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Abstract: The class of species sampling mixture models is introduced as an exten-

sion of semiparametric models based on the Dirichlet process to models based on the

general class of species sampling priors, or equivalently the class of all exchangeable

urn distributions. Using Fubini calculus in conjunction with Pitman (1995, 1996),

we derive characterizations of the posterior distribution in terms of a posterior par-

tition distribution that extend the results of Lo (1984) for the Dirichlet process.

These results provide a better understanding of models and have both theoretical

and practical applications. To facilitate the use of our models we generalize the

work in Brunner, Chan, James and Lo (2001) by extending their weighted Chinese

restaurant (WCR) Monte Carlo procedure, an i.i.d. sequential importance sampling

(SIS) procedure for approximating posterior mean functionals based on the Dirich-

let process, to the case of approximation of mean functionals and additionally their

posterior laws in species sampling mixture models. We also discuss collapsed Gibbs

sampling, Pólya urn Gibbs sampling and a Pólya urn SIS scheme. Our framework

allows for numerous applications, including multiplicative counting process models

subject to weighted gamma processes, as well as nonparametric and semiparamet-

ric hierarchical models based on the Dirichlet process, its two-parameter extension,

the Pitman-Yor process and finite dimensional Dirichlet priors.

Key words and phrases: Dirichlet process, exchangeable partition, finite dimen-

sional Dirichlet prior, two-parameter Poisson-Dirichlet process, prediction rule, ran-
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1. Introduction

This paper introduces the class of random mixture models, referred to as
species sampling mixture models. These are defined as∫

Y
K(x|y, θ)P (dy), (1)

where K(x|y, θ) is a known positive integrable kernel, θ is a finite dimensional
parameter with parameter space Θ (often Θ = �d) and the measure P is drawn
from a random probability measure P with a general exchangeable urn distribu-
tion. When P is the Ferguson (1973, 1974) Dirichlet process, (1) was proposed
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in Lo (1984) as a method for Bayesian density estimation, or more generally as a
mixture model device for inference in nonparametric problems (now often called
a Dirichlet process mixture model). For example, in the context of density esti-
mation, if X1, . . . ,Xn are observations from an unknown density f , then choosing
K to be a density function in (1) yields a random kernel density

f(x|θ, P ) =
∫
Y
K(x|y, θ)P (dy),

where P has a Dirichlet process law. Assuming for the moment that θ is fixed,
then f is estimated by the Bayesian predictive density f̂(x) =

∫∫
Y K(x|y, θ)P (dy)

P(dP |X1, . . . ,Xn), where P(dP |X1, . . . ,Xn) is the posterior for P given the data.
A typical choice for K(·|y, θ) is the normal density with mean y ∈ � and variance
θ2 > 0. In this case, this is the Bayesian nonparametric analogue of kernel density
estimation and θ is the bandwith value.

Lo (1984) provided informative characterizations for the posterior P(dP |X1,
. . . ,Xn) for Dirichlet process mixture models, thus providing a template for their
practical as well as theoretical development. In this paper we extend this frame-
work by looking at the larger class of species sampling mixture models which
(a) allow for kernels that are integrable (and therefore not necessarily densities)
and (b) which include all P from the class of species sampling models developed
in Pitman (1995, 1996). This rich class corresponds to the set of all random
probability measures of the form

P(·) =
∑
k

pk δZk
(·) +

(
1 −

∑
k

pk

)
H(·), (2)

where 0 < pk < 1 are random weights such that
∑

k pk ≤ 1, independently
of Zk, which are i.i.d. with some nonatomic distribution H over a measurable
Polish space (Y,B(Y)) (note: δZk

(·) denotes a discrete measure concentrated
at Zk). This class includes the Dirichlet process, the two parameter extension
of the Dirichlet process, the two-parameter Poisson-Dirichlet process (Pitman
and Yor (1997)), which we refer to as the Pitman-Yor process, and the class
of finite dimensional Dirichlet priors discussed in detail in Ishwaran and Zare-
pour (2002a,b). Another important and rich sub-class of models consist of pro-
cesses based on normalised Poisson or weighted Poisson laws with homogeneous
Lévy measures. These were discussed recently in James (2002). A unifying fea-
ture of species sampling models, which form the basis of our exposition, is the
intimate connection to a corresponding exchangeable partition distribution on
the positive integers IN = {1, 2, . . .}. These exchangeable partition distributions
are related to generalizations of the Chinese restaurant process (Aldous (1995),
Pitman (1996)) and are of primary interest in many applications. We show how
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to use this relationship in conjunction with Fubini calculus for random measures
to develop a rigorous and informative characterization of the posterior distri-
bution in terms of a posterior partition distribution (see Theorems 1 and 2 of
Section 3). The results are a generalization of the results given in Lo (1984) for
the special case of the Dirichlet process. This provides a better understanding
of the common structural features of the models, and has implications based on
both theoretical and practical considerations.

To facilitate the use of the species sampling mixture model, we extend
the work in Brunner, Chan, James and Lo (2001) (see also Lo, Brunner and
Chan (1996)) on an i.i.d. sequential importance sampling (SIS) computational
procedure for fitting Dirichlet process mixture models, a technique based on
what they call a weighted Chinese restaurant process (WCR process). By ex-
ploiting the form of the posterior under a Dirichlet process, Brunner, Chan,
James and Lo (2001) (hereafter abbreviated as BCJL (2001)) devised a Monte
Carlo method, the iidWCR, for drawing i.i.d. values for estimating posterior
mean functionals (see also MacEachern, Clyde and Liu (1999) who discuss an
SIS algorithm for fitting beta-binomial Dirichlet process mixture models which
is operationally equivalent to the iidWCR; also see Quintana (1998) and Quintana
and Newton (2000)). Although the iidWCR algorithm was specifically developed
for models involving Dirichlet process and weighted gamma process priors (Lo
and Weng (1989)), in this paper we show that the method can be extended in
generality to all random probability measures P with the property that a sample
Y1, Y2, . . . drawn from P is a species sampling sequence (Pitman (1996)). We call
this algorithm the generalized weighted Chinese restaurant algorithm (GWCR
algorithm), a technique based on what we call the GWCR process. Complemen-
tary to the GWCR algorithm is an extension of the collapsed Gibbs sampler of
MacEachern (1994). Both the GWCR and collapsed Gibbs methods are charac-
terized as partition-based approaches. The use of partitions naturally leads to
reduced Monte Carlo error as will be discussed in Section 4. Additionally, we de-
velop Gibbs procedures like Escobar (1988, 1994) and SIS procedures analogous
to Kong, Liu and Wong (1994) and Liu (1996) based on sampling Yi. Section 4
presents our algorithms. Extensions are discussed in Section 5.

2. Background and Notation

A sequence of random variables Y1, Y2, . . . is called a species sampling se-
quence (Fisher, Corbet and Williams (1943), Pitman (1996)) if for each n ≥ 1,
Y1, . . . , Yn+1 is an exchangeable sequence from an urn model whose joint marginal
law µ(dY1, . . . , dYn+1) is determined sequentially by the following prediction rule:

IP{Y1 ∈ ·} = H(·), IP{Yn+1 ∈ · |Y1, . . . , Yn} = �0,nH(·)+
k(n)∑
j=1

�j,n δY ∗
j
(·), (3)
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where Y ∗
1 , . . . , Y

∗
k(n) are the k(n) distinct values of Y1, . . . , Yn in the order as they

appear, and �0,n and �j,n are non-negative measurable functions of Y1, . . . , Yn. As
before H is some nonatomic probability measure. A random measure P is called
a species sampling model if a sample Y1, Y2, . . . drawn from P forms a species
sampling sequence. See Theorem 3 of Hansen and Pitman (2000) for necessary
conditions on �0,n and �j,n to ensure that Y1, Y2, . . . are exchangeable. See also
Kingman (1978), Hoppe (1987), Donnelly and Tavaré (1987) and Pitman (1996)
for related discussion.

By Proposition 11 of Pitman (1996), the exchangeability of a species sam-
pling sequence ensures that its unique values Y ∗

1 , Y
∗
2 , . . . form an i.i.d. sequence

with distribution H and that the partition Π = {A1, A2, . . .} induced by the
unique values, where Aj = {i : Yi = Y ∗

j }, is an exchangeable random parti-
tion over the set of positive integers IN. The proposition follows from King-
man’s (1978) theory of partition structures as developed in Aldous (1985) and
Pitman (1995). In particular, this implies that, for each n, the distribution of
Y1, . . . , Yn is determined from its unique values and its corresponding exchange-
able partition. More precisely, let p = {C1, . . . , Cn(p)} denote the partition of
the integers {1, . . . , n}, where Cj = {i : Yi = Y ∗

j } are the partition sets induced
by the n(p) unique values Y ∗

1 , . . . , Y
∗
n(p). The joint marginal law for Y1, . . . , Yn

has the unique characterization (Pitman (1996))

IP{p;Y ∗
j ∈ Bj, j = 1, . . . , n(p)} = π(p)

n(p)∏
j=1

H(Bj), (4)

where π(p) is the exchangeable partition probability function, or EPPF, which
can be written as π(p) = p(e1, . . . , en(p)), where p is a unique symmetric function
depending only upon ej , the cardinalites for the sets Cj . The decomposition (4)
contains two key facts which will form the basis of our results of Section 3. First
it states implicitly that the unique values Y ∗

j are i.i.d. with common distribution
H. Secondly, it isolates the EPPF as the unique contribution from a species
sampling model. In the species sampling mixture model (1), the EPPF π(p),
is the prior for p, and thus (4) suggests that the effect on the posterior by the
choice of the species sampling model must be governed by the EPPF. This is in
fact the basis for a general relationship between the prior and the posterior that
will be revealed in the posterior characterizations of Section 3.

2.1. Generalized Chinese restaurant processes

A key aspect of species sampling models that will be exploited in our com-
putational algorithms, is that observations p from the EPPF may be generated
via a generalized Chinese restaurant process. This process can be viewed as a
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sequential restaurant “seating arrangement” described as follows. Suppose cus-
tomers arrive sequentially at a Chinese restaurant and are randomly assigned to
an unlimited number of circular tables C1, C2, . . ., each of which have an unlim-
ited capacity to seat customers. By default the first customer to arrive is always
seated at the first table, table C1. Subsequently, for r ≥ 1, customer r + 1 is
seated according to the species sampling prediction rule applied to the partition
pr = {C1,r, . . . , Cn(pr),r} of {1, . . . , r} corresponding to the seating arrangement
of the first r customers. That is, if pr+1 is the event that customer r+1 is seated
at a previous table Cj,r, (denoted as pr+1 = pr ∪ {r + 1 ∈ Cj,r}), then pr+1

occurs with probability

π(pr+1|pr) =
π(pr+1)
π(pr)

= �j,r, (5)

while if pr+1 = pr ∪Cn(pr)+1 is the event that customer r+ 1 is seated at a new
table, then the event pr+1 occurs with probability

π(pr+1|pr) =
π(pr+1)
π(pr)

= �0,r. (6)

After n steps this results in a partition p = pn from the EPPF, π(p). The orig-
inal Chinese restaurant process was devised by Lester Dubins and Jim Pitman
(see Aldous (1985) and Pitman (1996)). This scheme corresponds to the choice of
�0,r = α/(α+r) and �j,r = ej,r/(α+r), where ej,r is the size of table Cj,r. This pro-
cess generates a partition based on the Ewens sampling formula (Ewens (1972))
and its EPPF is that for a Dirichlet process with shape measure αH(·), which we
will write as P = DP(αH). See also Blackwell and MacQueen (1973) for further
discussion on the Dirichlet process prediction rule (often called the Blackwell-
MacQueen Pólya urn). Subsequent extension to more general species sampling
models may be found in Pitman (1996), Kerov (1998) and Tsilevich (1997).

Remark 1. Observe carefully that we only need to know the prediction rule for
a species sampling model to draw a value for p. This fact makes it unnecessary
to work out the explicit form for the EPPF. This will be of practical consequence
to implementing our GWCR procedures described in Section 4, because although
the EPPF may be obtained uniquely via its prediction rule, we are informed by
Jim Pitman (personal communication) that explicit expressions for these quan-
tities do not have a simple form in general.

2.2. The two-parameter model

An important class of species sampling models are the two-parameter models
discussed in Pitman (1996). These are defined via (3) with �0,n =(b+n(p)a)/(n+



1216 HEMANT ISHWARAN AND LANCELOT F. JAMES

b) and �j,n = (ej,n − a)/(n + b), where a and b are two real valued parameters.
These models are well defined over two ranges of the parameters: 0 ≤ a < 1 and
b > 0, or

a = −κ < 0 and b = Nκ, for κ > 0 and N = 2, 3 . . . . (7)

These models have EPPF

π(p) =

(∏n(p)−1
j=1 (b+ a j)

) (∏n(p)
j=1

∏ej−1
k=1 (k − a)

)
∏n−1

j=1 (b+ j)
. (8)

We refer to random measures based on the specifications 0 ≤ a < 1 and b > 0 as
the Pitman-Yor process, writing this as PY(a, b). Note that setting b = α and
a = 0 gives as a special case the Dirichlet process, DP(αH). In this case, the
EPPF formula (8) reduces to a variant of Ewens sampling formula (Ewens (1972);
see also Antoniak (1974) and Ewens and Tavaré, (1997)). Another important
example is the case where a = α and b = 0, which yields a measure whose
random weights are based on a stable law with index 0 < α < 1. See Pitman
and Yor (1997) for details.

Parameters based on (7) are the two-parameter processes (−κ,Nκ) and cor-
respond to the class of symmetric finite-dimensional Dirichlet priors, which may
be represented as

PN (·) =
N∑

k=1

Gk∑N
k=1Gk

δZk
(·), (9)

where Gk are i.i.d. Gamma(κ) random variables independent of Zk which are
i.i.d. H. That is, the vector of probabilities Gk/

∑N
k=1Gk for k = 1, . . . , N

has a Dirichlet distribution with N parameters equal to κ. Pitman (1996) dis-
cusses this measure in detail, referring to it as Fisher’s model (Fisher, Corbet
and Williams (1943)). Watterson (1976) works out the EPPF for (9). Ishwaran
and Zarepour (2002a) discuss (9) in context of nonparametric statistical appli-
cations (where detailed references can be found) and show in the special case of
κ = α/N that (9) approximates the Dirichlet process, DP(αH). Limits under
different choices of κ were studied by Ishwaran and Zarepour (2002b). Recently,
Gyllenberg and Koski (2001) discuss (9) in applications to bacterial taxonomy,
while Hoshino (2001) use it for microdata disclosure risk assessment. Ishwaran,
James and Sun (2001) note that (9) has key properties for finite mixture model-
ing. Setting κ = α/N they utililzed the seating rule

�0,n =
α(1 − n(p)/N)

n+ α
, �j,n =

ej,n + α/N

n+ α
,

which allows for only a maximum of N occupied tables, thus making it ideally
suited for finite mixture models with bounded complexity.
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For additional references related to the the two-parameter models see Carl-
ton (1999), Ewens and Tavaré (1997), Ishwaran and James (2001), Kerov (1998),
Kerov and Tsilevich (1998), Mekjian and Chase (1997) and Tsilevich (1997).

3. Posterior Distributions for Species Sampling Mixture Models

In general, our methods applies to species sampling mixture models for which
the posterior of P given the data X = (X1, . . . ,Xn) can be characterized by

P(dP |X) =
∫

P(dP |Y)µ(dY|X), (10)

where Y = (Y1, . . . , Yn) and

µ(dY|X) =
∏n

i=1K(Xi|Yi)µ(dY)∫
Yn

∏n
i=1K(Xi|Yi)µ(dY)

, (11)

where µ(dY) is the marginal (urn) distribution for Y. Note that (10) and (11)
correspond to species sampling mixture models without a parametric component
θ. For convenience we suppress the use of θ here (and in subsequent sections)
to simplify notation and some arguments, but the extension to models including
θ are straightforward. We return to this issue in Section 5 when we discuss
extensions.

3.1. Posterior characterizations

We now derive explicit characterizations for the posterior distribution of a
species sampling mixture model. These new results are extensions of Lo’s (1984)
characterizations for Dirichlet process mixture models and rely on a development
of Fubini calculus for the class of species sampling models coupled with results
of Pitman (1995, 1996). For (11), the relationship between an EPPF, Y and its
corresponding predictive rule gives the following general analogue of Lemma 1 of
BCJL (2001).

Theorem 1. Let Y be exchangeable with distribution determined sequentially by
the prediction rule (3), and whose conditional distribution given X is µ(dY|X)
defined by (11). Then the conditional distribution of Y given X and a partition
p = {C1, . . . , Cn(p)}, is such that the sequence Y1, . . . , Yn consists of n(p) unique
values Y ∗

1 , . . . , Y
∗
n(p) which are independent, each with distribution

µ(dY ∗
j |Cj) =

∏
i∈Cj

K(Xi|Y ∗
j )H(dY ∗

j )∫
Y
∏

i∈Cj
K(Xi|Y )H(dY )

, for j = 1, . . . , n(p). (12)

Moreover, the posterior distribution π(p|X) is of the form

π(p|X) =
π(p)

∏n(p)
j=1

∫
Y
∏

i∈Cj
K(Xi|Y )H(dY )∑

p π(p)
∏n(p)

j=1

∫
Y
∏

i∈Cj
K(Xi|Y )H(dY )

, (13)
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where π(p) = p(e1, . . . , en(p)), and p is the unique EPPF for Y1, . . . , Yn.

Proof. The independence result follows from the arguments in the proof of
Proposition 13, Pitman (1996) or by Lemma 5 of Hansen and Pitman (2000).
That is from (4), given the partition, the independence result and (12) follow
immediately. To obtain (13) notice that the marginal density equals

f(X) =
∫
Yn

n∏
i=1

K(Xi|Yi)µ(dY) =
∑
p

π(p)
n(p)∏
j=1

∫
Y

∏
i∈Cj

K(Xi|Y )H(dY ).

A bit of algebraic rearrangement in (11) yields π(p|X). The uniqueness of π(p)
follows by the uniqueness of the EPPF.

Remark 2. Theorem 1, given the EPPF for a Dirichlet process, immediately
yields Lemma 1 of BCJL (2001). In BCJL (2001) they note that, given p and
X, the distribution of Y ∗

j has an interpretation as a posterior distribution of
Y ∗

j given data {Xi : i ∈ Cj}, where Y ∗
j has prior distribution H. Theorem 1

now shows this interpretation holds for all species sampling models. The main
difference in these methods is then summarized in the behavior of the posterior
partition distribution (13) which is determined by the choice of different priors
π(p). This goes back to our earlier point regarding (4), that the EPPF governs
the effect the choice of the species sampling prior has on the the posterior.

Remark 3. In principle, Theorem 1 and the methods developed in this paper
also apply to other models which are linked either to a species sampling urn
structure or, equivalently, an EPPF. In other words, (11) doesn’t have to arise
when P is a species sampling model. For instance, this is the case for mixtures
of weighted Gamma process random measures with known kernels. There, in
the species mixture model (1), P is replaced by a sigma-finite measure which is
modeled as a weighted Gamma process. This class of models was considered by
Lo and Weng (1989) and was recently discussed in terms of semiparametric Pois-
son/Gamma random field models by Wolpert and Ickstadt (1998) and Ishwaran
and James (2002). Lo and Weng (1989) (see also BCJL(2001) and James(2003))
show that, analogous to Lo (1984) for the Dirichlet process, the posterior distri-
butions of these models are expressible either via a weighted Blackwell-MacQueen
urn scheme, similar to (11), or an equivalent partition based representation via
the Ewens sampling formula.

Theorem 18 of Pitman (1996) coupled with the prediction rule justifies the
following disintegrations. For all n, P (dYn+1)P(dP |Y1, . . . , Yn) = P(dP |Y1, . . .,
Yn+1)µ(dYn+1|Y1, . . . , Yn) a.e. H, where for all Borel-measurable B,

µ(B|Y1, . . . , Yn) =
∫
P (B)P(dP |Y1, . . . , Yn)
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= �0,nH(B) +
n(p)∑
j=1

�j,n I{Y ∗
j ∈ B}.

Now exploiting the fact that the distribution of Yi given P and Y1, . . . , Yi−1

is simply P , we obtain, for all n ≥ 1,
∏n

i=1 P (dYi)P(dP ) = µ(dY)P(dP |Y),
where P(dP |Y) is defined via the updating rule in Theorem 18, Pitman (1996).
Given the disintegrations above, we obtain immediately via Fubini’s theorem the
following analogue of Lemma 1, Lo (1984) (see also Ishwaran and James (2001)
for the case of the PY(a, b) process). Write M for the space of probability
measures over Y and B(M) for the corresponding σ-algebra induced by weak
convergence.

Lemma 1. Let g be a positive valued or quasi-integrable function (with respect
to the joint probability of P and P ) defined on (Yn ×M,B(Yn)×B(M)). Then
for all n ≥ 1,∫

M

∫
Yn
g(Y, P )

n∏
i=1

P (dYi)P(dP ) =
∫
Yn

∫
M
g(Y, P )P(dP |Y)µ(dY),

where P(dP |Y) and µ(dY) are determined by the updating rule in Theorem 18
of Pitman (1996). In particular, µ(dY) is the joint law of the species sampling
sequence Y1, . . . , Yn.

Remark 4. The prediction rules correspond to the conditional moment measures
for P. See LeCam (1986), Daley and Vere-Jones (1988), Matthes, Kerstan and
Mecke (1978) and Kallenberg (1986) for details about Fubini’s theorem on Polish
spaces.

The Fubini result in Lemma 1, in tandem with the prediction rule, facili-
tates calculations. In particular, one can readily compute higher order moments
of products of linear functionals. We discuss this point at the end of the sec-
tion. Now using Lemma 1 and Theorem 1, we obtain a characterization for the
posterior distribution of P given X in the mixture model setting.

Theorem 2. The posterior law for a species sampling mixture model is charac-
terized by∫
M
g(P )P(dP |X) =

∑
p

[∫
Yn(p)

∫
M
g(P )P(dP |Y∗,p)µ(dY∗|X,p)

]
π(p|X)

=
∑
p

∫
Yn(p)

[∫
M
g(P )P(dP |Y∗,p)

] n(p)∏
j=1

µ(dY ∗
j |Cj)

 π(p|X)

for any nonnegative or integrable function g, where π(p|X) and µ(dY ∗
j |Cj) are

defined as in Theorem 1.
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Proof. By Bayes rule

∫
M
g(P )P(dP |X) =

∫
M g(P )

[∏n
i=1

∫
Y K(Xi|Yi)P (dYi)

]
P(dP )∫

M
[∏n

i=1

∫
Y K(Xi|Yi)P (dYi)

]
P(dP )

.

An application of Lemma 1 yields the following analogue of Theorem 1, Lo (1984):∫
M
g(P )

[
n∏

i=1

∫
Y
K(Xi|Yi)P (dYi)

]
P(dP )

=
∫
Yn

[∫
M
g(P )P(dP |Y)

] n∏
i=1

K(Xi|Yi)µ(dY).

Hence
∫
M g(P )P(dP |X) =

∫
Yn [

∫
M g(P )P(dP |Y)] µ(dY|X). The result now fol-

lows by using Theorem 1 and simple algebra.
We now provide more explicit details for two-parameter models in the corol-

lary below. The result follows from Theorem 2 in conjunction with Corollary 20
of Pitman (1996). Call a species sampling mixture model with a two-parameter
process prior a two-parameter mixture model.
Corollary 1. The posterior distribution of a two-parameter mixture model is
characterized by Theorem 2 with π(p|X) defined by setting π(p) equal to (8).
Moreover, when P ∼ PY(a, b),

P(dP |Y∗,p) =
n(p)∑
j=1

G∗
j∑n(p)+1

j=1 G∗
j

δY ∗
j
(·) +

(
1 −

n(p)∑
j=1

G∗
j∑n(p)+1

j=1 G∗
j

)
P∗(·), (14)

where G∗
j

ind∼ Gamma(ej − a), G∗
n(p)+1 ∼ Gamma(b + an(p)), and all variables

are mutually independent of P∗ = PY(a, b + an(p)). When P = PN is a finite
dimensional Dirichlet prior as in (9), it follows that P(dP |Y∗,p) can be expressed
as in (14) for a = −κ, b = Nκ and where P∗ = PN−n(p) is an independent finite
dimensional Dirichlet prior (with N − n(p) terms). Equivalently, PN−n(p) is a
(−κ, (N − n(p))κ) two-parameter process.

3.2. Moment calculations

Let fl denote real-valued functions on Y and define Pfl =
∫
Y fl(y)P (dy)

for l = 1, . . . , q. We close this section by demonstrating how the results may
be used to easily obtain moment calculations for products of functionals. This
result is of particular interest in the case where all moments exist since, under
additional regularity conditions, this provides a characterization of the joint dis-
tribution of (Pf1, . . . , Pfq). This can be used to yield the Markov-Krein identity
for (Pf1, . . . , Pfq) that was recently established by Kerov and Tsilevich (1998)
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using combinatorial arguments for the case of the PY(a, b) processes. (An alter-
native (simple) proof of this identity is given in Tsilevich, Vershik and Yor (2000)
using Laplace functionals). Their results extend the work of Cifarelli and Regazz-
ini (1990) for the case of the distribution of the mean functional,

∫
yP (dy), when

P has a Dirichlet process law. The mean case is also discussed in Diaconis and
Kemperman (1996) where in addition the result for the joint distribution of func-
tionals like (Pf1, . . . , Pfq) was proposed as an open problem. Tsilevich (1997)
establishes the case for the mean with respect to the general two-parameter pro-
cesses.

The task is to calculate,

E

[ q∏
l=1

(Pfl)nl

]
=
∫
M

[ q∏
l=1

nl∏
i=1

∫
Y
fl(yi,l)P (dyi,l)

]
P(dP ),

where we take, without loss of generality, n =
∑q

l=1 nl. The above expression can
be evaluated quickly by first applying the Fubini result in Lemma 1, and using
arguments similar to those used in Theorem 1 or 2 to obtain

E

[ q∏
l=1

(Pfl)nl

]
=
∑
p

π(p)
n(p)∏
j=1

∫
Y

q∏
l=1

f
ej,l

l (u)H(du), (15)

where ej,l denotes the number of indices associated with fl in Cj. For the case of
the PY(a, b) processes, the expression in (15) coincides with that in Proposition
(10.1) of Kerov and Tsilevich (1998) where the relationship to the Markov-Krein
identity is established. Naturally, one may use Theorem 2 to obtain moment ex-
pressions for the posterior species sampling mixture models. That is, calculations
with respect to P(·|X).

4. Computational Algorithms

It is clear from the complexity of the posterior distribution P(·|X) that we
need efficient Monte Carlo methods to be able to broadly utilize the species
sampling mixture model. This point is reflected in the case of Dirichlet pro-
cess mixture models where its practical utility has increased dramatically due to
computational advances. The explicit structural features of the posterior distri-
butions developed in the previous section allow us to extend procedures based
on the Dirichlet process to this more general setting. We start in Sections 4.1-
4.3 by presenting the GWCR, a new generalization of the iidWCR algorithm of
BCJL (2001). Later in Section 4.4 we discuss a new Gibbs counterpart to the
GWCR, what we refer to as a general collapsed Gibbs sampler. Another class
of algorithms we discuss are based on sampling the hidden variables Y without
involving the partition structure. These include Pólya urn Gibbs samplers anal-
ogous to Escobar (1988, 1994) as well as SIS methods analogous to Kong, Liu
and Wong (1994) and Liu (1996). See Sections 4.5 and 4.6, respectively.
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Before moving on to the description of our different algorithms, it will be
helpful if we first outline some general principles for selecting a suitable algorithm:
1. In general, the choice of algorithm is a tradeoff between computation and the

amount of collapsing. The GWCR and collapsed Gibbs samplers do the most
collapsing, or integration, as they are based on the partition structure. The
computations needed for integrals can sometimes be demanding, in which
case methods based on Y such as Pólya urn Gibbs samplers or Pólya SIS
procedures might be preferable.

2. The latter algorithms are likely to be less efficient than ones based on par-
titions. In particular, functionals expressible in terms of partitions are Rao-
Blackwell improvements over those expressed in terms of Y, and thus can
be estimated with less variability (BCJL (2001) Corollary 1). An analogous
result for all species sampling models follows as an immediate corollary of
Theorem 1. Empirical evidence of improved variability using partitions was
observed in BCJL (2001), who compared the performance of the iidWCR to
an “iidWP” procedure based on sampling Y in Dirichlet process mixture mod-
els. Similar results have been observed for other Monte Carlo procedures. For
example, MacEachern (1994) (see also MacEachern and Müller (1998)) note
that a collapsed Gibbs sampler based on partitions leads to improved mixing
over Pólya urn Gibbs samplers in Dirichlet process mixture models.

3. Selecting between i.i.d. procedures and their Gibbs analogues can depend upon
several things. In some cases the issue of convergence of the Markov chain
may make i.i.d. procedures more attractive, although often the Gibbs proce-
dures have simple acceleration steps that alleviate slow convergence problems.
Typically the i.i.d. procedures are easy for novices to use and require less “tun-
ing”. On the other hand, Gibbs procedures can be more attractive in some
semiparametric problems where θ is multi-dimensional and update rules for
the GWCR or the SIS Pólya are difficult.

4.1. The GWCR process

The key to extending the iidWCR is to understand the basis for the WCR
seating rule. BCJL’s (2001) idea was to adjust the seating assignment of the prior,
the Chinese restaurant process, using a weighted seating rule, which led to what
they called the WCR process. Like the Chinese restaurant, the WCR assigns
seats to customers sequentially, but now customers are assigned to previously
occupied tables with probabilities proportional to the product of the number
of occupants (the effect of the prior) and the Bayesian predictive weight of the
table determined by the data (the effect of the posterior). In this way, customers
(or, equivalently, Yi values) tend to be attracted to tables that contain “similar”
customers, where similarity is a function of the data and the type of kernel used in
the problem. BCJL (2001) showed that the WCR seating scheme is determined
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by the form of the predictive density of, say, Xn+1 given p and X when P is a
Dirichlet process. Using Theorem 2 we can now see what this rule looks like for
any general species sampling model, which will suggest to us the extension to the
GWCR process and algorithm. Theorem 2 shows that the predictive density is
in general

E

[∫
Y
K(Xn+1|Y )P (dY )|p,X

]

= �0,n

[∫
Y
K(Xn+1|u)H(du)

]
+

n(p)∑
j=1

�j,n

∫
Y
K(Xn+1|Y ∗

j )µ(dY ∗
j |Cj), (16)

where �0,n = α/(α + n) and �j,n = ej/(α + n). The form of (16), in analogy to
the WCR process, now identifies the GWCR seating rule. If the first r customers
have been seated, the GWCR seats customer r + 1 to an unoccupied table with
probability

�0,r

λ(r + 1)
×
∫
Y
K(Xr+1|Y )H(dY ), (17)

or to an occupied table Cj,r with probability

�j,r
λ(r + 1)

×
∫
Y K(Xr+1|Y )

∏
i∈Cj,r

K(Xi|Y )H(dY )∫
Y
∏

i∈Cj,r
K(Xi|Y )H(dY )

, j = 1, . . . , n(pr), (18)

where λ(r+1) is the appropriate normalizing constant and �0,r, �j,r are the values
from the prediction rule (3) for the specific species sampling model.

Just like the WCR, the update rules (17) and (18) for the GWCR involve a
trade-off between the prior and the effect of the data. For example if K is a kernel
density, then (17) is proportional to the prior probability �0,r that customer r+1
is seated at a new table multiplied by the predictive weight for the table under
the prior H, while the probability of being assigned to a previous table Cj,r is,
by (18), proportional to the prior probability �j,r and the predictive weight under
the conditional distribution for the table µ(·|Cj,r), since∫

Y
K(Xr+1|Y )

∏
i∈Cj,r

K(Xi|Y )H(dY )∫
Y
∏

i∈Cj,r
K(Xi|Y )H(dY )

=
∫
Y
K(Xr+1|Y )µ(dY |Cj,r).

Now seat customers 1, . . . , n using the seating rules (17) and (18) to produce
a partition p = {C1, . . . , Cn(p)} of {1, . . . , n}. The resulting density for p is the
GWCR density. Analogous to Lemma 3 in BCJL (2001) we have the following
result characterizing its relationship to the posterior. The proof is similar to one
in BCJL (2001) and is omitted for brevity.

Lemma 2. The n-step GWCR seating algorithm results in the density q(p) given
by Λ(p)q(p) = π(p)f(X|p), where f(X|p) =

∏n(p)
j=1

∫
Y
∏

i∈Cj
K(Xi|Y )H(dY ),
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π(p) is the EPPF for the species sampling model and Λ(p) = λ(1) × · · · × λ(n),
where λ(1) =

∫
Y K(X1|Y )H(dY ).

4.2. The GWCR algorithm (for approximating laws of functionals)

Theorem 2 combined with the GWCR identity of Lemma 2 shows that the
posterior P(dP |X) can be expressed as

∑
p

∫
Yn(p)

P(dP |Y∗,p)
n(p)∏
j=1

µ(dY ∗
j |Cj)

 π(p|X)

=

∑
p

[∫
Yn(p) P(dP |Y∗,p)

∏n(p)
j=1 µ(dY ∗

j |Cj)
]
Λ(p)q(p)∑

p Λ(p)q(p)
. (19)

Now one can use (19) to suggest the GWCR algorithm. The following procedure
can be used to obtain approximate draws from P(·|X) in the case where it is
possible to obtain an exact or approximate draw from P(dP |Y∗,p) for a given
value of (Y∗,p).

1. Draw a random partition p = {C1, . . . , Cn(p)} by seating customers 1, . . . , n
sequentially, using the seating assignments defined by (17) and (18). Then
p is a draw from the GWCR process with density q(p) having importance
weight Λ(p).

2. Use the value of p to draw Y ∗
j independently from (12) for j = 1, . . . , n(p).

This yields Y∗ = (Y ∗
1 , . . . , Y

∗
n(p)).

3. Draw a random measure P from P(dP |Y∗,p) using the current value of
(Y∗,p) obtained from steps 1 and 2.

4. To approximate the posterior law of a functional g(P ), run the previ-
ous steps B times independently, obtaining values P (b) with importance
weights Λ(p(b)) for b = 1 . . . , B. Approximate the law, P{g(P ) ∈ ·|X}, with∑B

b=1 I{g(P (b)) ∈ ·}Λ(p(b))/
∑B

b=1 Λ(p(b)).

Remark 5. Note that by Corollary 1, the algorithm applies readily to the
two parameter processes. In particular P is drawn from (14), where the draw
from P∗ is exact for the (−κ, (N − n(p))κ) two-parameter process, while for
a Pitman-Yor process, PY(a, b), the draw from P∗ will need to be approxi-
mated. Several approximation methods are available. In case P is a DP(αH)
process, one can use the methods discussed in Gelfand and Kottas (2002), Ish-
waran and Zarepour (2002a) and Muliere and Tardella (1998). While these tech-
niques should perform well for the Dirichlet process, Ishwaran and James (2001,
Theorem 1) suggest that similar types of constructions may not work well for all
classes of PY(a, b). A method that can be applied in general is to approximate
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P∗ = PY(a, b + an(p)) by the random measure based on simulated data from
the associated species sampling sequence (3).

4.3. The GWCR algorithm (for approximating mean functionals)

Theorem 2 can also be used to approximate posterior expectations of func-
tionals h(P ). However, it is clear by the arguments in Theorem 2 that these calcu-
lations inevitably reduce to integrals of functions g(Y) with respect to µ(dY|X),
provided

∫
M h(P )P(dP |Y) = g(Y) can be computed explicitly (naturally, if an

explicit expression for this quantity is difficult to obtain and it is possible to draw
P(dP |Y∗,p) then the algorithm in Section 4.2 is more appropriate). It follows
that the GWCR approximation schemes discussed here can be used for a wider
range of functions than those arising as functionals of P . That is, they apply
for the approximation of integrals E[g(Y)|X] =

∫
g(Y)µ(dY|X) for arbitrary

functions g.
The approximation schemes can be divided into two scenarios depending

upon the complexity of the integration. In the first case suppose it is possible to
explicitly compute

E[g(Y)|X,p] = t(p). (20)

For example for a linear functional h(P ) =
∫
ψ(u)P (du), by Theorem 2 and the

prediction rule (3), its posterior mean E[h(P )|X] equals[∫
Y
ψ(u)H(du)

]∑
p

�0,n π(p|X) +
∑
p

n(p)∑
j=1

�j,n

∫
Y
ψ(Y ∗

j )µ(dY ∗
j |Cj)

 π(p|X),

which can be written as
∑

p t(p)π(p|X) provided we can compute E[ψ(Y ∗
j )|Cj ]

explicitly. In general, for arbitrary functions g(Y) such that (20) holds,∫
g(Y)µ(dY|X) =

∑
p

t(p)π(p|X) =
∑
p

t(p)Λ(p)q(p)∑
p Λ(p)q(p)

.

In this case the algorithm is simply a one-step procedure:
1. Draw p = {C1, . . . , Cn(p)} from the GWCR process. Repeat B times indepen-

dently and approximate E[g(Y)|X] with
∑B

b=1 t(p
(b))Λ(p(b))/

∑B
b=1 Λ(p(b)).

If t(p) cannot be computed explicitly, we use the following algorithm.
1. Draw p = {C1, . . . , Cn(p)} from the GWCR process. Given p, draw (Y∗|X,p)

using (12). Repeat B times independently and approximate E[g(Y)|X] with∑B
b=1 g(Y

∗(b),p(b))Λ(p(b))/
∑B

b=1 Λ(p(b)).

Thus, for example, for approximating h(P ) =
∫
ψ(u)P (du) when E[ψ(Y ∗

j )|Cj ] is
not easily computed, use

g(Y∗,p) = �0,n

∫
Y
ψ(u)H(du) +

n(p)∑
j=1

�j,nψ(Y ∗
j ). (21)
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4.4. Collapsed Gibbs samplers

Theorem 2, in combination with work developed in this section, points to
several other algorithms that could be used to fit species sampling mixture mod-
els. These can be either based on the partition structure p, such as the collapsed
Gibbs sampler we discuss here, or in those cases where the necessary integral
computations are difficult, by basing algorithms on Y as done in Sections 4.5
and 4.6.

MacEachern (1994) discusses a collapsed Gibbs sampler for fitting Dirichlet
process mixture models. This method operates on the partition structure and
works by creating a Markov chain with stationary distribution π(p|X). The col-
lapsed Gibbs sampler cycles through draws π(pj |p−j,X) for j = 1, . . . , n, where
pj is the draw for the jth partition and p−j is the partition associated with
pj−1 formed by removing customer j (when j = 1, p−1 is formed by removing
customer 1 from p0, the current state of the Markov chain). An important point
noted by BCJL (2001) is that the Markov transitions are equivalent to the n-step
weighted Chinese restaurant seating rule. Thus, for example, π(pn|p−n,X), the
nth draw in one Gibbs cycle, is the weighted Chinese seating rule for seating
customer n based on the seating arrangement p−n = {C1,n−1, . . . , Cn(p−n),n−1}
for the first n− 1 customers. This of course readily extends to species sampling
models by the use of the more general seating rules (17) and (18), thus suggesting
a collapsed Gibbs sampler for species sampling mixture models. By Theorem 2,
the draws for p from such a sampler can be used to approximate laws for func-
tionals or to approximate posterior mean functionals, similar to Sections 4.2 and
4.3, by drawing conditional values for Y∗ or P and then averaging over these
draws.

4.5. Pólya urn Gibbs samplers

Ishwaran and James (2001) showed how to extend the Escobar (1988, 1994)
Pólya urn Gibbs sampler to models based on the general class of stick-breaking
measures. This same idea extends to species sampling models. The method
operates on Y and creates a Markov chain with stationary distribution µ(dY|X)
for the species sampling mixture model. Here the Gibbs sampler cycles through
draws µ(dYi|Y−i,X) for i = 1, . . . , n, where Y−i is the subvector of Y formed by
removing Yi. For example, by (11) and the prediction rule (3), the conditional
draw for Yn is defined by (a similar result holds for µ(dYi|Y−i,X) for i < n):

IP{Yn ∈ · |Y−n,X} = �∗0,n−1 IP{Yn ∈ · |Xn} +
n(pn−1)∑

j=1

�∗j,n−1 δY ∗
j,n−1

(·), (22)

where �∗0,n−1 ∝ �0,n−1 × ∫
Y K(Xn|Y )H(dY ), �∗j,n−1 ∝ �j,n−1 × K(Xn|Y ∗

j,n−1),

subject to the constraint
∑n(pn−1)

j=0 �∗j,n−1 = 1. Here the Y ∗
j,n−1 are the n(pn−1)
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unique values for Y−n = {Y1, . . . , Yn−1}. Note that (22) can be thought of as
a generalized Pólya urn distribution. Now using draws from Y, it is possible
to approximate functionals of the posterior using Theorem 2. For example, to
approximate h(P ) =

∫
ψ(u)P (du), average (21) over the draws for Y.

4.6. SIS Pólya urn samplers

BCJL (2001) extend the SIS techniques discussed in Kong, Liu and Wong
(1994) and Liu (1996) to the class of weighted Blackwell-MacQueen Pólya pro-
cesses. Here we show that the method also applies to species sampling models.
Now, analogously to the GWCR draw for p, the idea is to produce a sequential
draw for Y satisfying

q(dY) =
µ(dY) f(X|Y)

Λ(Y)
=
µ(dY)

∏n
i=1K(Xi|Yi)

Λ(Y)
, (23)

where q(dY) is the generalized weighted Pólya density for the species sampling
model and Λ(Y) is its importance weight.

The density for q(dY) is derived as follows. Draw Y1 from µ(dY1|X1). Now,
given values Y1, . . . , Yr, draw Yr+1 from the distribution defined by

IP{Yr+1 ∈ · |Y1, . . . , Yr,X} = �∗0,r IP{Yr+1 ∈ · |Xr+1} +
n(pr)∑
j=1

�∗j,r δY ∗
j,r

(·),

where Y ∗
j,r are the n(pr) unique values for Y1, . . . , Yr, �∗0,r = (�0,r/λ(r))

∫
Y K(Xr+1

|Y )H(dY ), �∗j,r = (�j,r/λ(r))K(Xr+1|Y ∗
j,r), and λ(r) is the normalizing constant.

Running this procedure for r = 2, . . . , n generates a value Y with the density (23),
where Λ(Y) = λ(1) × · · · × λ(n) and λ(1) =

∫
Y K(X1|Y )H(dY ). These draws

can be used to approximate functionals of the posterior. For example, by (11)
and Theorem 2, to approximate h(P ) =

∫
ψ(u)P (du), draw B i.i.d. draws for Y

from q(dY) and take a weighted average of (21) with respect to the importance
weights Λ(Y).

5. Extensions to the GWCR Algorithm

Here we discuss various extensions to the GWCR algorithm, including a
“shuffling” step to reduce order dependence (Section 5.1), a method for deal-
ing with non-conjugacy (Section 5.2), and extensions to semiparamepric models
which include parametric values θ (Section 5.3).

5.1. Shuffling the data

For small sample sizes, the seating arrangement produced by the WCR and
GWCR process can sometimes depend heavily on the order in which the data
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X are sorted (recall that seat assignments are directly related to the order of
the data). See Lee (1999) for some empirical evidence of this problem in small
sample sizes for the WCR.

One way to resolve this problem is to randomize the order of the data. Let
σ be a permutation of the set {1, . . . , n}. Then P(dP |X) = (1/n!)

∑
σ

∑
p P(dP

|Xσ,p)π(p|Xσ), where the inner sum is applied to the data Xσ under a specific
permutation σ. Decomposing the posterior as before, we find that the GWCR
algorithm is now extended to include an extra step (say step 0) involving a
random permutation of the data, but otherwise remains the same. Note that
shuffling the data only directly effects the step where we draw p, which now
gives us a draw from an exchangeable version of the GWCR process.

5.2. Non-conjugacy

Without the benefits of conjugacy, the GWCR algorithm will require some
form of approximation to deal with integrals of the form (18) and to draw from
distributions like (12). A simple method for dealing with this problem is to re-
place H with the approximate random discrete measure HN (·) =

∑N
k=1 δZk

(·)/N ,
where Zk are i.i.d. H. Notice the simplification in the seating assignment (18),
since now for a table Cj,r,∫

Y K(Xr+1|Y )
∏

i∈Cj,r
K(Xi|Y )HN (dY )∫

Y
∏

i∈Cj,r
K(Xi|Y )HN (dY )

=

∑N
k=1K(Xr+1|Zk)

∏
i∈Cj,r

K(Xi|Zk)∑N
k=1

∏
i∈Cj,r

K(Xi|Zk)
.

This will also allow us to draw µ(dY ∗
j |Cj) in (12) approximately using

µN (dY ∗
j |Cj) =

∏
i∈Cj

K(Xi|Y ∗
j )HN (dY ∗

j )∫
Y
∏

i∈Cj
K(Xi|Y )HN (dY )

=

∑N
k=1

∏
i∈Cj

K(Xi|Zk) δZk
(dY ∗

j )∑N
k=1

∏
i∈Cj

K(Xi|Zk)
.

(24)
To illustrate, consider how this method works for PY(a, b) processes. Ap-

proximate the posterior decomposition (19) by

P(dP |X) ≈

∫ ∑
p

∫
Yn(p)

PN (dP |Y∗,p)
n(p)∏
j=1

µN (dY ∗
j |Cj)

ΛN (p)qN (p)HN (dZ)∫ ∑
p

ΛN (p)qN (p)HN (dZ)
,

(25)
where PN (dP |Y∗,p), µN (dY ∗

j |Cj), ΛN (p) and qN(p) are the usual expressions,
but withH replaced byHN conditioned on the current value of Z = (Z1, . . . , ZN ).
In particular, similar to (14),

PN (dP |Y∗,p) =
n(p)∑
j=1

G∗
j∑n(p)+1

j=1 G∗
j

δY ∗
j
(·)+

1 −
n(p)∑
j=1

G∗
j∑n(p)+1

j=1 G∗
j

PYN (·), (26)
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where the G∗
j are as in (14) and are independent of PYN (·), which is a modified

Pitman-Yor process with parameters (a, b+an(p)) and measure HN (·) (for fixed
Z). That is, PYN (·) = PY(a, b + an(p),HN ).

5.2.1. The N-GWCR algorithm

The approximation (25), coupled with (24) and (26), suggests how to imple-
ment the N -GWCR algorithm.

1. Draw N i.i.d. values Z1, . . . , ZN from H.
2. Given Z, draw p = {C1, . . . , Cn(p)} sequentially from the N -GWCR process

with density qN (p) and importance weight ΛN (p).
3. Draw (Y∗|X,p,Z) using µN (dY ∗

j |Cj) defined by (24).
4. Draw a random measure PN from (26) conditioned on (Y∗,p,Z).

Given B i.i.d. draws from the above algorithm approximate the posterior law
of g(P ) using ∑B

b=1 I{g(P (b)
N ) ∈ ·}ΛN (p(b))∑B

b=1 ΛN (p(b))
.

5.3. Models with θ

We now discuss an extension for fitting semiparametric species sampling
mixture models (1) involving a parametric value θ. If m(dθ) is the prior for θ,
it follows similar to the previous work that the posterior for such models can be
characterized by

P(dP |X) =

∫
Θ

∑
p

∫
Yn(p)

P(dP |Y∗,p)
n(p)∏
j=1

µ(dY ∗
j |Cj , θ)

 Λθ(p)q(p|θ)m(dθ)∫
Θ

∑
p

Λθ(p)q(p|θ)m(dθ)
,

µ(dY∗|X,p, θ) =
n(p)∏
j=1

µ(dY ∗
j |Cj , θ) =

n(p)∏
j=1

∏
i∈Cj

K(Xi|Y ∗
j , θ)H(dY ∗

j )∫
Y
∏

i∈Cj
K(Xi|Yj , θ)H(dY )

,

and q(p|θ), the GWCR density for a fixed value of θ with importance weight
Λθ(p). The decomposition now suggests the following GWCR method.
1. Draw θ from m(dθ).
2. Given θ, draw p = {C1, . . . , Cn(p)} sequentially from the associated GWCR

density q(p|θ) with importance weight Λθ(p).
3. Repeat the two steps B times independently, using the draws for p(b) (and

draws from Y∗ or P as needed) with associated importance weights Λθ(b)(p(b))
to estimate posterior quantities as before.
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6. Finite Normal Mixtures

To illustrate the methods we apply the GWCR and N -GWCR algorithm to
semiparametric finite normal mixtures subject to the Dirichlet process. These
are species sampling mixture models (Xi|Yi, θ)

ind∼ N(Yi, θ), (Yi|P ) i.i.d.∼ P , P ∼
DP(αH), θ ∼ m(dθ), i = 1, . . . , n, where we will take H to have a N(0, A)
distribution. Note here that the kernel K is

K(Xi|Yi, θ) =
1√
2πθ

exp
(
− 1

2θ
(Xi − Yi)2

)
.

We look at two different scenarios. We first apply the GWCR algorithm by
exploiting the conjugacy of H, then we apply the N -GWCR algorithm to the
same model, but without taking advantage of conjugacy.

6.1. The GWCR algorithm

From straightforward calculations, the GWCR seating rule assigns customer
r + 1 to a new table with probability

α

λθ(r + 1)
× 1√

2π(θ +A)
exp

(
− X2

r+1

2(θ +A)

)
,

or to a previous table Cj,r with probability

ej,r
λθ(r + 1)

×
√

θ +Aej,r
2πθ [θ +A(ej,r + 1)]

× exp
[
− 1

2θ

(
X2

r+1 −
A
(∑

i∈Cj,r
Xi +Xr+1

)2

θ +A(ej,r + 1)
+
A
(∑

i∈Cj,r
Xi

)2

θ +Aej,r

)]
.

Moreover, the unique Y ∗
j values are drawn using (Y ∗

j |X,p, θ) ind∼ N(µj, σj), where
σ−1

j = ej/θ + 1/A and µj = σj
∑

i∈Cj
Xi/θ. The GWCR algorithm is completed

by drawing from P(dP |Y∗,p), which we draw from a Dirichlet process approxi-
mation as discussed in Ishwaran and Zarepour (2002a).

6.2. The N-GWCR algorithm

The N -GWCR algorithm is run similarly, but with the assignment to a new
table replaced with its empirical approximation

α

λθ(r + 1)
× 1
N
√

2πθ

N∑
k=1

exp
(
− 1

2θ
(Xr+1 − Zk)2

)
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and the assignment to a previous table Cj,r replaced with

ej,r
λθ(r + 1)

×
∑N

k=1 exp
[
− 1

2θ

(∑
i∈Cj,r

(Xi − Zk)2 + (Xr+1 − Zk)2
)]

√
2πθ

∑N
k=1 exp

[
− 1

2θ

∑
i∈Cj,r

(Xi − Zk)2
] ,

where Zk are i.i.d. H. The unique Y ∗
j are then drawn from (24) and the random

measure P(dP |Y∗,p) is drawn similarly as above.

6.3. Galaxy data

To illustrate, we re-analyze the galaxy data in Roeder (1990) consisting of
the relative velocities in thousands of kilometers per second of n = 82 galaxies
from six well-separated conic sections of space. This data has been analyzed by
several authors using models similar to the one proposed here, including Escobar
and West (1995) who used a Pólya urn Gibbs sampler for model fitting.

Figure 1 contains the results for the GWCR algorithm, while Figure 2 is for
theN -GWCR (N = 50). In both cases, the shuffling mechanism discussed in Sec-
tion 5.1 was used and both models drew θ from a uniform distribution on [0, 10]
using the externalization method outlined in Section 5.3. We took A = 1, 000 for
the variance for H and set α = 1 for the Dirichlet process mass parameter. The
analyses presented in the figures were based on 20,000 sampled values. As can be
seen, the two analyses are virtually identical, with both indicating the presence
of anywhere from three to five modes. This suggests how the N -GWCR may
perform in situations where the GWCR cannot be used without modification.

Figure 1. The GWCR algorithm (using conjugacy) with θ drawn from a
uniform distribution on [0, 10] (analysis based on 20,000 i.i.d. sampled
values). Left-hand side is barplot of atoms and probabilities for the averaged
posterior cdf when indexed by the number of partitions (note: (a) barplots
are stacked probabilities (b) legend describes frequency of a partition size).
Right-hand side is averaged predictive density.
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Figure 2. Results of the (non-conjugate) N -GWCR algorithm (N = 50).

Acknowledgement

This work partially supported by the Acheson J. Duncan Fund for the Ad-
vancement of Research in Statistics, Award #00-1, Department of Mathematical
Sciences, Johns Hopkins University.

References

Aldous, D. J. (1985). Exchangeability and related topics. In École d’Été de Probabilités de
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