in

the achieved α-levels. Surprisingly, the level of the “BHET” procedure is quite

accurate, though a bit on the conservative side, in this homoscedastic setting. In

practice, of course, it is difficult to justify homoscedasticity with samples of size

4. Thus, given the results of Table 2 which used heteroscedastic errors, we can

recommend the “BHET” procedure. In Table 2 the observations in cell (i, j) are

generated from normal(0, 1) if i ≤ a/2, and from normal(0, 25) otherwise.

Table 1. Estimated levels for nominal 0.05 level tests, homoscedastic errors.

a error CF BHOM BHET

normal(0,1) 0.055 0.084 0.088
20

lognormal(0,1) 0.044 0.064 0.050

normal(0,1) 0.050 0.075 0.077
30

lognormal(0,1) 0.042 0.060 0.040

normal(0,1) 0.049 0.072 0.073
40

lognormal(0,1) 0.049 0.070 0.044

Table 2. Estimated levels for nominal 0.05 level tests, heteroscedastic errors.

CF BHOM BHET

a=20 0.095 0.125 0.076

a=30 0.114 0.139 0.084

a=40 0.107 0.131 0.075
a=50 0.100 0.120 0.065

The effects of unequal variances can be more serious if the design is un-

balanced. Some of our simulation results in heteroscedastic unbalanced case

indicates that “CF” can be very liberal while the test based on our asymptotic

results can be very accurate. In one such simulation with a = 20 and b = 2, we

used sample sizes (7, 6, 7, 5, 5, 14, 14, 4, 7, 5, 5, 7, 4, 7, 6, 7, 5, 7, 5, 6), for

j = 1, and (14, 16, 5, 16, 16, 7, 4, 14, 6, 7, 4, 7, 14, 6, 4, 6, 5, 7, 4, 6), for j = 2.

The observations in cell (i, j) are generated from a normal(0, (1 + i/4 + j/4)2)
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distribution. In this example, the level of “CF” is 0.1652, the level of “UBHOM”

is 0.2528, while the level of test “UBHET” is 0.0806.

Tables 3 and 4 examine the power of the procedures in a balanced setting

with a=20. In Table 3, the observations in the (i, j)th cell are generated from

i ∗ τ/a + normal(0, 1), for τ = 0, 0.3, 0.6, 0.9, 1.2. In Table 4, the observations

in the (i, j)th cell are generated from i∗ τ/a+lognormal(0, 1), for τ = 0, 1, 2, 3.

In both tables, τ = 0 corresponds to the null hypothesis. In the normal setting

of Table 3, “CF” is optimal so the increased power of our tests is due to their

liberality. Table 4, however, indicates clearly that the power of “BHET” is higher

than that of the others.

Table 3. Estimated power for nominal 0.05 level tests, normal(0,1) errors.

τ CF BHOM BHET

0 0.048 0.076 0.078

0.3 0.070 0.110 0.114
0.6 0.163 0.224 0.226

0.9 0.403 0.485 0.489

1.2 0.694 0.761 0.763

Table 4. Estimated power for nominal 0.05 level tests, lognormal(0,1) errors.

tao CF BHOM BHET

0 0.046 0.065 0.047

1 0.130 0.177 0.172

2 0.509 0.583 0.637
3 0.858 0.889 0.922

5. Data Analysis

In an agricultural trial performed in 2002 by the Washington State University

Statewide Extension Uniform Cereal Variety Testing Program (http://variety.

wsu.edu/), 40 different varieties/lines of winter wheat are studied in terms of

yield. The growing conditions are classified into four classes by the amount of

rainfall and soil condition. The number of observations is 4 for each variety/line in

the first class, 5 in the second class, 6 in the third class, and 4 in the fourth class.

Of interest is to test whether there is any difference among varieties/lines and

whether there is interaction effect between varieties/lines and growing conditions.

This is an unbalanced two-way layout with one factor having a large number of

levels. The usual F test (CF) based on type III sum of squares gives a p-value of

0.069 for the variety/line main effect and a p-value of 1 for an interaction effect.

“UBHOM” gives a p-value of 0.054 for the variety/line main effect and a p-value

of 1 for an interaction effect, while “UBHET” gives a p-value of 0.089 for the
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variety/line main effect and a p-value of 1 for the interaction effect. Therefore,

all approaches suggest a marginally strong variety/line effect, but there is no

evidence suggesting an interaction effect.

To demonstrate the value of our nonparametric tests, we disturbed the data

in both the mean values and the variances. We first disturbed the mean values

by adding 5 (respectively 7) to the observations corresponding to varieties 15-26

for the treatment corresponding to the lowest (respectively second lowest) profile.

As a result of this disturbance, the p-values for the variety/line main effect are

0.008, 0.002 and 0.007 for the CF, UBHOM and UBHET tests, respectively. Our

heteroscedastic test distinguished itself when we also introduced a disturbance

in the variances. To describe this, let Xijk, i = 1, . . . , 40, j = 1, . . . , 4, denote

the yield data after their means are disturbed as described above. Then the

variance-disturbed data are X̃ijk = X ij. + (Xijk − Xij.)σj , where σj = (1.5)−1,

for j = 1, 4, and σj = 1.5, for j = 2, 3. As a result of this additional disturbance,

the p-values for the variety/line main effect are 0.202, 0.204 and 0.012, for the

CF, UBHOM and UBHET tests, respectively. Thus, even though the design is

nearly balanced, this modest disturbance in the variances is enough to affect the

classical F-test as well as the present test that is based on the assumption of

homoscedasticity.

6. Some Extensions

Viewing the covariate in a one-way ANCOVA design as a factor with many

levels, the present methodology (with a → ∞ and b fixed), can be applied to the

yet unresolved problem of testing for covariate effects and for interaction effects

between the factor and covariate in the nonlinear fully nonparametric ANCOVA

model proposed by Akritas, Arnold and Du (2000) The extension is not triv-

ial since the present methodology requires some replication in the cells while

in typical ANCOVA designs there is only one observation per covariate value.

As demonstrated in the regression setting of Wang, Akritas and Van Keilegom

(2002), this difficulty can be circumvented by using smoothness assumptions and

considering windows around each covariate value. This generates cells with repli-

cated observations, but cells will have common observations which destroys the

present independence assumption. The methodology with both a and b tending

to infinity, can be applied to extend the lack-of-fit test of Wang, Akritas and Van

Keilegom (2002) to regression designs with two covariates.

Appendix. Proofs

Due to space limitation, we only give proofs for the results on testing for main

row effects, and only when a goes to ∞. Proofs for other cases are similar and can

be found in Wang (2003). Under H0(A), we may assume E(Xijk) = 0 without
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loss of generality. We may also assume Var (Xijk) = 1 in the homoscedastic
setting.

Proof of Theorem 2.1. It is straightforward to show MSE
p
→ 1 as a → ∞

under the current moment assumptions, both when n is fixed and n = n(a) → ∞,
so by Slutsky’s theorem we may consider the numerator a1/2(MSTA −MSE) in
both cases. By Proposition 3.2, it suffices to find the asymptotic distribution of
a1/2ŜA. In the present balanced case, the expression in Lemma 3.1 is simplified
to a1/2ŜA = a−1/2

∑a
i=1 Yi, where

Yi =
1

b(n − 1)

b∑

j=1

n∑

k1 6=k2

Xijk1
Xijk2

+
1

bn

b∑

j1 6=j2

n∑

k1=1

n∑

k2=1

Xij1k1
Xij2k2

(A.1)

are independent random variables. Clearly, E(Yi) = 0, E(Y 2
i ) = 2+2(b(n−1))−1.

Thus we have Var (a1/2ŜA) = 2 + 2/b(n − 1). Under both conditions (n fixed or
n → ∞), Liapounov’s CLT can be applied to prove asymptotic normality. More
specifically, we want to check that for some δ > 0,

∑a
i=1 E|a−1/2Yi|

2+δ → 0 when
a → ∞. This is easily seen to be true when taking δ = 2.

Proof of Theorem 2.2. (a) Using Proposition 3.2 and the fact that MSE
p
→ 1,

it suffices to show a1/2ŜA → N
(
0, τ2

1 /b
)
. Letting c1 =

(∑a
i=1

∑b
j=1 1/nij

)−1
and

c2 = (N − ab)−1, it follows that a1/2ŜA =
∑a

i=1 Ya,i, where

Ya,i = a
1

2




b∑

j=1

nij∑

k1=1

nij∑

k2=1

(
c1

n2
ij

+
c2

nij

)
Xijk1

Xijk2
−

b∑

j=1

nij∑

k=1

c2X
2
ijk

+c1

b∑

j1 6=j2

nij1∑

k1=1

nij2∑

k2=1

1

nij1nij2

Xij1k1
Xij2k2


 (A.2)

are independent random variables. Note that
∑a

i=1 E(Ya,i) = 0. Straightforward

but tedious calculations show that V ar
(
a1/2ŜA

)
→ τ2

1 /b. It remains to check

Lyapounov’s condition, i.e., that for some δ > 0,
a∑

i=1

E
[
|Ya,i − E(Ya,i)|

2+δ
]

= (abc1)
2+δ 1

a1+ δ
2 b2+δ

a∑

i=1

Ra,i → 0, as a → ∞, (A.3)

where

Ra,i = E
∣∣∣

b∑

j=1

nij1∑

k1=1

nij2∑

k2=1

( 1

n2
ij

+
c2

c1

1

nij

)
Xijk1

Xijk2
−

b∑

j=1

nij∑

k=1

c2

c1
X2

ijk

+

b∑

j1 6=j2

nij1∑

k1=1

nij2∑

k2=1

1

nij1nij2

Xij1k1
Xij2k2

−

b∑

j=1

nij∑

k=1

( 1

n2
ij

+
c2

c1nij
−

c2

c1

)∣∣∣
2+δ

.
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Note that abc1 → 1/b2. (A.3) is proved by applying the following inequality

repeatedly,

∣∣∣
m∑

i=1

zi

∣∣∣
p
≤ mp−1

m∑

i=1

|zi|
p, m ≥ 1, p ≥ 1. (A.4)

More specifically, by (A.4),

Ra,i ≤ 31+δ
{
E
∣∣∣

b∑

j=1

nij∑

k=1

( 1

n2
ij

+
c2

c1

1

nij
−

c2

c1

)
(X2

ijk − 1)
∣∣∣
2+δ

+E
∣∣∣

b∑

j=1

nij∑

k1 6=k2

( 1

n2
ij

+
c2

c1

1

nij

)
Xijk1

Xijk2

∣∣∣
2+δ

+E
∣∣∣

b∑

j1 6=j2

nij1∑

k1=1

nij2∑

k2=1

1

nij1nij2

Xij1k1
Xij2k2

∣∣∣
2+δ}

= 31+δ(D1 + D2 + D3),

where the definition of Di, i = 1, 2, 3, is clear from the context. First, notice that

1/n2
ij ≤ 1 and |(1/nij)(c2/c1) − c2/c1| = ((nij − 1)/nij) · (

∑a
i=1

∑b
j=1 1/nij)/(N

−ab) ≤ (nij − 1)/nij · (ab/(N − ab)) ≤ 1, then apply (A.4) to get

D1 ≤ b1+δ
b∑

j=1

E
∣∣∣
( 1

n2
ij

+
c2

c1

1

nij
−

c2

c1

) nij∑

k=1

(X2
ijk − 1)

∣∣∣
2+δ

≤ b1+δ22+δ
b∑

j=1

E
∣∣∣

nij∑

k=1

(X2
ijk − 1)

∣∣∣
2+δ

≤ b1+δ23+2δ
b∑

j=1

n1+δ
ij

nij∑

k=1

(E|Xijk|
4+2δ + 1)

= b1+δ23+2δ
b∑

j=1

n2+δ
ij (E|Xij1|

4+2δ + 1).

Similarly,

D2 ≤ b1+δ
b∑

j=1

E
∣∣∣
( 1

n2
ij

+
c2

c1

1

nij

) nij∑

k1 6=k2

Xijk1
Xijk2

∣∣∣
2+δ

≤ b1+δ22+δ
b∑

j=1

E
∣∣∣

nij∑

k1 6=k2

Xijk1
Xijk2

∣∣∣
2+δ

.
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We now apply a new inequality. For any p ≥ 2, there exists a finite positive con-

stant Ap (depending only on p) such that for any i.i.d random variables Z1, . . . , Zn

with E(Zi) = 0,

E|Z1 + · · · + Zn|
p ≤ Ap n

p
2 E|Z1|

p. (A.5)

This inequality can be proved by first using the Marcinkiewicz-Zygmund inequal-

ity (see Chow and Teicher (1997), pp. 386-387): For a sequence of independent

random variables V1, . . . , Vn with mean 0, there exists a finite positive constant

Ap depending only on p such that

E
∣∣∣

n∑

i=1

Vi

∣∣∣
p
≤ ApE

∣∣∣
( n∑

i=1

V 2
i

)∣∣∣
p
2

. (A.6)

Then apply inequality (A.4). Thus, writing

∣∣∣
nij∑

k1 6=k2

Xijk1
Xijk2

∣∣∣
2+δ

=
∣∣∣
( nij∑

k=1

Xijk

)2
−

nij∑

k=1

(
X2

ijk − 1
)
− nij

∣∣∣
2+δ

and using inequality (A.4), (A.5) and Hölder’s inequality, we have E|
∑nij

k1 6=k2

Xijk1
Xijk2

‖2+δ ≤ 31+δDδn
2+δ
ij E|Xij1|

4+2δ, where Dδ are finite positive constants

depending only on δ. We thus have

D2 ≤ b1+δ22+δ
b∑

j=1

31+δDδn
2+δ
ij E|Xij1|

4+2δ.

Writing D3 =E
∣∣∣
(∑b

j=1

∑nij

k=1 Xijk/nij

)2
−
∑b

j=1

∑nij

k1=1

∑nij

k2=1 Xijk1
Xijk2

/n2
ij

∣∣∣
2+δ

and applying inequalities (A.4) and (A.5) repeatedly, we have

D3 ≤ 21+δb1+δGδ

b∑

j=1

E |Xij1|
4+2δ

n2+δ
ij

,

where Gδ are finite positive constants depending only on δ. Combining the upper

bounds we obtained above on D1, D2 and D3, we have Ra,i ≤ Hδb
1+δ
∑b

j=1 n2+δ
ij

E|Xij1|
4+2δ , for some positive constant Hδ depending only on δ. Thus (A.3)

holds.

(b) Under the new set of conditions, we have Var
(
(ab)1/2ŜA

)
→ 2bτ2

4 . The

asymptotic normality is proved by checking Lyapounov’s condition in (A.3). The

proof follows the same lines as in (a) except that now, since we have
∣∣∣∣∣

1

n2
ij(a)

+
c2

c1

1

nij(a)
−

c2

c1

∣∣∣∣∣ ≤
2

n2(a)
,

∣∣∣∣∣
1

n2
ij(a)

+
c2

c1

1

nij(a)

∣∣∣∣∣ ≤
2

n2(a)
,
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the upper bounds on D1, D2 and D3 become

D1 ≤ b1+δn(a)−4−2δκ(a)2+δ23+2δ
b∑

j=1

(E|Xij1|
4+2δ + 1),

D2 ≤ b1+δn(a)−4−2δκ(a)2+δ22+δ
b∑

j=1

31+δDδE|Xij1|
4+2δ,

D3 ≤ 21+δn(a)−2−δb1+δGδ

b∑

j=1

E |Xij1|
4+2δ .

Since abc1(a) ≤ κ(a), (A.3) still holds.

Proof of Theorem 2.3. (a) For the case nij are fixed, Proposition 3.4 indicates

that the distributions of TA and T̃A are asymptotically equivalent. T̃A can be

expressed as T̃A =
∑a

i=1 T̃Ai, where T̃Ai = (ab)−1/2((a − 1)/(ab))[
∑b

j=1

∑nij

k1 6=k2

(Xijk1
Xijk2

)/(nij(nij − 1))+
∑b

j1 6=j2
X ij1.Xij2.] are independent with E(T̃Ai)=0.

The two terms in T̃Ai are uncorrelated, and

E(T̃ 2
A) =

2(a − 1)2

(ab)3




a∑

i=1

b∑

j=1

σ4
ij

nij(nij − 1)
+

a∑

i=1

b∑

j1 6=j2

σ2
ij1

nij1

σ2
ij2

nij2


→

2

b2
(φ4 + bη4).

It remains to verify Lyapounov’s condition. By inequality (A.4),

E
∣∣∣T̃Ai

∣∣∣
2+δ

≤ (ab)−1− δ
2

1

b2+δ
21+δ

[
E
∣∣∣

b∑

j=1

∑nij

k1 6=k2
Xijk1

Xijk2

nij(nij − 1)

∣∣∣
2+δ

+ E
∣∣∣

b∑

j1 6=j2

X ij1.Xij2.

∣∣∣
2+δ]

≤ (ab)−1− δ
2

1

b2+δ
21+δ

[
b1+δ

b∑

j=1

31+δDδE|Xij1|
4+2δ

(nij − 1)2+δ
+21+δb1+δGδ

b∑

j=1

E |Xij1|
4+2δ

n2+δ
ij

]

≤ a−1− δ
2 b−2− δ

2 Hδ

b∑

j=1

E|Xij1|
4+2δ

(nij − 1)2+δ
,

where Dδ, Gδ and Hδ are finite positive constants depending only on δ, The

second inequality uses (A.6) and (A.4), similar as in the proof of Theorem 2.2.

Thus,
∑a

i=1 E|T̃Ai|
2+δ → 0 and Lyapounov’s condition is satisfied.

(b) For the case that nij → ∞, a similar calculation yields

V ar
(
n(a)T̃A

)
→

2(φ4
1 + bη4

1)

b2
.
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Lyapounov’s condition will be satisfied if there exists a δ > 0, such that

L(a) =

a∑

i=1

E
∣∣∣n(a)T̃Ai

∣∣∣
2+δ

→ 0. (A.7)

Similarly as in (a), we have

L(a) ≤
n(a)2+δ

(n(a) − 1)2+δ
a−1− δ

2 b−2− δ
2 Hδ

a∑

i=1

b∑

j=1

E|Xij1|
4+2δ → 0.

Proof of Theorem 2.4. Write

TA(Y) = TA(X) + (ab)−
1

2

a∑

i=1

b∑

j=1

α2
i (a) + 2(ab)−

1

2

a∑

i=1

b∑

j=1

αi(a)X̃i..,

let h(a) = a−1/2
∑a

i=1 α2
i (a) and H(a) = 2a−1/2

∑a
i=1 αi(a)X̃i... In both cases,

n(a)h(a) = a
∑a

i=1(
∫ i/a
(i−1)/a g(t)dt)2 = a−1

∑a
i=1 g2(ξia) →

∫ 1
0 g2(t)dt = θ2

A,

where ξia ∈ [(i − 1)/a, i/a]. Note that E(H(a)) = 0. Then

Var (H(a)) = 4a−1
a∑

i=1

α2
i (a)

1

b2

b∑

j=1

σ2
ij

nij(a)
≤

4a−
1

2 max
1≤i≤a
1≤j≤b

σ2
ij

bn(a)
h(a) → 0

as a → ∞. Thus H(a)
p
→ 0. The proof is finished by combining the results of

Theorem 2.3. and Slutsky’s Theorem.

Proof of Lemma 3.1.

MSTA − MSE

=
a∑

i=1

b∑

j=1

( 1
∑a

i=1

∑b
j=1 n−1

ij

1

n2
ij

X′
ijJnij

Xij +
1

N − ab

1

nij
X′

ijJnij
Xij

−
1

N−ab
X′

ijXij

)
+

a

(a−1)
∑a

i=1

∑b
j=1 n−1

ij

a∑

i=1

b∑

j1 6=j2

1

nij1nij2

X′
ij11nij1

1′
nij2

Xij2

−
1

(a−1)
∑a

i=1

∑b
j=1 n−1

ij

∑

(i1,j1)

∑

6=(i2,j2)

1

ni1j1ni2j2

X′
i1j11ni1j1

1′
ni2j2

Xi2j2 .

Using this expression and the fact that

a∑

i=1

b∑

j=1

nij∑

k=1

(
1

∑a
i=1

∑b
j=1 n−1

ij

1

n2
ij

+
1

N − ab

1

nij
−

1

N − ab

)
= 0,
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we easily obtain the expression of projection
∑a

i=1 E (MSTA − MSE|Xi).

Proof of Proposition 3.2. From the proof of Lemma 3.1,

MSTA − MSE − ŜA

= −
1

(a − 1)
∑a

i=1

∑b
j=1 n−1

ij

a∑

i1 6=i2

b∑

j1=1

b∑

j2=1

ni1j1∑

k1=1

ni2j2∑

k2=1

1

ni1j1ni2j2

Xi1j1k1
Xi2j2k2

.

We have

aE
(
MSTA − MSE − ŜA

)2

=
2a

(a − 1)2(
∑a

i=1

∑b
j=1

1
nij

)2

a∑

i1 6=i2

b∑

j1=1

b∑

j2=1

ni1j1∑

k1=1

ni2j2∑

k2=1

1

n2
i1j1

n2
i2j2

≤
2a

(a − 1)2(
∑a

i=1

∑b
j=1

1
nij

)2

{ a∑

i=1

b∑

j=1

1

nij

}2
=

2a

(a − 1)2
→ 0,

as a → ∞.

Proof of Lemma 3.3. The expression for the projection of the statistic TA is

easily derived by rewriting TA as

TA = (ab)−
1

2

a∑

i=1

a−1

ab

[( b∑

j=1

X ij.

)2
−

b∑

j=1

S2
ij

nij

]

−(ab)−
3

2

a∑

i1 6=i2

( b∑

j=1

X i1j.

)( b∑

j=1

Xi2j.

)
.

Proof of Proposition 3.4. Write

TA − T̃A = −(ab)−
3

2

a∑

i1 6=i2

( b∑

j=1

Xi1j.

)( b∑

j=1

X i2j.

)
.

If nij(a) → ∞ as a → ∞, then

E
(
b

1

2 n(a)(TA − T̃A)
)2

=
2n2(a)

a3b2

a∑

i1 6=i2

E
( b∑

j=1

X i1j.

)2
E
( b∑

j=1

X i2j.

)2

≤
2M

a

( 1

ab

a∑

i=1

b∑

j=1

σ2
ij

)2
→ 0,

where M is a positive constant. For the case that nij ≥ 2 is fixed, simply treat

n(a) as fixed in the above derivation.
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