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Abstract: Although multivariate Poisson autoregressive models are popular for

fitting count time series data, statistical inferences are quite challenging. The

network Poisson autoregressive (NPAR) model reduces the inference complexity

by incorporating network information into the dependence structure, where the

response of each individual can be explained by its lagged values and the average

effect of its neighbors. However, the NPAR model makes the strong assumption that

all individuals are homogeneous and share a common autoregressive coefficient.

Here, we propose a grouped network Poisson autoregressive (GNPAR) model, in

which individuals are classified into groups, using group-specific parameters to

describe heterogeneous nodal behaviors. We present the stationarity and ergodicity

of the GNPAR model and study the asymptotic properties of the maximum

likelihood estimation. We develop an expectation-maximization algorithm to

estimate the unknown group labels, and investigate the finite-sample performance

of our estimation procedure using simulations. We analyze Chicago Police

Investigatory Stop Report data, and find distinct dependence patterns in different

neighborhoods of Chicago, which may help with future crime prevention.

Key words and phrases: EM algorithm, individual heterogeneity, maximum

likelihood estimation, multivariate Poisson autoregression, network data.

1. Introduction

Count time series data are often observed in practice. The monograph of

Weiß (2018) summarizes the development of count time series analysis, and Davis

et al. (2021) give a comprehensive methodological review. Count time series have

unique features, including being integer-valued, over-dispersed, zero-inflated, and

time-dependent, and having a nonnegative autocorrelation. Most existing works

on count time series modeling focus on univariate cases. For example, Du and

Li (1991) propose an integer-valued AR model, and Ferland, Latour and Oraichi

(2006) propose an integer-valued GARCH model, also called the Poisson autore-

gression (PAR) mdoel. Others have studied variants of the PAR, along with their

statistical inference and applications (see, e.g., Fokianos, Rahbek and Tjøstheim

(2009), Fokianos and Tjøstheim (2011, 2012), Neumann (2011), Wang et al.

(2014), Ahmad and Francq (2016), and Davis and Liu (2016)). On the other hand,
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only a few theoretical results are available for multivariate count time series (see

Latour (1997), Liu (2012), Pedeli and Karlis (2013), Andreassen (2013), Lee, Lee

and Tjøstheim (2018)), despite their important applications in many fields, such

as environmental science, sociology, finance, marketing, and medicine, among

others (Mahamunulu (1967), Aitchison and Ho (1989), Karlis and Meligkotsidou

(2005, 2007), Weiß (2018), Fokianos et al. (2020), Davis et al. (2021)).

For a multivariate PAR model, a maximum likelihood-based statistical

inference is quite challenging, because the probability mass function of a

multivariate Poisson random vector usually has a complicated functional form.

To circumvent such difficulties, Fokianos et al. (2020) present a copula method,

and develop a novel conceptual framework to handle multivariate count time

series. To reduce the complex structure of a multivariate count time series model,

following Zhu et al. (2017), Armillotta and Fokianos (2021) propose a network

PAR (NPAR) model that incorporates the network structure into a multiple or

high-dimensional PAR. This technique is widely used to reduce model complexity;

see, for example, Zhu et al. (2019a,b, 2020), Huang et al. (2020), Zhou et al.

(2020), and Zhu, Cai and Ma (2021).

The NPAR model assumes that all individuals share a common dependence

structure, which is often too stringent in practice. For example, if we consider

district-level crime cases in Chicago, we find that crimes occur frequently in

some districts, whereas others are relatively safer. Therefore, it is unreasonable

to assume that the data-generating mechanism for all districts is the same.

Furthermore, the intensity process in the NPAR model regresses only on the

lagged observations.

In this paper, we propose a grouped NPAR (GNPAR) model in which

individuals are classified into groups, using group-specific parameters to describe

heterogeneous nodal behaviors. Such an extension is of both theoretical and

methodological importance, because it reduces the computational complexity of

general multivariate PAR models, while providing a more realistic and flexible

setup and interpretation than those of NPAR models. Moreover, our model

involves lags of the intensity process, in addition to the lagged observations and

the average effect of its neighbors, which allows greater flexibility.

The remainder of the paper is organized as follows. Section 2 proposes a

GNPAR model and gives its stationarity and ergodicity conditions. Section 3

studies the maximum likelihood estimation (MLE) of the GNPAR model, with its

asymptotics, when prior information about the group label is known, and develops

an expectation-maximization (EM) algorithm to estimate the group ratio and

labels when they are unknown. Section 4 reports on our numerical studies

conducted to assess the finite-sample performance of our estimation procedure.

We study Chicago district-level crime data in Section 5.

Throughout the paper, we denote ∥x∥d = (
∑p

i=1 |xi|d)1/d as the ℓd-norm

of a p-dimensional vector x. For a q × p matrix A = (aij), the generalized
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matrix norm is defined by |||A|||d = max∥x∥d=1 ∥Ax∥d. In particular, |||A|||1 =

max1≤j≤p

∑q
i=1 |aij| and |||A|||2 =

√
ρ (A′A), where ρ(·) denotes the spectral

radius, and ′ denotes the transpose of a matrix or vector. |||A|||2 is in fact

the operator norm of A. The Frobenius norm of A is denoted by |||A|||F =√∑
i,j |aij|2.

2. GNPAR Model

2.1. Previous models

Following Lee, Lee and Tjøstheim (2018) and Fokianos et al. (2020), we

assume that {Yt = (Y1t, Y2t, . . . , YNt)
′, t ≥ 1} is an N -dimensional count time

series, and {λt = (λ1t, λ2t, . . . , λNt)
′, t ≥ 1} denotes the corresponding N -

dimensional intensity process. Here, N is fixed and finite, and FY,λ
t is the

σ-field generated by {Yt, . . . ,Y0,λ0}, with λ0 being an initial value of {λt}.
The multivariate PAR model is defined as follows: for each i = 1, 2, . . . , N and

t ≥ 1,

Yi,t | FY,λ
t−1 ∼ Poisson (λi,t) , λt = d+ Aλt−1 + BYt−1, (2.1)

where d is an N -dimensional constant vector and A,B are N ×N matrices. The

elements of d,A, and B are assumed to be positive to ensure λi,t > 0, for all i

and t.

In fact, for general A and B, a statistical inference of model (2.1) is quite

challenging when N is large. To reduce the complexity of model (2.1), following

Zhu et al. (2017) and Zhou et al. (2020), we introduce a network structure on

the observed counts into model (2.1). Assume a known adjacency matrix A =

(aij) ∈ RN×N is defined as aij = 1 if there is a directed edge from object i to

object j, and aij = 0 otherwise. Let aii = 0, for 1 ≤ i ≤ N . An NPAR model

assumes that object i is affected only by the objects that it follows. It has the

following form: for each i = 1, 2, . . . , N and t ≥ 1,

Yi,t | FY,λ
t−1 ∼ Poisson (λi,t) , (2.2)

λi,t = ω0 + α0Yi,t−1 + ρ0d
−1
i

∑
j ̸=i

aijYj,t−1 + β0λi,t−1,

where
∑

j ̸=i means
∑N

j=1,j ̸=i, and di =
∑N

j=1 aij is the out-degree of i, which is

the total number of objects to which i points. If there is no edge starting from

object i, that is, di = 0, we define that d−1
i

∑
j ̸=i aijYj,t−1 = 0. Note that α0

measures the dependence on the previous count, ρ0 measures the dependence

on the network structure, that is, the average effect that the neighbors have on

each object, and β0 measures the dependence on the previous intensity. The

network structure reduces the inference complexity and makes the model more
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interpretable. Model (2.2) differs from the NPAR model proposed by Armillotta

and Fokianos (2021), because it includes the lags of the intensity process λt.

In model (2.2), however, all individuals are treated homogeneously, because

they share the same regression coefficients. This assumption is unrealistic in

practice. For instance, the coefficient ρ0 implies that all individuals are affected

by their neighbors to the same extent, whereas in social networks, celebrities are

less likely to be influenced by others than normal people are.

2.2. GNPAR model

To relax the homogeneous assumption, following Zhu and Pan (2020), we

assume that all individuals can be classified into K groups, and each group is

characterized by a specific set of parameters θk = (ωk, αk, ρk, βk)
′ ∈ R4, for 1 ≤

k ≤ K, with each parameter being positive. Define a latent variable zik ∈ {0, 1}
for each object i, where zik = 1 if object i is from the kth group, and zik = 0

otherwise. Assume {(zi1, . . . , ziK)′, 1 ≤ i ≤ N} is a sequence of independent and

identically distributed (i.i.d.) multinomial random vectors, with number of events

n = 1 and probability γ = (γ1, . . . , γK)
′. Here, γk represents the group proportion

satisfying γk ≥ 0 and
∑K

k=1 γk = 1. A GNPAR model can be constructed as

Yi,t | FY,λ
t−1 ∼ Poisson (λi,t) ,

λi,t =
K∑

k=1

zik

(
ωk + αkYi,t−1 + ρkd

−1
i

∑
j ̸=i

aijYj,t−1 + βkλi,t−1

)
,

(2.3)

for each i = 1, . . . , N and t ≥ 1. Following the NPAR model, the parameters

ωk, αk, ρk, and βk represent the group-specific baseline effect, regression coefficient

on past observations, network effect, and regression coefficient on past intensity

process, respectively. Note that we assume the adjacency matrixA is asymmetric,

which includes the special case of symmetric networks.

2.3. Stationarity and ergodicity

In this subsection, we give a stationarity and ergodicity solution to model

(2.3). Here, the dimension N is fixed throughout. Let Yt = (Y1,t, . . . , YN,t)
′
,

λt = (λ1,t, . . . , λN,t)
′
, D = diag (d1, . . . , dN), and Zk = diag(zik : 1 ≤ i ≤ N).

Furthermore, define B0 =
∑K

k=1 ωkZk1N , B1 =
∑K

k=1 αkZk, B2 =
∑K

k=1 ρkZk, and

B3 =
∑K

k=1 βkZk, where 1N = (1, . . . , 1)′. Following Fokianos et al. (2020), model

(2.3) can be rewritten as

Yt = Nt(λt), λt = B0 + (B1 + B2D
−1A)Yt−1 + B3λt−1, (2.4)

where {Nt(·)} is a sequence of independent N -dimensional copula-Poisson

processes. See Subsection 4.1 for more details on generating Nt(·).



GROUPED NETWORK POISSON AR MODEL 1607

Because Yt is integer-valued, the ergodicity for model (2.4) is not sufficient

to obtain the asymptotics of the parameter estimation, as discussed in Fokianos,

Rahbek and Tjøstheim (2009), Fokianos and Tjøstheim (2011), and Tjøstheim

(2012). Thus, ergodicity should be strengthened to geometric ergodicity.

However, it is very difficult to establish geometric ergodicity directly, particularly

the ϕ-irreducibility of (2.4). To obtain the ϕ-irreducibility, a perturbation method

is helpful, that is, adding a continuous component into the innovation; see

Chapter 6 of Meyn and Tweedie (1993). Thus, following Fokianos, Rahbek and

Tjøstheim (2009), we define the perturbed model as

Ym
t = Nt (λ

m
t ) , λm

t = B0 + (B1 + B2D
−1A)Ym

t−1 + B3λ
m
t−1 + ϵmt , (2.5)

with ϵmt = cmVt, where the sequence cm is strictly positive and tends to zero as

m → ∞, and Vt is an N -dimensional vector consisting of independent positive

random variables, each with a bounded support of the form [0,M ], for some

M > 0. From Lemma 1 in the Supplementary Material, the difference between

the unperturbed model (2.4) and the perturbed model (2.5) can be arbitrarily

small, in some sense.

The following proposition gives a sufficient condition for the geometric

ergodicity of model (2.5), together with a stationary and ergodic condition for

model (2.4). The proof of Proposition 1 is postponed to the Supplementary

Material.

Proposition 1.

(i) The process {λm
t , t > 0} is a geometrically ergodic Markov chain with finite

rth moments, for any r > 0, if |||max1≤k≤K(αk + βk)IN + max1≤k≤K ρk
D−1A|||2 < 1. Moreover, the process {(Ym

t ,λm
t , ϵt), t > 0} is a VY,λ,ϵ-

geometrically ergodic Markov chain with VY,λ,ϵ = 1+ ||Y||r2 + ||λ||r2 + ||ϵ||r2,
for r > 0.

(ii) If |||
(
max1≤k≤K αk

)
IN +

(
max1≤k≤K ρk

)
D−1A|||1 +max1≤k≤K βk < 1, then

there exists a unique stationary and ergodic solution {(Yt,λt)} to model

(2.4) that is nonanticipative and satisfies E||Yt||rr < ∞ and E||λt||rr < ∞,

for any r > 0.

Remark 1. In Proposition 1, (i) is developed using the perturbation technique,

and (ii) is based on the notion of weak dependence. The latter does not require

a perturbed model, but the obtained sufficient conditions are much stronger. In

what follows, we prefer the sufficient stationarity and ergodicity condition (i) for

the perturbed process, and use the closeness between the perturbed model and the

unperturbed one to obtain the asymptotic normality of the MLE of model (2.4).

Note that the geometric ergodicity of the perturbed process makes it possible to

employ classical statistical inference theory, similarly to GARCH models.
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Remark 2. Proposition 1 is constructed using a fixed N , which does not

necessarily hold if N is diverging, because no stationarity and ergodicity

conditions are available when min{N,T} → ∞. In fact, how to define the

stationarity of a time series with a diverging dimension in general remains an

open problem. Moreover, the ergodicity conditions in Proposition 1 differ from

those of the NPAR model proposed by Armillotta and Fokianos (2021), because

the latter does not contain lags of the intensity process λt.

3. Parameter Estimation

This section studies the MLE of the GNPAR model and establishes its

asymptotics. Because there exists a latent variable zik as a group label, the

parameter estimation and group classification need to be conducted simultane-

ously. We first study the MLE of the model parameter when the group labels

are known, and then develop an EM algorithm for estimating the group labels

when they are unknown. The former is useful if we have prior information for

group classification, and the latter is more practical when there is little prior

information available.

3.1. MLE when group labels are known

Suppose zik is known, and define Gk = {i ≤ N : zik = 1} and Nk = |Gk|, for
1 ≤ k ≤ K, denoting the group member and group size, respectively. Assume that

the observations {Yt, t = 1, . . . , T} are from model (2.4), with true parameter

θ0 = (ωk0, αk0, ρk0, βk0 : 1 ≤ k ≤ K)′ ∈ R4K
+ , where R+ = (0,∞). Let Y

(k)
t =

(Yi,t : i ∈ Gk)
′ ∈ RNk , for t = 1, . . . , T , be in the kth group. Define λ

(k)
t =

(λi,t : i ∈ Gk)
′ ∈ RNk , D(k) = diag (di : i ∈ Gk) ∈ RNk×Nk , andA(k) = (aij : i ∈ Gk,

1 ≤ j ≤ N) ∈ RNk×N . Then, the GNPAR model (2.4) can be rewritten as

Y
(k)
t = Nt

(
λ

(k)
t

)
, λ

(k)
t = ωk0+αk0Y

(k)
t−1+ρk0(D

(k))−1A(k)Yt−1+βk0λ
(k)
t−1, (3.1)

for 1 ≤ k ≤ K. Under this setting, the true parameter θk0 = (ωk0, αk0, ρk0, βk0)
′

can be estimated separately for each group. Without loss of generality, we

consider the MLE for the kth group hereafter.

Let θk = (ωk, αk, ρk, βk)
′ ∈ R4

+ be the parameter. The conditional likelihood

function, given λ0, is given by

L(θk) =
T∏

t=1

∏
i∈Gk

{
λ
Yi,t

i,t (θk) exp (−λi,t(θk))

Yi,t!

}
, (3.2)

and the log-likelihood function (ignoring the constant) is

l(θk) =
1

T

T∑
t=1

lt(θk), lt(θk) =
1

Nk

∑
i∈Gk

(Yi,t log λi,t(θk)− λi,t(θk)) . (3.3)
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The MLE of θk0 is defined as

θ̂k = (ω̂k, α̂k, ρ̂k, β̂k)
′ = argmax

θk∈Θk

l(θk). (3.4)

Let Θ := Θ1 × · · · ×ΘK ⊂ R4K
+ be the parameter space and θ ∈ Θ. Before

we study the asymptotics of θ̂k, we first give two assumptions.

Assumption 1. The parameter space Θ is a compact set of R4K
+ , and the true

parameter θ0 is an interior point of Θ.

Assumption 2. θ0 satisfies |||max1≤k≤K(αk0 +βk0)IN +max1≤k≤K ρk0D
−1A|||2

< 1.

The following theorem states the strong consistency and asymptotic normal-

ity of the MLE θ̂k.

Theorem 1. If Assumptions 1–2 hold, then there exists an open neighborhood,

say, O (θk0) = {θk : ∥θk − θk0∥2 < δ}, of θk0 such that, with probability tending

to one as T → ∞, the equation ST (θk) = 0 has a unique solution, denoted

by θ̂k. Furthermore, θ̂k is strongly consistent, that is, θ̂k → θk0 a.s., and is

asymptotically normal, that is,
√
NkT

(
θ̂k−θk0

) d→ N (0,H−1GH−1), as T → ∞,

where “
d→” stands for convergence in distribution. The matrices G := G(θk0)

and H := H(θk0) are defined by

G(θk0) =
1

Nk

∑
i∈Gk

∑
j∈Gk

E

{
1

λi,t(θk0)λj,t(θk0)
Σ

(k)
ij,t(θk0)

∂λi,t(θk0)

∂θk

∂λj,t(θk0)

∂θ′
k

}
and

H(θk0) =
1

Nk

∑
i∈Gk

E

{
1

λi,t(θk0)

∂λi,t(θk0)

∂θk

∂λi,t(θk0)

∂θ′
k

}
, and

∂λ
(k)
t

′
(θk0)

∂θk

=
(
1Nk

,Y
(k)
t−1, (D

(k))−1A(k)Yt−1,λ
(k)
t−1

)′
+ βk0

∂λ
(k)
t−1

′
(θk0)

∂θk

,

where Σ
(k)
t (θk0) is the covariance matrix of Y

(k)
t , Σ

(k)
ij,t(·) is the (i, j)th entry

of Σ
(k)
t (·), and the expectation is taken with respect to the invariant stationary

distribution of {Y(k)
t }.

The proof of Theorem 1 is postponed to the Supplementary Material. Note

that when the components of the process
{
Y

(k)
t

}
are uncorrelated, we have G =

H, and thus the asymptotic covariance matrix reduces to the standard one for the

ordinary MLE. In practice, the above quantities can all be consistently estimated

using their respective sample counterparts, for example,

Ĥ =
1

NkT

∑
i∈Gk

T∑
t=1

{
1

λi,t(θ̂k)

∂λi,t(θ̂k)

∂θk

∂λi,t(θ̂k)

∂θ′
k

}
.
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Remark 3. From Theorem 1, the convergence rate depends on both Nk and

T , although Nk is fixed. The network structure characterized by A and the

number of groups K are fixed in our model setting. There are no additional

assumptions on the network structure. Because the parameters θk from different

groups are uncorrelated in the asymptotic covariance matrix, the MLE of θk0

for each group can be conducted separately. Thus, the fixed group number

K does not affect the convergence rate in each group’s estimation, whereas a

larger value may consume more computational time, because more unknown

parameters are involved. Furthermore, if Nk is diverging, Theorem 1 may break.

In this case, we need to impose some connectivity and uniformity assumptions on

the network structure and some regularity assumptions on the structure of the

dependence between the errors; see, for example, Zhu et al. (2017) and Armillotta

and Fokianos (2021). This is left to future research.

3.2. Estimation with unknown group labels

When the group labels are unknown, the estimation includes the latent

variables. A common method for dealing with such mixture models is the EM

algorithm. Recall that zik ∈ {0, 1} indicates whether object i belongs to the kth

group. The full likelihood function is given by

L(θ) =
N∏
i=1

K∏
k=1

{
γk

T∏
t=1

λ
Yi,t

i,t (θk) exp (−λi,t(θk))

Yi,t!

}zik

. (3.5)

The EM algorithm consists of two steps: an expectation step, and a

maximization step. First, we set initial values for the parameters θ̂(0) and γ̂(0),

and follow the procedure described below. Specifically, in the mth (m ≥ 1)

iteration, the estimation procedure is as follows:

• E-STEP. Estimate zik using its posterior mean z
(m)
ik . Here,

z
(m)
ik = E

(
zik
∣∣θ̂(m−1)

)
=

γ̂
(m−1)
k

∏T
t=1 ∆̂

(m−1)
it,k∑K

j=1 γ̂
(m−1)
j

∏T
t=1 ∆̂

(m−1)
it,j

, (3.6)

where ∆̂
(m−1)
it,k = λ

Yi,t

i,t

(
θ̂
(m−1)
k

)
exp

(
− λi,t

(
θ̂
(m−1)
k

))
(omitting the constant

term), and θ̂
(m−1)
k is an estimate in the (m− 1)th iteration.

• M-STEP. Given an estimate z
(m)
ik , we maximize the following Q-function

with respect to θk and γk (ignoring the constant term):

Q
(
θ
∣∣θ̂(m−1)

)
= E

{
logL(θ | Y, z)

∣∣Y, θ̂(m−1)
}

= E

{
N∑
i=1

K∑
k=1

zik

(
log γk +

T∑
t=1

(Yi,t log λi,t(θk)− λi,t(θk))

)∣∣∣Y, θ̂(m−1)

}
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=
N∑
i=1

K∑
k=1

z
(m)
ik

(
log γk +

T∑
t=1

(Yi,t log λi,t(θk)− λi,t(θk))

)
.

Thus, we have

θ̂
(m)
k = argmax

θk∈Θk

{
N∑
i=1

z
(m)
ik

T∑
t=1

(Yi,t log λi,t(θk)− λi,t(θk))

}
,

γ̂
(m)
k =

1

N

N∑
i=1

z
(m)
ik .

(3.7)

Repeat steps (3.6)–(3.7) until the EM algorithm converges, yielding the EM

estimates θ̂k and γ̂k, for 1 ≤ k ≤ K. Note that the EM estimator θ̂k given

in (3.7) can be viewed as a weighted MLE estimator in (3.4), with the latent

group variables zik as the weights.

Remark 4. In practice, the computation of the E-Step (3.6) may be unstable

and sensitive to initial values, especially when the sample size T is large, which

leads to unsatisfactory performance of the estimator γ̂. To address this problem,

we adopt the two-step (TS) estimation method introduced by Zhu and Pan (2020)

to set the initial value. Specifically, we first estimate the coefficient parameter

θ at the nodal level and obtain N sets of MLE θ̂k, for 1 ≤ k ≤ N . Next, we

apply some cluster algorithm (e.g., k-means clustering) to partition these N sets

of estimates into K groups. Let Ĝk be the corresponding members in group k,

and N̂k := |Ĝk| be the cardinality. Then, the initial value of the group proportion

γk can be estimated as γ̂
(0)
k = N̂k/N , for all 1 ≤ k ≤ K. Finally, given the group

information Ĝ, we estimate θ using the MLE (3.4), and set the estimate as the

initial value of θ, that is, θ̂(0).

Remark 5. How to select a reasonable number of groups K is a long-standing

problem. Here, we recommend two procedures to determine K.

The first is from the perspective of the model setting. Because nodes in the

same group are characterized by the same set of parameters θk, we can adopt

the TS estimation method introduced in Remark 4 and classify the estimated

parameters using classical cluster algorithms. Specifically, we first estimate the

coefficient parameter θ at the nodal level and obtain N sets of ML estimates θ̂k,

for 1 ≤ k ≤ N . Then, we apply k-means clustering to partition these N sets

of estimates into K groups, and select an optimal K based on the elbow plot,

silhouette coefficient, or gap statistic.

The second procedure is from the perspective of model fitting. As discussed

in Section 4.3, we can try model fitting with different numbers of groups, say

K = 1, . . . , 5, then compare their out-of-sample predicted RMSEs in (4.2) among

candidate models, and choose a reasonable K from the RMSEs. The in-sample

fitted RMSEs in (4.1) can also be used as an auxiliary measure to select K.
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Erdös-Rényi model In-degree distribution
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Figure 1. The network visualization and histogram of the degree for the Erdös–Rényi
model, with Nv = 50 and p = 0.06.

4. Simulation Studies

In this section, we investigate the finite-sample performance of the proposed

model and estimation procedure. We first explore the performance of the MLE of

θ when the group labels are unknown. Then, we evaluate the model estimation

and prediction accuracy when the number of groups K is misspecified. The

performance of the MLE of θ when the group labels are known is reported in the

Supplementary Material S2.1.

4.1. Simulated data

We first generate the adjacency matrix A using two mechanisms: the Erdös–

Rényi model, and the stochastic blockmodel. These mechanisms are chosen to

illustrate the performance of our model under different network structures A, and

are independent of the membership-generating mechanism. Note that directed

graphs are considered here, which include undirected graphs.

Case 1: Erdös–Rényi model. The Erdös–Rényi model (Erdös and Rényi

(1960)) is the most thoroughly studied network model in the literature. It

assumes that given a number of vertices Nv, all edges are independent with

a given probability p ∈ (0, 1). The Erdös–Rényi model has the property that

for large Nv, the degree distribution of the graph is approximately Poisson

distributed with mean p(Nv − 1). Here, we set p = 3/Nv. Loops are not

allowed. A visualization of the network structure and the histogram of the

degree distributions of one realization are shown in Figure 1, with Nv = 50.

Case 2: Stochastic blockmodel. The stochastic blockmodel (Holland, Laskey

and Leinhardt (1983)) is another popular network topology. It assumes that

the nodes in the same block are more likely to be connected to each other
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Figure 2. The network visualization and histogram of the degree for the stochastic
blockmodel, with Nv = 50 vertices and Kv = 5 blocks.

Table 1. True parameters in model (2.3) for each group, with K = 3.

ω α ρ β γ

Group 1 0.2 0.1 0.3 0.2 0.5

Group 2 0.5 0.2 0.2 0.3 0.3

Group 3 1 0.3 0.1 0.4 0.2

than they are to those from different blocks. Here, we set Kv = {3, 5, 10} as

the total number of blocks, and Nv = {20, 50, 100} as the total number of

nodes, with each block having Nv/Kv nodes. We assume there is a directed

edge to every pair of vertices with probability 3Kv/Nv if they belong to the

same community, and 0.3/Nv for those in different communities. A network

visualization and histogram of the degree with Nv = 50 and Kv = 5 are

shown in Figure 2.

We generate the adjacency matrix A once, after which it is fixed throughout

the remaining simulation studies. We set the number of groups to K = 3.

To characterize different nodal behaviors, we set different parameters θk =

(ωk, αk, ρk, βk)
′ for each group, as listed in Table 1. Group 1 has relatively low

regression coefficients on past observations and the past intensity process (i.e., α

and β), but a relatively high network effect (i.e., ρ), implying that the behavior

of most objects is affected by the objects they follow. In contrast, Group 3 has

a lower ρ and a higher ω, α, and β, representing influential nodes that are more

likely to be self-driven and rely less on others. They account for 20% of the

objects. Group 2 has medium coefficients and a medium group size. Note that

the parameters satisfy Assumptions 1–2. We randomly assign each node to the

K groups based on the group proportion γk.

Given an initial value λ0 = 4, the observed time series Y0 are generated
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as an N -dimensional count time series with intensity λ0, and {Yt,λt; t ≥ 1}
are simulated consecutively, conditioned on the previous information, using the

GNPAR model (2.3). The first 50 samples are discarded to eliminate the effect of

initial values. As mentioned before, to establish a well-defined joint distribution of

multivariate count data with a marginal Poisson distribution, we use the copula-

based data-generating process introduced in Fokianos et al. (2020). This process

has the advantage that the copula is defined uniquely for continuous multivariate

random variables, and it imposes arbitrary dependence among the marginal

Poisson components. Denote {Nt} as a sequence of independent N -dimensional

copula-Poisson processes. The data-generating process is given below. Suppose

that λ0 = (λ1,0, . . . , λp,0)
′
is an initial value.

(1) Let Ul = (U1,l, . . . , UN,l)
′, for l = 1, . . . , S, be a sample from an N -

dimensional copula C (u1, . . . , uN), where Ui,l, for l = 1, . . . , S, follows the

uniform distribution U(0, 1), for i = 1, . . . , N .

(2) Consider the transformation Xi,l = −(logUi,l)/λi,0, for i = 1, . . . , N . Then,

Xi,l, for l = 1, . . . , S, follows an exponential distribution with parameter λi,0,

for i = 1, . . . , N .

(3) Define Yi,0 = max
{
0 ≤ s ≤ S :

∑s
l=1 Xi,l ≤ 1

}
, for i = 1, . . . , N , by taking

S large enough. Then, Y0 = (Y1,0, . . . , YN,0)
′
is a set of marginal Poisson

processes with parameter λ0.

(4) Use model (2.3) to obtain λ1, return to step (1) to obtain Y1, and so on.

In practice, the sample size S should be large, say S = 1000. The copula C(·)
can be chosen as the Gaussian or the Clayton copula, and the unknown parameter

of the copula, say ϕ, needs to be determined based on the contemporaneous

correlation among the random variables. A parametric bootstrap-based algorithm

can be used to identify the copula structure and unknown parameter; see S-

7 in Fokianos et al. (2020). In this section, we employ the Gaussian copula

with parameter ϕ = 0.5, allowing for arbitrary dependence among the marginal

Poisson components.

4.2. Simulation results when group labels are unknown

To assess the finite-sample performance of the MLE when the group labels are

unknown, we apply the EM algorithm to estimate θ0 and γ0 simultaneously. The

initial value is set using the TS estimation method described in Remark 4. Two

types of network structures are considered, each with combinations of network

size (i.e., N = 20, 50, 100) and sample size (i.e., T = 100, 200, 400). Each case

is randomly simulated with R = 1000 replicates. Denote the estimates obtained

in the rth simulation as θ̂(r) = (ω̂(r), α̂(r), ρ̂(r), β̂(r))′ and γ̂(r), where 1 ≤ r ≤ R.

Moreover, the group label for each node is estimated as ẑ
(r)
i = argmaxk{ẑ(r)ik }.



GROUPED NETWORK POISSON AR MODEL 1615

Table 2. Simulation results for the Erdös–Rényi model. The RMSEs (×102) are reported
with the misclassification rate (%) and the network density (%).

N T ω α ρ β γ MCR Network Density

20

100 39.09 7.24 9.70 18.19 5.28 7.39

13.16%200 23.93 5.14 7.00 11.33 3.90 3.37

400 16.98 4.00 5.73 8.12 3.33 2.95

50

100 27.44 4.72 6.51 14.99 2.85 2.49

7.10%200 19.59 3.37 4.72 8.87 2.51 0.96

400 14.53 2.63 3.21 6.25 2.72 1.07

100

100 21.86 3.96 4.53 12.66 2.45 1.45

3.10%200 14.84 2.60 2.90 7.56 1.80 0.37

400 9.13 1.81 2.05 5.20 0.96 0.19

The simulation results are summarized in Tables 2–3 for the Erdös–Rényi model

and stochastic blockmodel, respectively.

First, the RMSE is calculated for each estimator. Here, we report the

average RMSE taken over all groups. For example, for the network effect

coefficient ρ, RMSEρ = {(KR)−1
∑K

k=1

∑R
r=1(ρ̂

(r)
k − ρk)

2}1/2. For the group

ratio γ, RMSEγ = {(KR)−1
∑K

k=1

∑R
r=1(γ̂

(r)
k − γk)

2}1/2. Next, we employ the

misclassification rate (MCR) to evaluate the accuracy of the estimated group

label. Specifically, MCR = (NR)−1
∑R

r=1

∑N
i=1 I(ẑ

(r)
i ̸= zi), where zi is the true

group label of object i. The last column calculates the network density, which is

defined as {N(N − 1)}−1
∑

i,j aij.

Tables 2–3 show that the RMSEs are all very small for the estimators α̂, ρ̂, β̂,

and γ̂. For the baseline effect estimator ω̂k, the RMSEs are relatively large. As

the network dimension N and sample size T increase, the RMSEs of θ̂ and γ̂

decrease toward zero, which implies more accurate estimates and smaller standard

deviations. Moreover, the misclassification rates of the group labels are quite

small, and decrease rapidly as the network size and sample size increase. These

facts indicate the good performance of the MLE and the effectiveness of the EM

algorithm.

4.3. Model performance when the number of groups K is misspecified

Thus far, we have set the group number as K = 3. However, in reality,

the true number of groups is unknown and could be specified incorrectly. In this

subsection, we study the effects of such a misspecification on the model estimation

and prediction accuracy.

The data are generated under the stochastic blockmodel, and the true number

of groups is K = 3, with the same parameters as those in Table 1. We

choose K = 1, 2, 4, 5 as the misspecified number of groups. The network size

is N = 20, 50, 100, and the sample size is T = 100, 200, 400, each with R = 1000
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Table 3. Simulation results for the stochastic blockmodel. The RMSEs (×102) for each
estimator are reported with the misclassification rate (%) and the network density (%).

N T ω α ρ β γ MCR Network Density

20

100 43.03 7.00 7.22 16.89 5.42 8.98

13.16%200 28.10 4.60 4.76 10.16 4.27 3.03

400 15.32 3.39 3.61 6.84 2.87 2.02

50

100 26.56 5.12 6.69 15.12 3.46 3.30

6.24%200 15.80 3.11 4.39 8.36 2.29 0.60

400 11.70 2.49 3.22 6.15 2.20 0.73

100

100 22.86 4.03 4.38 12.55 2.20 1.31

2.92%200 15.63 2.74 2.78 7.59 2.39 0.62

400 10.58 1.91 2.03 5.40 1.58 0.25

replicates. The total period of the generated data is T + 20, where the first T

periods are used for the parameter estimation, and the remaining 20 periods are

used for the prediction.

For each selected number of groups K, denote Ŷt as the fitting response

for t = 1, . . . , T , and the predicted value for t = T + 1, . . . , T + 20. Because

the parameter estimation error cannot be defined naturally when the number of

groups is incorrect, we employ the estimation error of the response instead to

compare the performance of the model with different K. The in-sample RMSE

for the fitted value is defined as

RMSEesti =

{
(NT )−1

T∑
t=1

||Ŷt − E(Yt|Ft−1,Z)||2
}1/2

, (4.1)

where E(Yt|Ft−1,Z) is the conditional expectation of the response Yt based on

the historical and group information, which is equal to λt in our model. The

out-of-sample predictive RMSE is defined as

RMSEpred =

{
(20N)−1

T+20∑
t=T+1

||Ŷt −Yt||2
}1/2

. (4.2)

The mean values of these statistics are summarized in Table 4. We can see

that both the estimation errors and the prediction errors shrink sharply from

K ≤ 2 to the true value K = 3 in all scenarios, and decrease smoothly as K

increases. In particular, the prediction errors remain steady forK ≥ 3. Therefore,

in practice, we could try model fitting with different numbers of groups, say

K = 1, . . . , 5, compare the prediction errors among the candidate models, and

then select a reasonable number of groups K. This confirms the effectiveness of

the second K-selection method in Remark 5. We verify the performance of the

first method using simulations; see the Supplementary Material S2.2.
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Table 4. Simulation results for different numbers of groups K in stochastic blockmodels
with 500 replicates. The RMSEesti(×102) and the RMSEpred are reported.

N T
Estimation Prediction

K=1 K=2 K=3 K=4 K=5 K=1 K=2 K=3 K=4 K=5

20

100 50.68 31.30 19.81 20.04 20.97 1.50 1.45 1.43 1.43 1.44

200 49.94 29.08 13.49 14.18 14.97 1.49 1.44 1.42 1.42 1.42

400 49.54 28.02 10.56 10.69 11.34 1.50 1.45 1.42 1.42 1.42

50

100 45.19 27.87 14.33 14.44 15.21 1.38 1.34 1.32 1.32 1.32

200 44.51 26.04 9.56 10.00 10.60 1.39 1.34 1.32 1.32 1.32

400 44.22 25.39 6.68 6.80 7.21 1.39 1.34 1.32 1.32 1.32

100

100 46.55 26.78 12.79 13.15 13.70 1.42 1.37 1.35 1.35 1.35

200 45.90 26.68 8.52 8.96 9.41 1.40 1.36 1.34 1.34 1.34

400 45.59 25.52 5.94 6.21 6.52 1.42 1.37 1.35 1.35 1.35

5. Case study: Chicago Police Department Investigatory Stop Report

(ISR) data

5.1. Data description

Here, we apply the proposed methodology to crime data from Chicago.

Chicago is one of the most racially and socio-economically segregated cities in

America, and its crime rate remains high, even by worldwide standards. We use

data from the Chicago Police Department Investigatory Stop Report (ISR). A

police officer can perform an investigatory stop if there are specific and articulable

facts leading to a suspicion of criminal activity. Thus, the number of investigatory

stops in which any enforcement action was taken can be viewed as a measure of

the crime index in an area. Here, we study the dynamic and spatial patterns of

investigatory stops and how the crime numbers from different districts interact

with each other, which will be helpful in crime prevention and policy making.

We consider the number of daily investigatory stops that involve an

enforcement action (arrest, personal service citation, etc.) in each district in

2019 (T = 365) as the response Yit. The data set is taken from the public

data of the Chicago Police Department, named “ISR Data 2019” (https://

home.chicagopolice.org/statistics-data/isr-data/). The Chicago Police

Department divides the city into N = 22 districts, as shown in Figure 3 (a).

The figure shows the criminal homicide distribution by district in 2019, where

darker colors represent districts with relatively more criminal homicide cases. We

see that the crime rate is high in the middle and southern part of Chicago, and

relatively low in the northeast areas. Figure 3 (b) shows the construction of

the symmetric adjacency matrix, which is based on the spatial distribution of the

districts, that is, there is an edge between district i and j if the two districts share

a border. The network density is 19.9%. Larger nodes indicate more investigatory

stops in these districts, and smaller nodes denote fewer stops. We can see that the

distributions of the investigatory stops and criminal homicide are very similar.

https://home.chicagopolice.org/statistics-data/isr-data/
https://home.chicagopolice.org/statistics-data/isr-data/
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Figure 3. (a) District division in Chicago (2019 Criminal Homicide by District). Note
that Nos.13, 21, and 23 are unused. The figure is from the 2019 annual report of the
Chicago Police Department (https://home.chicagopolice.org/statistics-data/
statistical-reports/annual-reports/). (b) The constructed network structure,
where the node’s color and size denote the level of 2019 yearly investigatory stops
(involving enforcement action). Bigger nodes with deeper colors indicate that a greater
number of investigatory stops occurred in this district.

The time series of the number of daily investigatory stops for Districts 1 and

6 are plotted in Figure 4, for illustration. There exists a dependency within the

individual series. The average variance-to-mean ratio for each district is 1.85,

and the overall variance-to-mean ratio is 3.16, which imply over-dispersion in the

data.

5.2. Model estimation and interpretation

To determine the number of groups, we follow the two approaches described

in Remark 5. First, we fit the data using different numbers of groups, say

K = 1, . . . , 5, and calculate the RMSEs. The first 11 months are employed

for model training, and the last month is used for prediction evaluation. The

in-sample RMSEs, defined as RMSEesti = {(N(T −31))−1
∑T−31

t=1 ||Ŷt−Yt||2}1/2,
are 2.81, 2.78, 2.77, 2.77, and 2.76 for each K, respectively, and the out-of-sample

RMSEs, defined as RMSEpred = {(31N)−1
∑T

t=T−30 ||Ŷt−Yt||2}1/2, are 2.50, 2.51,
2.51, 2.51, and 2.50, respectively. It appears that 3, 4, and 5 are reasonable

candidates for K. We then try the clustering method, that is, we estimate

the coefficient parameter θ at the nodal level, and apply k-means clustering

https://home.chicagopolice.org/statistics-data/statistical-reports/annual-reports/
https://home.chicagopolice.org/statistics-data/statistical-reports/annual-reports/


GROUPED NETWORK POISSON AR MODEL 1619

0
2

4
6

8

District 1

In
ve

st
ig

at
or

y 
st

op

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

0
5

10
15

District 6

In
ve

st
ig

at
or

y 
st

op

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

Figure 4. Number of daily investigatory stops in Districts 1 and 6.
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Figure 5. The selection of optimal number of groups based on the elbow plot, silhouette
coefficient, and gap statistic, respectively.

to partition these N sets of estimates into K groups. Figure 5 illustrates the

selection of the optimal number of groups based on the elbow plot, silhouette

coefficient, and gap statistic. All measures recommend K = 3. Thus, K = 3 is

chosen in the following analysis.

We fit the GNPAR model (2.3) to the data set with K = 3. The results

are summarized in Table 5. For all groups, the estimated regression coefficient

on the past intensity process β̂ appears to be much bigger than the regression

coefficients on the past observations α̂ and the network effect ρ̂, implying that

districts with a large (small) number of investigatory stops are more likely to

have a large (small) number of investigatory stops in the future.

Figure 6 (a) plots the estimated group labels for each district, and Figure
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Table 5. Estimation results for ISR data using model (2.3), with K = 3.

ω̂ α̂ ρ̂ β̂ γ̂

Group 1 0.0503 0.0931 0.0140 0.8650 0.4125

Group 2 1.4464 0.1109 0.1124 0.3281 0.2689

Group 3 0.0527 0.0659 1.9e-04 0.9259 0.3186
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Figure 6. (a) Estimated group label for each district, marked in different colors and
shapes. The size of each node denotes the level of yearly investigatory stops, with bigger
nodes representing more crimes occurred in that district. (b) Box plot for the number of
daily investigatory stops in a grouped manner.

6 (b) displays a boxplot for the number of daily investigatory stops Yit in a

grouped manner. The proportion of districts in each group is 0.41, 0.27, and

0.32, respectively.

The three groups show distinct numbers of stops and patterns of dependence.

The districts in Group 3 are mainly in the southwest part of the city, which

coincide with those areas with the highest level of crime risk in Figure 3. Group

3 has the highest number of stops, and the intensity of the count does not depend

on its surroundings, but mostly on its past intensity. Group 1 contains the safest

areas, and also has a very small network effect, indicating that it is less likely

to be affected by the surrounding areas. The future stops for Groups 1 and 3

can be predicted reliably using historical information. In contrast, Group 2 has

a moderate crime level and the districts surround high-risk areas. Group 2 has

a relatively large network effect, implying that the intensity of the districts in

Group 2 tend to be affected by events in their neighborhood.

The above observations also imply that although the network structure is

symmetric, the mutual network effects between each pair of nodes could be
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Table 6. Estimation results for ISR data using NPAR model (2.2). The estimates,
estimated standard deviations, and p-values for each estimator are summarized.

ω̂ α̂ ρ̂ β̂

Estimate 0.0128 0.0770 0.0033 0.9159

ŜE 0.0014 0.0015 7.1e-05 0.0017

p-value < 0.001 < 0.001 < 0.001 < 0.001

different. The districts in Group 3 that are connected to districts in Group 2

are little affected by their neighbors, whereas those in Group 2 are more likely

to be affected by events in their neighborhood. We guess that the latent flow

network of the population of Chicago is directed and asymmetric, but more data

are needed to verify this conjecture.

We also fit the NPAR model (2.2) that does not involve a group structure

on the same data set for comparison. The estimation results are summarized

in Table 6. For each estimator, the standard deviations are computed as

HT (θ̂)
−1GT (θ̂)HT (θ̂)

−1, where HT and GT are given in (S1.3) and (S1.4),

respectively, in the Supplementary Material. All estimates are statistically

significant at the 1% level. Still, the momentum effect is much greater than

the network effect. The results show that the group-wise information provided

by the GNPAR model provides greater insight into the real data and exhibits

better interpretability. The AIC values for the GNPAR and NPAR models are

37340.57 and 37500.59, respectively, which suggests that the GNPAR model fits

the data better.

In summary, we have divided the districts in Chicago into three groups,

and each group has its own spatial and dynamic patterns of investigatory stops.

We find that the spatial distribution of investigatory stops with enforcement

action taken largely agrees with that of actual crime that occurred, confirming

the efficiency of the Investigatory Stop System.

6. Conclusion

We have proposed a GNPAR model. Compared with the traditional

multivariate Poisson autoregressive model, our model has the following merits: (i)

it incorporates network information to reduce the number of unknown parameters

and the computational complexity; (ii) individual heterogeneity is introduced to

describe different nodal behaviors for different groups, which makes the model

more flexible and realistic; and (iii) the estimated group information and network

effect can provide insight into real social problems and lead to better practical

interpretations.

Our model can be generalized in several ways. First, we consider the linear

form of the PAR, although the log-linear form of the PAR is also popular, and
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can be extended easily to the grouped case. Second, we assume that the network

structure is fixed, but in practice, nodes may drop in and out of the model,

and the association between nodes may change over time. Therefore, a time-

varying network structure is worth studying. Third, additional covariates of the

nodes or network structure information could be incorporated into the model

for better fitting and group estimation. Lastly, in existing methods, the network

dimensionN is fixed, and we study the asymptotic properties with increasing time

sample size T . If N is diverging, the stationarity and ergodicity of count time

series are unavailable under current methods, and the estimation could become

problematic, because the parameters grow quickly with the dimension of the

matrix. This remains an open problem, and is left to future research.

Supplementary Material

The online Supplementary Material contains technical proofs of Proposition

1, Theorem 1, and several useful lemmas, as well as further simulation results

when a group label is known and the performance of the first K-selection method

in Remark 5.
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