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This supplement contains proof of Theorem 1.

Proof of Theorem 1

Counsider the transformation model

H(Y*) = 0W* + ¢, (SL.1)

where H(-) is an unknown monotonically increasing function, €* is the er-
ror, independent of W*, with unspecified distribution, and 6y is a (d + 1)-
dimensional vector of regression coefficients. Accordingly, W* can be de-
composed into W = (Z*, X*), where Z* is the covariate corresponding to
the fixed regression coefficient and X* is the other d-dimensional covariate.

Hence, the model can be rewritten as

H(Y*)=2Z"+ 3, X" + €.
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We suppose the covariance decomposition satisfies that Z* := Z*+ By X*
is irrelevant of X*. Such a decomposition always exists since 6,W* is a one-
dimensional vector in a (d+1)-dimensional linear space of random variables
with inner product defined as (X,Y) = F(XY), so it has a d-dimensional
orthogonal compliment which can be defined as X*. Furthermore, Z* and
X* are supposed to be independent.
Consistency:

Define g(8) = BUI{Y; < Ya}I{8X, + Z1 < BXs + Z:}] and g,(5) =
2 2y Y < VY {BXi 4 Zi < BX; + Z;}.
Step 1. We show that ¢g(/3) has a unique maximum at g = .

In the response-based sampling, the conditional distribution of (X, Z)|Y
in the sample is the same as the conditional distribution of (X*, Z*)|Y* in

the population. Therefore, for any t; < to,

EII{Y1 < Yo} {BX1 4+ Z) < BXo + Zo}|Y1 =11, Y2 = to]
= P(BX1+ 72y < BXy + Zo]Y) =11, Yy = t3)

= P(BX]+ 727 < BX; + Z3|Y) =t1,Yy =1t9)

= P(Z] — Z; < BX; = BX{|PoX] + Z7 + €1 = H(th), foX; + Z5 + €, = H(t2))

= P(Z{ — 23 < (B~ Bo)(X5 = X))|Zi + & =1, 23 + e = o)

JPEB) > 51— SQ)fZi(Sl)fe* (t — S1)fg*(52~)f6* (ty — s9)dsidsy
[ F2-(9)fe (B = $)ds [ J7.() e (B2 = s)ds ’

(S1.2)
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where t; = H(t;),i=1,2.
The denominator is irrelevant with 5. The numerator will be proved to

have a unique maximum at S = 5. The numerator can be written as

5 J1L= santsi = s2)PUEG)] < fs1 = saD)
f7e (1) fer (b1 = 51) f 70 (82) fer (2 — S2)ds1ds2

-1 / (50 for (B — 50) fe (59) for(Fa — 52)ds1dss + TI(B)

where

HB) = —+ [ sgn(si — s2)P(EB)] < |51 — sal)
2

foe (1) fer (1 = 81) f 5. (82) for (f2 — 89)ds1ds5.

It then suffices to show that II(5) is uniquely maximized at 5 = 5. To

this end, write

H(ﬂ) = %/ g;(]sl — 82’)]02* (81)f€* (I,Tl — Sl)fZ* (32)f6* (1?2 — 82)d81d82
—%/ g5(Is1 = s20) 2. (s1) fer (1 = 51) f 70 (82) fer (2 — 52)ds1dsy
1

- 2 / G5 (151 — sal) fz(1) f(52)

[fe* (751 - Sl)fe* (52 - 82) — fer (51 - S2)f5*(£2 - 81)]d81d82,

(S1.3)

where we define g3(t) = P(|§(8)| < t) and then g5 = 1 since {(5y) = 0.
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Since g*(+) is only maximized at § = 3y by assumption, to show that [,
is the unique maximizer of g(/3), we only need to prove that the quantity
in the square brackets is positive for all ¢; < ¢, and 51 < So.

Now we show
h(fl — Sl) + h(fz — 32) > h(gl — 82) + h(gg — 81)

for all £; < fy and s < s, where h = log f..

By the fact that f. is log-concave,

8 t—s1 2
E(h(t —51) — h(t — s89)) = / —h(s)ds < 0.

2
sy ds

Therefore h(t — s1) — h(t — s2) is decreasing in ¢. As a result,
h(fl — 81) + h(fg — 82) > h(t~1 — Sg) + h(tNQ — 81).

Step 2. We show that

logn

). (S1.4)

Sup 19n(8) — 9(B)] = Op( -

For each n € N, let {B.,,  ,Bn,.} be a 1/n*net of B, which means

that

m 1

Then m = O(n*?).
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For M > 1, we have

logn

P(S%p[gn(ﬁ)—g(ﬁ)bM —)
< P( s [gn(0ns) — 9(5n)) > (M — 1)y 25T
+Pplg,(9) ~ 9] = s [5.(5) — ()] > | EABLS)

By Hoeffding’s inequality (1963) for U-statistics, the first term in the
right hand side of (§I3) can be bounded by O(n2*(M-1*/4)  Using Cheby-
shev’s inequality, the second term in the right hand side of (§813) is bounded
by O(5z).

Now we have shown that

logn

P(S%p[gn(ﬁ) —9(B) > M )

n

= O(n2=M=1/4y L O( ). (S1.6)

nlogn

Since the last equality still holds if we replace g,, and g by —g,, and —g,

it can be written as

P(sup |ga(8) — 9(8)] > My/ 251
8 n
_ O(nzd(M1)2/4>+O(nljgn)_ (S1.7)

Then it follows equality (8T4).

Step 3. We show that Bn converges to fy in probability.
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Since [y is the unique maximizer of g, and Bn is the maximizer of g,,

we have

~

0 S 9(60)_g(ﬁn)

A ~ ~

= [9(50) - gn(/BO)] - [g(ﬁn) - gn(/Bn)] - [gn(ﬁn) - gn(ﬂOH

~

< [9(Bo) = 9u(Bo)] — [9(Bn) — gu(50)]

logn logn
= 0, B0 + 0,420

logn

= Op(

) (S1.8)

n

On the other hand, by the differentiability of density functions of Z
and X, note that [y is the unique maximizer of g and ¢(3y) = 0, the Taylor

expansion can then be written as

9(B) = 9(Bo) = = (B — Bo) A(Bn = Bo) + 0p(B — o), (S1.9)

where A is the negative hessian matrix of g at 3y, which is a positive definite
matrix.

Compare the last two equations, it follows that

By — Bo = O,(+/ loi") = 0,(n"1/"). (S1.10)

The consistency is proved.

Asymptotic normality:
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We still use the notation of g and g,, as above. Furthermore, denote

en(8) = gn(B) — 9(B). (S1.11)

Standard decomposition of U-statistics gives

€n (5) — €n /80 Zb - ij (81.12)
where
bi(B) = Elai;(8) + a;i(8) — 2Ea;(6)|Z;, X;, Y], (S1.13)
dij(B) = aij(B) + aji(B) — 2Ea;(3) — bi(B) — b;(B). (S1.14)
and

ai(B) = I{Zi+ BX; > Z; + BX;} — I{Z; + B\X; > Z; + B\ X;}]

Y, > Y;}. (S1.15)
Note that Eb;(5) = 0, Taylor expansion gives

—Zb = (8- B Zb (Bo) + 0,(18 = Bol)*. (S1.16)

Using exponential inequality again, similar to the step 2 in the proof of

consistency, we have

sup 4 (B)| = -, (S1.17)

|,8—,6’0|=op(n*1/5 z<]
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So far we have shown that

gn(ﬂ)
= g(B) +e(B)

n

= 9(50) — 58— B0 A(B — o) + (8 — Go)' - S BiBo) + () + 0y(15 — i

=1
+0p(n_1)

= fu(B) + eulBo) + 0p(n7"), (S1.18)

where

fn(B)

3

= 9(60) — 58~ BoY A3 — o) + (8~ Fo' - S biBo) + 0,1 — ]’

bi(Bo)

—
M-
3 =

= 9(80) — 5(8 — B0) Au(B — o) + (5 o'~

—

1=

= (%)——{A”M Bo— A = Zb Bo) ]} (A2 — 6o — A7~ Zb Bo)]}

i1 1Zb (Bo))’ Zb (B0)) (S1.19)

where we let 0,(]8 — Bo])? = ¢u| 8 — Bo]?* with ¢, = 0,(1) and A,, = A—2¢,I.

So the maximizer of f, is

Yn :504‘14”1%26@'(50) (S1.20)
i=1
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Suppose that Bn is the maximizer of g,, then

A

= [fn(’?n) + En(ﬁo) - gn(?yn)] - [fn(Bn) + 671(60) - gn(ﬁn)] - [gn(Bn) - gnﬁ/n)]

~

S [fn(ﬁ/n> + En(ﬁo) - gn(&n)] - [fn(Bn) + 671(60) - gn<6n)]
= 0p<n71) + Op(nil)

= o,(nh). (S1.21)
On the other hand, from the expression of f,,

— %{A;/Q[ — B0 — A4, Zb B} {AY?[5, 50—14;1%;51(50)]}

(S1.22)
Compare (8I221) and (8T22), finally we have
R 1 <.
Bn = Pot Aﬁlﬁ Zl bi(Bo) + op(n~"7?)

= Bo+ Al% ;61(50) + (A Al)% . bi(50) + 0p(n~"/%)

s
I
—

— o+ A—% S bi(Bo) + 0p(nY2), (51.23)
=1

where the last equation comes from that

Agl - Al = Op(l)
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and
IR ~1/2
> (o) = Oyln )
i=1
by the definition of A,, and the central limit theorem.

Therefore,
VA = ) = A= 3 ) + (1) = N(0.3)
io1
in distribution, where
Y= A" War{b(8y)}(A7Y.

We further define B = Var{b,(5;)} and the proof is done.



