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Abstract: In this paper, we propose a structured multiple-index model (SMIM) for

ultrahigh-dimensional data analysis. The proposed model takes many commonly

used semiparametric models as special cases, including the stochastic frontier model,

single-index model, and additive-index model. We estimate all of the functions and

parameters based on a full likelihood-type function. As a result, the proposed esti-

mators are shown to be semiparametrically efficient, consistent in terms of selection

and estimation, and asymptotically normal. The computation is challenging owing

to the combination of nonconvexity of the likelihood function, the nonsmoothness

of the penalty term, and the large number of functions. To solve the computa-

tional problem, we blend spline and kernel smoothing with a majorized coordinate

descendent algorithm, making the implementation easy to perform using existing

packages. Intensive simulation studies show that the proposed estimation procedure

outperforms alternatives for various cases. Finally, we apply the proposed SMIM

and estimation procedure to a real data set from one of China’s largest liquor com-

panies, successfully identifying the 31, from 2051, most important factors affecting

the sale of liquor.

Key words and phrases: High-dimensional covariates, maximum likelihood estima-

tion, semiparametrical efficiency, structured multiple-index models, variable selec-

tion.

1. Introduction

Modern technologies yield abundant data with ultrahigh-dimensional risk

predictors from diverse scientific fields. The estimation and variable selection

of ultrahigh-dimensional risk predictors are extremely sensitive to model iden-

tification. In particular, parametric models may lead to biased estimation and

selection, owing to the risk of misspecification, whereas nonparametric models

may suffer from uninterpretability and instability of the resulting estimators, ow-

ing to the “curse of dimensionality.” Semiparametric modeling offers a sensible
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compromise. Multi-index models, which incorporate dimension reduction, are

important semiparametric models that enjoy good asymptotic properties. How-

ever, they are not always useful in practice, because they still face the “curse

of dimensionality” when the number of indices is even moderate, say three or

larger. Here, a more useful approach is provided by structured multi-index mod-

els (SMIMs). Motivated by the multi-index stochastic frontier model described

later, we consider the following model with a known link:

Y = m
{
f1(X

′β1), . . . , fd(X
′βd), ε

}
, (1.1)

where Y is a response variable, X is a pn-dimensional vector of covariates, m

is a known link function of (d + 1) variables, fj are unknown functions, βj are

unknown vectors, and ε is a vector that includes a random error and some latent

variables. To make model (1.1) identifiable, we assume throughout that ‖βj‖ = 1

and the first component of βj is positive, for j = 1, . . . , d.

Model (1.1) is structured by specifying the link function m, which helps to

incorporate information on the type of Y , and can be seen from special cases

of the model. Model (1.1) includes many commonly used models, including the

index heteroscedastic model (Zhu, Dong and Li (2013)) for continuous responses,

Y = f1(X
′β1) + f2(X

′β2)ε, and the generalized additive-index model for various

types of responses; that is, Y follows an exponential family of distribution with

mean m{
∑d

j=1 fj(X
′βj)}, where fj(·) are unknown functions and m is a known

link function determined by the type of Y , for example, a logit link for a binary

response, a logarithmic function for a count response, and a linear function for a

continuous response. Furthermore, generalized additive-index models take many

commonly used models as special cases, such as single-index models and partial

linear models. Studies on these kinds of models include the works of Carroll et al.

(1997), Xia (2008), Ma and Zhu (2013), Liu, Cui and Li (2016), Guo, Box and

Zhang (2017), Ke, Lian and Zhang (2020), Lian, Qiao and Zhang (2021), and

the references therein. Except for the single-index models, these works focus on

a fixed dimension of X.

Model (1.1) cannot be addressed using existing methods. In particular, stud-

ies on multiple-index models focus on a fixed dimension of covariates. The meth-

ods for high-dimensional single-index models give an estimation and selection, and

establish the asymptotic properties by avoiding an estimation of the unknown link

function, so that the objective function involves only high-dimensional parame-

ters. The strategy for the high-dimensional single-index model does not work

for model (1.1), which has multiple indexes and a specific structure. We pro-



STRUCTURED ULTRAHIGH DIMENSIONAL MULTIPLE-INDEX MODELS 2139

vide semiparametrically efficient and computationally convenient estimators for

all parameters and functions in a high-dimensional SMIM. The new estimation

procedure is easy to implement, and simulation studies show that outperforms

alternatives for models from the literature. We show theoretically that the es-

timators achieve semiparametric efficiency, in the sense of Bickel et al. (1993),

which, to the best of our knowledge, has not been discussed for high-dimensional

semiparametric models.

This study is motivated by the multi-index stochastic frontier model, which

we use to analyze real data from one of the largest liquor companies in China.

The purpose of the analysis is to investigate whether and how various factors

affect the mean, frontier, inefficiency, and uncertainty of the sale of liquor. The

covariates include four parts: (1) the company’s product information; (2) brewing

industry information; (3) economic information of related cities and towns; and

(4) geographic information. Together with the lagged variables, we have 2,051

covariates and n = 1941 observations. The problem of measuring production

inefficiency is important in economic, political, and social fields. One of the most

satisfactory models for analyzing the problem is the stochastic frontier model

introduced by Aigner, Lovell and Schmidt (1977), which is expressed as follows:

Yi = f(Xi,β) + αi + εi, αi ≤ 0, i = 1, . . . , n, (1.2)

where Xi is a covariate with a fixed dimension, β is an unknown vector, εi
represents a noise that follows a normal distribution, and αi is an unobservable

random variable that represents firm-specific technical inefficiency. In addition,

αi, εi, and Xi are assumed to be independent. The density of αi is considered to

have support (−∞, 0), and is assumed to follow an N(0, 1) distribution truncated

at zero; that is, αi ∼ −|N(0, 1)|. This means that, ignoring the noise, f(x,β) is

the maximum attainable output with the input x, called the stochastic frontier

function.

When analyzing model (1.2), a parametric functional form for f , which is

usually linear in β, has become standard practice in studies that measure effi-

ciency. Because a misspecification in f may lead to erroneous conclusions, Fan, Li

and Weersink (1996) considered model (1.2) with a completely unspecified f(·).
Kumbhakar et al. (2007) further generalized the work of Fan, Li and Weersink

(1996) by allowing the variances of the inefficiency score αi and the measurement

error εi to depend on Xi, without making any assumption on the variance func-

tions. As a result, the problem of the curse of dimensionality may arise in Fan,

Li and Weersink (1996) and Kumbhakar et al. (2007), even when the dimension
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of the covariates is greater than three.

As a compromise between parametric and nonparametric modeling, we con-

sider the following high-dimensional multiple-index stochastic frontier model:

Yi = f1(X
′
iβ1) + f2(X

′
iβ2)αi + f3(X

′
iβ3)εi, αi ≤ 0, i = 1, . . . , n, (1.3)

where the dimension pn of Xi can be much larger than n; f1(·), f2(·), and f3(·)
are unknown functions; and β1, β2, and β3 are unknown coefficients representing

the effect of Xi on the frontier, inefficiency, and variance functions, respectively.

In particular, the covariates that affect the frontier, inefficiency, and variance

may be different. By identifying the zero components in β1, β2, and β3, we

can select subsets of Xi that are significant for the frontier, inefficiency, and

variance, respectively. It is also remarkable that all unknown functions, f1(·),
f2(·), and f3(·), are one dimensional, which circumvents the problem of fitting

high-dimensional surfaces and avoids the so-called curse of dimensionality. Model

(1.3) is clearly a special case of (1.1) with εi = (αi, εi)
′.

In this study, we focus on the ultrahigh-dimensional setting for (1.1) with

pn � n, specifically, log(pn) = O(nr), for 0 < r < 1. Although model (1.1) can

be viewed as a unified framework accommodating some commonly used models,

this study also develops a new and efficient estimation procedure that applies to

any model in the unified framework.

The remainder of this paper is organized as follows. Section 2 describes the

proposed estimation procedures and the algorithm to implement them. In Section

3, we present the asymptotic properties of the resulting estimators, and demon-

strate that the estimators achieve semiparametric efficiency. The performance of

the proposed estimation procedures is assessed using simulation studies in Sec-

tion 4. Here, we examine how well the proposed estimation procedures work.

In Section 5, we apply the proposed SMIM and one-step estimation procedure

to a real data set from one of China’s largest liquor companies to explore the

important factors affecting the sale of liquor. Technical proofs are relegated to

the Supplementary Material. A user-friendly R package for implementing the

proposed method is available at https://github.com/LinhzLab/SMIM2.git.

2. Estimation Procedure

We first introduce some notation. Let β = (β′1, . . . ,β
′
d)
′ and f = (f1(·), . . . ,

fd(·))′. To present the proposed estimation procedure in a more generic way, we

assume the objective function, based on (1.1), for the estimation is

https://github.com/LinhzLab/SMIM2.git
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L(β,f) =
1

n

n∑
i=1

Q
(
Yi, f1(X

′
iβ1), . . . , fd(X

′
iβd)

)
. (2.1)

When the distribution of ε is given, this objective function is the conditional log-

likelihood function given (X1, . . . ,Xn). When the distribution of ε is unknown,

it is some kind of negative loss function. For example, in model (1.3), when

αi ∼ −|N(0, 1)|, εi ∼ N(0, 1), and αi, εi, and Xi are independent, the objective

function L(β,f) = n−1
∑n

i=1Q(Yi, f1(X
′
iβ1), f2(X

′
iβ2), f3(X

′
iβ3)), where

Q(y, v1, v2, v3) = −1

2
log (v22 + v23)− (y − v1)2

2(v22 + v23)
+ log

(
1− Φ

{
(y − v1) v2
v3
√
v22 + v23

})
,

with Φ being the standard normal distribution function. Without any confusion,

throughout this paper, we call L(β,f) the log-likelihood function.

2.1. Kernel estimation

The proposed kernel estimation is based on back-fitting and profile likelihood

estimation. The details are as follows. Pretending βk are known, we apply the

idea of back-fitting to estimate fk(·).

Step I. We assume fj(·) = f
[`+1]
j (·), for j = 1, . . . , k − 1, fj(·) = f

[`]
j (·), and

j = k + 1, . . . , d, just after the `th iteration. In the ` + 1th iteration, we

update fk(·) in the following way. For each given k, for k = 1, . . . , d, and any

given x, by Taylor’s expansion, we have fk(X
′
iβk) ≈ fk(x) + ḟk(x)(X′iβk −

x)=̂ηkx1 + ηkx2(X
′
iβk − x) when X′iβk is in B(x), a small neighborhood of

x. In other words,

fk(X
′
iβk) ≈

{
ηkx1 + ηkx2(X

′
iβk − x)

}
Iik(x)+fk(X

′
iβk) {1− Iik(x)} , (2.2)

for any i = 1, . . . , n and k = 1, . . . , d, where Iik(x) = I(X′iβk ∈ B(x)).

Using (2.2), we extract information on (fk(x), ḟ(x)) from all of the samples

i = 1, . . . , n. Substituting (2.2) into L(β,f), we estimate ηkx = (ηkx1, ηkx2)
′

based on the following log-likelihood function for ηkx:

1

n

n∑
i=1

Q
(
Yi, f1(X

′
iβ1), . . . , fk−1(X

′
iβk−1), Wix(βk)

′ηkxIik(x)

+ fk(X
′
iβk) {1− Iik(x)} , fk+1(X

′
iβk+1), . . . , fd(X

′
iβd)

)
,

(2.3)
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where Wix(βk) = (1, X′iβk − x)′. Note that, with the approximation (2.2),

our estimation for ηkx is based on a full likelihood function rather than

a local likelihood function, which is commonly used in the nonparametric

literature (Fan, Lin and Zhou (2006)). Differentiating (2.3) with respect to

ηkx and noting that Iik(x)(1 − Iik(x)) = 0, we estimate ηkx by solving the

following equations:

Lk(β,f ;x) =̂
1

n

n∑
i=1

Q(01,k)
(
Yi, f1(X

′
iβ1), . . . , fk−1(X

′
iβk−1),Wix(βk)

′ηkx,

fk+1(X
′
iβk+1), . . . , fd(X

′
iβd)

)
Wix(βk)Kix(βk) = 0, (2.4)

with the indicator function Iik(x) replaced by a kernel function Kix(βk) =

Khk
(X′iβk−x), where hk is a bandwidth and Q(01,k)(y,v) is the component

k of ∂Q(y,v)/∂v. By (2.4), we obtain the updated fk(x), f
[`+1]
k (x).

Step II. Continue Step I until convergence. We denote the converged f
[`]
k (·) by

ˆfKerk (·;β).

We consider the estimation of β. The covariates are ultrahigh dimensional,

and an extra task is to select the important covariates. Replacing fk(·) in (2.1)

with ˆfKerk (·;β) and applying a penalized estimation, we have the penalized like-

lihood

1

n

n∑
i=1

Q
(
Yi,

ˆfKer1 (X′iβ1;β), . . . , ˆfKerd (X′iβd;β)
)
−

d∑
k=1

pn∑
j=1

λnρλn
(|βkj |), (2.5)

where βkj is the jth component of βk, λn is a tuning parameter, and ρλn
(·)

is a penalty function. Next, we maximize (2.5) with respect to βk subject to

‖βk‖ = 1 and βk1 > 0, for k = 1, . . . , d. We use the resulting maximizer to

estimate βk, and denote them by ˆβKerk . Let ˆβKer be β, with each βk replaced

by ˆβKerk . We use ˆfKer(·; ˆβKer) to estimate f(·), and denote it by ˆfKer(·), with
ˆfKerk (·) being the kth component.

Although the kernel estimation enjoys good asymptotic properties, including

consistency, asymptotic normality, and semiparametric efficiency, which are es-

tablished in Section 3, it is difficult to implement. Here, we provide an algorithm

that is computationally practical and has the same asymptotic properties as the

kernel estimation.
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2.2. Algorithm

The asymptotic theory for nonparameter estimators based on kernel smooth-

ing or local-polynomial smoothing is better understood and established than that

based on spline smoothing. Moreover, the computation based on spline smoothing

is simpler than that based on kernel smoothing. Hence, the algorithm introduced

in this subsection is a one-step kernel estimation based on the estimators obtained

from a B-spline method.

2.2.1. B-spline estimation

We denote U as the bounded support set of Xβk, as defined in (C2) of the

Supplementary Material. Letting B(·) = (B1,m(·), . . . , Bqn,m(·))′ be the vector of

B-spline basis functions on U , we have

fk(x) ≈ fk,n(x) = B(x)′θk, k = 1, . . . , d, (2.6)

where θk = (θk1, . . . , θkqn)′. Replacing fk(·) in (2.1) by their approximations

using (2.6) leads to the following penalized objection function for β and θk:

1

n

n∑
i=1

Q
(
Yi, B(X′iβ1)

′θ1, . . . , B(X′iβd)
′θd

)
−

d∑
k=1

pn∑
j=1

λnρλn
(|βkj |), (2.7)

where βkj is the jth component of βk. We maximize (2.7) with respect to βk and

θk, subject to ‖βk‖ = 1 and βk1 > 0, and denote the maximizers as β̃k and θ̃k.

The initial estimators of fk(·) and βk are taken as f̃k(·) = B(·)′θ̃k and β̃k.

2.2.2. One-step kernel estimation

To ensure good asymptotic properties, we update the B-spline estimations

f̃k(·) and β̃k using a one-step kernel estimation. We estimate fk(·) first, and then

βk.

For each k, k = 1, . . . , d, and any given x, replacing βj in (2.1) with β̃j , for

j = 1, . . . , d, and fj(·) with f̃j(·), for j = 1, . . . , k − 1, k + 1, . . . , d, and applying

the local linear estimation, we obtain the local log-likelihood function for fk(x),

1

n

n∑
i=1

Q
(
Yi, f̃1(X

′
iβ̃1), . . . , f̃k−1(X

′
iβ̃k−1), Wix(β̃k)

′ηk,

f̃k+1(X
′
iβ̃k+1), . . . , f̃d(X

′
iβ̃d)

)
Kix(β̃k). (2.8)

We maximize (2.8) with respect to ηk, and take the estimator of fk(x), f̂k(x; β̃k),
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as the first component of the maximizer.

Once the estimators f̂k(·;β) are obtained, we apply the penalized maximum

likelihood estimation to estimate β. Specifically, we maximize

1

n

n∑
i=1

Q
(
Yi, f̂1(X

′
iβ1), . . . , f̂d(X

′
iβd)

)
−

d∑
k=1

pn∑
j=1

λnρλn
(|βkj |) (2.9)

with respect to β. We use the resulting maximizer to estimate β, and denote it

as β̂. Then we define f̂(x) as f̂(x; β̂), with f̂k(x) being the kth component.

2.3. Computational issue and selection of the tuning parameters

When implementing the proposed estimation procedure, we have to deal with

some practical issues, such as maximizing (2.7), (2.8), and (2.9), and need to select

an initial estimation, bandwidth, tuning parameter, and penalty function.

We start with the initial estimation to address the maximization of (2.7).

For this purpose, note that model (1.1) satisfies

E(Y |X) = m1

(
fk(X

′βk), k ∈ τ1
)
, (2.10)

var(Y |X) = m2

(
fk(X

′βk), k ∈ τ2
)
, (2.11)

where m1 and m2 are known link functions, and τ1 and τ2 are the subscript

sets of the multiple indices related to the conditional mean and the conditional

variance respectively. Without loss of generality, we suppose that the multiple

indexes in (2.10) and (2.11) share a common part, that is, τ1 ∩ τ2 = τ3, with

τ1 ∪ τ2 = {1, . . . , d}. Then, for k ∈ τ1, based on (2.10), we obtain the initial

estimators β
(0)
k by using the package mave() in R (Xia (2008)). Note that for

the ultrahigh-dimensional case, the package mave() first reduces the model to a

moderate scale of order n/ log(n) by adapting a screening procedure (Zhu et al.

(2011)), and then estimates β based on the reduced model. After that, we obtain

θ
(0)
k as the minimizer of

∑n
i=1(Yi − m1(B(X′iβ

(0)
k )θk, k ∈ τ1))2 with respect to

(θk, k ∈ τ1) by using the optim() function in R. The initial estimators of fk(·),
for k ∈ τ1, and E(Y |X) are then taken as f

(0)
k (·) = B(·)′θ(0)k and E(0)(Y |X) =

m1

(
f
(0)
k (X′β

(0)
k ), k ∈ τ1

)
, respectively. Similarly, repeating the procedure above

with Yi replaced by Ỹi = (Yi − E(0)(Y |Xi))
2, we obtain β

(0)
k , θ

(0)
k , and f

(0)
k (·)

based on (2.11), for k ∈ τ2\τ3.
Then, the maximizer of (2.7) can be obtained using the following iteration:
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(I) Substituting θ
(0)
k for θk in (2.7), we have

1

n

n∑
i=1

Q
(
Yi, B(X′iβ1)

′θ
(0)
1 , . . . , B(X′iβd)

′θ
(0)
d

)
−

d∑
k=1

pn∑
j=1

λnρλn
(|βkj |).

(2.12)

Maximize (2.12) with respect to βk by taking β
(0)
k as the initial values, and

denote the resulting maximizer by β
(1)
k . This can be done using the MM

principle (Lange, Hunter and Yang (2000)) and the grpref() function in R.

(II) Substitute β
(1)
k for βk in (2.7), and maximize (2.7) with respect to θk, that

is, maximize

1

n

n∑
i=1

Q
(
Yi, B(X′iβ

(1)
1 )′θ1, . . . , B(X′iβ

(1)
d )′θd

)
. (2.13)

This can be done using the optim() function in R. Treat β
(1)
k and the result-

ing maximizer as the initial values of βk and θk, and repeat steps (I) and

(II) until convergence, until we obtain the maximizer of (2.7).

The maximization of (2.8) can also be done using the optim() function, and

the grpref() function in R can be used to maximize (2.9).

In the proposed estimation procedure, different fk(·) are allowed to have

different bandwidths. For each fk(·), its bandwidth hk can be selected using a

rule of thumb, that is, hk = bσ̂kn
−1/5 and σ̂k =

√
var(X′iβ̃k), where β̃k is the

initial estimator of βk obtained in section 2.2.1, and b is selected using K−fold

cross-validation (Fan, Lin and Zhou (2006)). Our simulation studies show that

this method works very well.

There are numerous studies on penalized estimation, and various penalty

functions have been proposed. Examples include the LASSO of Tibshirani (1996),

smoothly clipped absolute deviation (SCAD) of Fan and Li (2001), minimax con-

cave penalty (MCP) of Zhang (2010), and elastic net of Zou and Hastie (2005).

In this study, we use the MCP. The tuning parameter λn in the proposed esti-

mation procedure plays a very important role. When the dimension of X is of a

polynomial order of the sample size n, we apply the BIC to select λn; see (Fan

and Li (2001)). When the dimension of X increases with an exponential order

of the sample size n, the BIC does not work very well. In this case, we use the

EBIC proposed in Chen and Chen (2008) to select λn.
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3. Asymptotic Properties

Before presenting our main asymptotic results, we introduce some notation.

Define Ak and A as the nonzero index set of coefficients βk and β, respec-

tively. Let sn = |A| be the cardinality of set A. We put a superscript 0 on

a parameter/function to denote the true parameter/function, for example, β0

and f0 are the true values of β and f , respectively. For simplicity, we also

write g(β,f) as g when the variable (β,f) takes the true value (β0,f0). Let

Fk = {fk : fk has continuous rth-order derivatives} for an integer r ≥ 2, and

F = {f = (f1, . . . , fd)
′ : fk ∈ Fk, k = 1, . . . , d}. Throughout this paper, C is a

constant that may represent different values at different places.

We denote the score function by Sβk
(β,f)=∂L(β,f)/∂βk and Sηk

(β,f ;x)=

∂Lk(β,f ;x)/∂ηkx. Let Ṡηkηk
(β,f ;x)=∂2Lk(β,f ;x)/∂ηkx∂η

′
kx, Ṡηkβk̃

(β,f ;x)=

∂2Lk(β,f ;x)/∂ηkx∂β
′
k̃
, and Ṡβkβk̃

(β,f)=∂2L(β,f)/∂βk∂β
′
k̃
, for k, k̃=1, . . . , d.

We use a capital letter to denote a random variable, and its lowercase to denote

its expectation, for example, sβk
(β,f) = ESβk

(β,f). The vector of {xj , j ∈ A}
is denoted as xA, and the matrix (Vij , i ∈ A, j ∈ A) is denoted as VAA. Denote

κ(ρλn
;β) = lim

ε→0+
max

1≤k≤d,1≤j≤pn
sup

|βkj |−ε<t1<t2<|βkj |+ε

{
− ρ̇λn

(t2)− ρ̇λn
(t1)

t2 − t1

}
,

κ0 = sup{κ(ρλn
;γ) : ‖γ − β0

A‖∞ ≤ mβ,γ ∈ Rsn},

mβ =
1

2
min
j∈A
|β0j |, ϕn = ‖ − ṡ−1βAβA

‖∞, µn = Λmin(−ṡβAβA)− λnκ0,

where Λmin(A) is the minimum eigenvalue of the matrix A.

Before establishing the asymptotic properties of the proposed estimators f̂k(·)
and β̂k, we first illustrate the local convexity of the objective function M(β,f) =

L(β,f)− λn
∑d

k=1

∑pn
j=1 ρλn

(|βkj |).

Proposition 1. Under Conditions (C2)–(C4) in the Supplementary Material, if

n

(log sn)ι1

{
µ2n
s2n
∧ µn
sn

}
→∞,

with ι1 = (4 + ι)/ι, then Λmin

(
− ṠβAβA(β0,f)

)
> λnκ0 holds with probability

tending to one for all f satisfying ‖f − f0‖∞ = o
(
µn/{sn(log pn)2/ι}

)
.

Remark 1. Proposition 1 implies that Λmin(−ṠβAβA(β0,f)) > λnκ0 ≥ λnκ(ρλn
;

β0) with high probability when µn, the gap between Λmin(−ṠβAβA) and λnκ0, is

positive and does not shrink too fast. As shown in Lv and Fan (2009), κ(ρλn
;β)

is equal to max1≤k≤d,1≤j≤pn −ρ′′(|βkj |), provided that ρ has a continuous second
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derivative. Therefore, κ(ρλn
;β) can be regarded as the local concavity of the

penalty ρλn
at β = (βkj). Noting that ṠβAβA(β,f) is the second-order deriva-

tive of L(β,f) with respect to βkj ∈ A, the conclusion Λmin(−ṠβAβA(β0,f)) ≥
λnκ(ρλn

;β0) guarantees that the objective functionM(β,f) = L(β,f)−λn
∑d

k=1∑pn
j=1 ρλn

(|βkj |) is strictly convex with respect to βA in the subspace {β ∈ Θ :

βAc = 0} when (β,f) takes a value in the neighborhood of (β0,f0). Hence,

Λmin(−ṠβAβA(β0,f)) ≥ λnκ(ρλn
;β0) guarantees that the objective function

M(β,f) = L(β,f) − λn
∑d

k=1

∑pn
j=1 ρλn

(|βkj |) is strictly convex with respect

to βA in the subspace {β ∈ Θ : βAc = 0} when (β,f) takes a value in the

neighborhood of (β0,f0). Furthermore, the second-order Condition (C6) in the

Supplementary Material ensures that the maximizer of the objective function in

the subspace {β ∈ Θ : βAc = 0} is the optimal estimator over the space {β ∈ Θ}
in the neighborhood of (β0,f0).

Now, we can show the asymptotic properties of the kernel estimators, ˆfKerk (·)
and ˆβKerk , and then prove that the estimators f̂k(·) and β̂k based on the proposed

algorithm have the same asymptotic properties.

Theorem 1. Under regularity Conditions (C1)–(C7) in the Supplementary Ma-

terial, if hn → 0, nhn/ log n→∞, ϕn ≤ Cn−γ, and

n

(log pn)ι1

{
(ρ̇−1λn

(mβ) ∧ nγ)2

ϕ2
ns

2
n

∧
ρ̇−1λn

(mβ) ∧ nγ

ϕnsn

}
→∞,

n

(log sn)ι1

{
(ϕ−1n ∧ µn)2

s2n
∧ ϕ

−1
n ∧ µn
sn

}
→∞, nλ2n

(log pn)ι2
→∞,{

n(1−2γ)/2λn
(log sn)ι2

∧ n1−2γλ2n
(log sn)ι2

}
→∞, mβ ≥ Cϕnλnρ̇(0+), snλn → 0,

{λn/nγ} ∧ {ϕn/sn}
h2n + (nhn)−1/2 log1/2(n)

→∞, ϕnλn ≤ C(h2n + (nhn)−1/2 log1/2(n)),

(3.1)

with ι1 = (4 + ι)/ι and ι2 = (2 + ι)/ι, we have

(a) limn→∞ P ( ˆβKerAc = 0) = 1.

(b) limn→∞ P (‖ ˆβKerA − β0
A‖∞ ≤ ϕnλnρ̇(0+)) = 1.

(c) supx∈U ‖ ˆfKerk (x)− f0k (x)‖ → 0 in probability.

For a bounded covariate, it can be seen that ι1 = 1 and ι2 = 1 by letting ι→
∞. Then, (3.1) holds when n/(ϕ2

ns
2
n log pn) → ∞, which holds if log pn = o(n)
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and sn = o(
√
n) when ϕn takes a constant. This means that the kernel estimation

procedure is applicable to the ultrahigh-dimensional case in which the number of

covariates is of an exponential order of the sample size n. The last three conditions

in (3.17) guarantee that we search for the estimator of β in the neighborhood of

the true parameter by choosing the appropriate order of the tuning parameter.

Theorem 1 (a) shows that the kernel estimators, ˆβKer, enjoy selection consistency,

and (b) implies the estimate consistency of ˆβKer, that is, ‖ ˆβKerA − β0
A‖∞ → 0 in

probability, when
√

(log pn)ι2/n∧ (log sn)ι2/n(1−2γ)/2 � λn � mβ/{Cϕnρ̇(0+)}.
Therefore, Theorem 1 guarantees the recovery of signals ifmβ � ϕn

√
(log pn)ι2/n

under condition (3.1). Lastly, (c) illustrates that the estimators ˆfKerk (·) of fk(·)
are uniformly consistent.

Let Σ1n = −ṡβAβA + ṡβAη ṡ−1ηη ṡηβA , and let Σ2n be the covariance matrix

of A, the empirical efficient score for parameter βA, which are defined in the

Supplementary Materials. Denote Λ1n = Λmin(Σ1n), Λ2n = Λmin(Σ2n), and

Λ3n = Λmin(Σ−11nΣ2nΣ
−1
1n ). The following theorem establishes the oracle property

and asymptotic normality of the kernel estimators.

Theorem 2. Under the conditions of Theorem 1, if

Λ3nnh
2
n

sn(log n)2
→∞, n+ h−4n

(1 ∨ Λ3n)s3n
→∞, Λ2

2n(n+ h−4n )

s2n
→∞,

n(Λ2
1n − h4n)

s2n(log sn)ι1
→∞, Λ4

1nΛ3n(n+ h−4n )

s3n
→∞,

nsnλ
2
nρ̇λn

(mβ)2

Λ2
1nΛ3n

→ 0,

(3.2)

then

(a) for any u ∈ Rsn with ‖u‖2 = 1, when nh4n → 0, we have

√
nu′Σ

−1/2
2n Σ1n( ˆβKerA − β0

A)
d−→ N(0, 1).

(b) when sn = o(Λ−13n (nh4n + h−1n )), we have√
nhn

(
ˆfKerk (x)− f0k (x)− 1

2
f̈0k (x)ν2h

2
n

)
d−→ N(0, σ2k(x)),

where σ2k(x)=υ0e
−1
k (x)f−1Xk

(x), ek(x)=−E(Q(02,k)(Yi, f
0
l (X′iβ

0
l ), l=1, . . . , d)

|X′iβ0
k = x), ν2 =

∫∞
−∞ x

2K(x)dx, and υ0 =
∫∞
−∞K

2(x)dx.

In the following, we establish the asymptotic normality of the estimators

f̂k(x) and β̂k from the proposed algorithm.

Theorem 3. Under (3.2) and the conditions in Theorem 1,



STRUCTURED ULTRAHIGH DIMENSIONAL MULTIPLE-INDEX MODELS 2149

(a) If sn = o
(
Λ3nnh

−1
n q

2(r−1)
n +Λ3nn

−1h−4n q
4(r−1)
n

)
, snq

2
n(qn+sn) = o

(
Λ3nnh

−1
n

)
,

snq
4
n(qn + sn)2 = o

(
Λ3nnh

−4
n

)
, nh4n → 0, and r ≥ 2, we have

√
nu′Σ

−1/2
2n Σ1n(β̂A − β0

A)
d−→ N(0, 1), with ‖u‖2 = 1.

(b) If qn(qn + sn)1/2 = o(h−1n n1/2a
1/2
n ) and sn = o(Λ−13n (nh4n + h−1n )), we have√

nhn

(
f̂k(x)− f0k (x)− 1

2
f̈0k (x)ν2h

2
n

)
d−→ N(0, σ2k(x)),

where an = h4n + (nhn)−1 and σ2k(x) is defined in Theorem 2.

When the eigenvalues Λj , for j = 1, 2, 3, are bounded away from zero, it is

easy to see that part (a) in Theorem 3 holds for sn = o(n1/3) if we take r = 2,

qn = O(n1/3), and hn = O(n−1/3); furthermore, part (b) holds for the theoretical

optimal bandwidth hn = O(n−1/5) of the nonparametric estimation if we take

qn = O(n1/5) and sn = o(n1/5). Theorem 3 implies that the proposed algorithm

has the same asymptotic distribution as that of the kernel estimators.

Theorem 4. Let D0 = {ψ : ψ has a continuous derivative on Ud,
∫
Ud ψ(x)dx =

0}. Under the conditions for part (a) in Theorem 2, when the distribution of

ε is known, both
∫
Ud ψ

′
1(x) ˆfKer(x)dx + ψ′2

ˆβKerA and
∫
Ud ψ

′
1(x)f̂(x)dx + ψ′2β̂A

are efficient estimators of
∫
Ud ψ

′
1(x)f0(x)dx + ψ′2β

0
A, for any function ψ1 =

(ψ11, . . . , ψ1d)
′ ∈ D0 and ψ2 ∈ Rsn.

Theorem 4 indicates that both ˆβKerA and β̂A are efficient estimators of β0
A

by taking ψ1(x) = 0, and that ˆfKer(·) and f̂(·) are semiparametrically efficient

estimators of f0(·) by taking ψ2(x) = 0, in the sense of Bickel et al. (1993).

4. Simulation Studies

In this section, we conduct four simulations to investigate the performance

of the proposed method by comparing existing competing procedures in terms of

their bias, efficiency, predictive accuracy, and selection accuracy. To ensure the

feasibility of the comparison, the settings and evaluation criteria of the first two

simulations are taken from the related literature. Model (1.3) in Section 1 is new,

and the corresponding Simulations 3 and 4 are conducted under the cases with

high-dimensional and ultrahigh-dimensional covariates, respectively. We adapt

the MCP selector to select the important variables. The tuning parameter λn
is determined using the BIC and EBIC principles for the high-dimensional and

ultrahigh-dimensional cases, respectively.
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Simulation 1. The setting is the same as that of Alquier and Biau (2013), in

which we consider single-index models with pn = 10 or 50 and a sample size of

n = 50 or 100.

For each model, a training set of size n is generated to fit the model and the

mean squared prediction error (MSPE) is evaluated on a separate validation set

of the same size. We compare the results of proposed method with the Fourier

estimator f̂Fourier in Alquier and Biau (2013), the estimation f̂HHI in Härdle,

Hall and Ichimura (1993), the LASSO estimator f̂LASSO, and the standard kernel

estimate f̂NW (Nadaraya (1964); Watson (1964)).

The median, mean, and standard deviation (SD) of the MSPE based on 200

repetitions are shown in Table 1, which suggests that the proposed method has

a much smaller predictive error than the competing procedures do. Compared

with the LASSO estimator, this result is natural, because the LASSO estimator

does not enjoy the variable selection oracle property. In addition, the MSPEs of

the proposed estimators f̂j , for j = 1, 2, 3, with the smoothing parameters qn =

4, 5, 6, respectively, are close, suggesting that the proposed one-step estimation

is not sensitive to the initial estimators.

Simulation 2. The setting is the same as that of Case 1 in Zhu, Dong and

Li (2013), considering the multi-index models Y = f1(X
′β1) + f2(X

′β2)ε. The

simulation is repeated 1,000 times with a sample size of n = 600.

We compare the proposed method with that of Zhu, Dong and Li (2013).

Table 2 summarizes the bias, standard deviation (SD), and root mean squared

error (RMSE) of the estimates for the nonzero elements of β1 and β2. To evaluate

the performance of the estimators for both the parameters and the functions, we

also calculate the average squared error, defined as ASEj = n−1
∑n

i=1(f̂j(X
′
iβ̂j)−

f0j (X′iβ
0
j ))

2, for j = 1, 2. Table 2 shows that the proposed method is much more

efficient and accurate than the method of Zhu, Dong and Li (2013), because the

proposed method selects the important variables and estimate parameters and

functions simultaneously, whereas the estimating equation method in Zhu, Dong

and Li (2013) considers only the parameter estimation.

Simulation 3. The data are generated from the multiple-index stochastic fron-

tier model (1.3), where the covariates X = (X1, . . . , X15)
′ are generated from

an AR(1) model with X1 ∼ N(0, 1) and Cov(Xj1 , Xj2) = 0.4|j1−j2|, for j1, j2 =

1, . . . , 15, and are then trimmed into the range [−1, 1]. The coefficients are taken

as β1 = β3 = (1/
√

3, 1/
√

3, 1/
√

3, 0, . . . , 0)′ and β2 = (0, 0, 0, 1/
√

3, 1/
√

3, 1/
√

3,

0, . . . , 0)′ so that there are three important covariates in each functional compo-

nent. The functions are taken as f1(x) = exp(x/2) + 2x2, f2(x) = ((x − 1)2 +
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Table 1. Numerical results in Simulation 1, with n = 50 and n = 100.

n = 50 pn = 10 f̂Fourier f̂HHI f̂LASSO f̂NW f̂ (1) f̂ (2) f̂ (3)

Model 1 median 0.061 0.063 0.046 0.293 0.014 0.017 0.014

mean 0.061 0.063 0.047 0.290 0.014 0.018 0.015

SD 0.016 0.014 0.011 0.063 0.004 0.004 0.004

Model 2 median 0.050 0.067 0.307 0.198 0.062 0.072 0.062

mean 0.069 0.080 0.338 0.208 0.066 0.078 0.067

SD 0.081 0.057 0.082 0.072 0.032 0.037 0.029

n = 100 pn = 10 f̂Fourier f̂HHI f̂LASSO f̂NW f̂ (1) f̂ (2) f̂ (3)

Model 1 median 0.053 0.051 0.042 0.227 0.005 0.005 0.005

mean 0.056 0.050 0.043 0.237 0.005 0.005 0.005

SD 0.011 0.006 0.004 0.044 0.001 0.001 0.001

Model 2 median 0.047 0.052 0.332 0.209 0.030 0.030 0.022

mean 0.049 0.053 0.337 0.218 0.031 0.032 0.023

SD 0.009 0.012 0.063 0.045 0.012 0.012 0.009

n = 50 pn = 50 f̂Fourier f̂HHI f̂LASSO f̂NW f̂ (1) f̂ (2) f̂ (3)

Model 1 median 0.057 1.156 0.060 0.507 0.037 0.039 0.039

mean 0.095 1.124 0.066 0.533 0.038 0.040 0.039

SD 0.143 0.241 0.026 0.081 0.011 0.011 0.011

Model 2 median 0.150 0.502 0.795 0.308 0.114 0.118 0.114

mean 0.151 0.539 0.776 0.326 0.127 0.125 0.127

SD 0.111 0.200 0.208 0.109 0.053 0.053 0.058

n = 100 pn = 50 f̂Fourier f̂HHI f̂LASSO f̂NW f̂ (1) f̂ (2) f̂ (3)

Model 1 median 0.053 0.092 0.050 0.519 0.007 0.006 0.008

mean 0.054 0.100 0.050 0.508 0.007 0.006 0.008

SD 0.007 0.026 0.006 0.026 0.002 0.002 0.002

Model 2 median 0.047 0.242 0.503 0.329 0.061 0.067 0.075

mean 0.070 0.267 0.502 0.339 0.064 0.073 0.081

SD 0.099 0.111 0.106 0.073 0.024 0.025 0.029

f̂Fourier, f̂HHI , f̂LASSO and f̂NW are the estimates suggested in Alquier and Biau (2013);
f̂ (j)s, j = 1, 2, 3 represent the proposed estimate with the smoothing parameter qn = 4, 5, 6
respectively.

1)/4, f3(x) = ((x + 1)2 + 1)/4. The simulation is repeated 1,000 times with a

sample size of n = 600.

The simulation results are summarized in Tables 3 and 4 and Figure 1. Table

3 shows the results of the variable selection, including the number of selected

variables, true positive rate (TPR), and false positive rate (FPR). The numbers

of selected variables are closed to the true values, the TPR is close to one and the

FPR is close to zero. These results suggest that the proposed method not only
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Table 2. Numerical results in Simulation 2.

Method β̂11% β̂12% β̂13% β̂14% β̂21% β̂22% β̂28% ASE1% ASE2%

(Z3.1) Bias −0.04 0.03 0.06 −0.06 7.68 0.07 −13.56 3.83 98.56

SD 0.92 1.19 0.99 1.14 17.14 19.84 11.89

RMSE 0.92 1.19 0.99 1.14 18.78 19.84 18.03

(Z3.2) Bias −0.04 0.04 0.05 −0.06 2.62 0.62 −4.16 3.83 43.64

SD 0.91 1.18 0.98 1.13 9.67 11.45 5.88

RMSE 0.91 1.18 0.98 1.13 10.02 11.47 7.20

(Z3.3) Bias −0.05 0.04 0.05 −0.06 2.48 0.59 −4.04 3.84 43.24

SD 0.91 1.18 0.98 1.13 9.35 11.19 5.30

RMSE 0.91 1.18 0.98 1.13 9.67 11.21 6.66

Prop. Bias 0.06 −0.02 −0.09 −0.48 3.80 −0.14 0.41 1.08 2.03

SD 0.71 1.03 1.04 1.13 11.47 4.97 5.63

RMSE 0.71 1.03 1.05 1.23 12.09 4.97 5.64

(Z3.1)-(Z3.3) represent the estimating equation methods (3.1)-(3.3) in Zhu, Dong and Li (2013);
RMSE represents the root-mean-square error; ASE represents the average squared error, defined
by ASEj = n−1 ∑n

i=1(f̂j(X
′
iβ̂j) − f0

j (X′iβ
0
j ))2.

Table 3. Selection results for regression coefficients in Simulation 3.

Parameter #S TPR FPR

β1 3.009(0.151) 0.998 0.001

β2 3.055(0.908) 0.942 0.019

β3 3.334(0.987) 0.980 0.033

TRUE 3 1 0

#S means to the number of selected variables; selected standard errors are summarized in
parentheses; TPR (True positive rate) means the rate that the important variables are selected;
FPR (False positive rate) means the rate that the unimportant variables are selected.

selects the important variables, but also rules out unimportant variables with high

probability. Table 4 gives the estimators of the parameters using the proposed

method and the oracle method, which is based on the model the three important

covariates only. The results in Table 4 reveal that the proposed estimators are

approximately unbiased, and their estimated standard errors (ESEs) agree well

with the sample standard deviations (SDs). Moreover, the proposed method

produces coverage percentages of the 95% confidence intervals that are close to

the nominal level. Furthermore, the proposed procedure performs comparably

well with the oracle estimator.

Figure 1 (a) displays the frontier function estimated using the proposed

method. Neglecting the noise, the frontier function f1(x
′β1) is the maximum

attainable output with the input x. To see that, we further generated a val-

idation data set with a sample size of 600 from the same model, displayed as
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Table 4. Estimate results for regression coefficients in Simulation 3.

Parameter β̂ ˆβOR

Bias SD ESE CP Bias SD ESE CP

β1 0.000 0.009 0.010 0.953 −0.000 0.010 0.011 0.949

0.000 0.011 0.012 0.957 0.001 0.012 0.012 0.952

−0.001 0.010 0.010 0.948 −0.001 0.012 0.011 0.949

β2 −0.028 0.127 0.117 0.936 −0.008 0.109 0.100 0.927

−0.006 0.133 0.114 0.931 −0.026 0.118 0.107 0.939

−0.014 0.123 0.119 0.947 −0.002 0.109 0.099 0.933

β3 −0.015 0.110 0.114 0.945 −0.004 0.096 0.090 0.951

−0.012 0.124 0.122 0.932 −0.015 0.117 0.103 0.933

−0.011 0.107 0.098 0.941 −0.013 0.097 0.092 0.954

β̂ represents the proposed estimator; ˆβOR represents the oracle estimator; SD represents the
sample standard deviation of the estimates; ESE represents the sample mean of the estimated
standard errors; CP represents the empirical 95% coverage probability.

the star point in Figure 1 (a). This plot shows that the statistical noise in the

nonparametric scenario does not affect the estimation.

To further evaluate the performance of the nonparametric function estima-

tors and to compare the prediction effect of the proposed method with that of the

competing gradient boosting approach, for each repetition of 1,000 replications,

we applied the fitted model to predict a newly generated data set. Figure 1 (b)

and (d) display scatter plots of the true values of Yi against the fitted values of

Ŷi = f̂1(X
′
iβ̂1) + ûi of the proposed method and the gradient boosting approach,

respectively. Figure 1 (c) and (f) display scatter plots of the true simulated ei
against its predictor êi = Yi− Ŷi for the proposed method and the gradient boost-

ing approach, respectively, where ûi = σ̂iλ̂i/(1 + λ̂2i )[ϕ(−ξ̂iλ̂i/σ̂i)/Φ(−ξ̂iλ̂i/σ̂i)−
ξ̂iλ̂i/σ̂i], σ̂

2
i = f̂22 (X′iβ̂2) + f̂23 (X′iβ̂3), λ̂i = f̂2(X

′
iβ̂2)/f̂3(X

′
iβ̂3), and ξ̂i = Yi −

f̂1(X
′
iβ̂1), following Jondrow et al. (1982). From Figure 1 (b)–(f), we can see that

the predictors using the proposed method work relatively well globally, and are

comparable with those of the gradient boosting approach. In fact, the MSPEs

based on 1,000 newly generated data sets are 1.450 for the proposed method,

with a deviation of 0.286, and 3.104 for the gradient boosting approach, with a

deviation of 0.420. This shows that the proposed method possesses both high

prediction ability and interpretability.

Simulation 4. The data are generated as in Simulation 3, except that we take

pn = 1000, β1 = β3 = (1/
√

3, 1/
√

3, 1/
√

3, 0, . . . , 0)′, and β2 = (0, 0, 0, 1/
√

3,

1/
√

3, 1/
√

3, 0, . . . , 0)′ to reflect the ultrahigh-dimensional case. The simulation
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Figure 1. Plots of the nonparametric estimates in Simulation 3: true against estimated
values. (a) shows the plot of true frontier and the fitted frontier function; (b) and (d)
show the scatter plot of the true values and the fitted values of the response variable
using the proposed method and the gradient boosting approach, respectively; (c) and
(e) show the scatter plot of the true values and fitted values of the residual using the
proposed method and the gradient boosting approach, respectively.

results are summarized in Tables 3–4 and Figure 1 of the Supplementary Mate-

rial. Moreover, we obtain MSPEs based on 1,000 newly generated data sets of

2.716 for the proposed method, with a deviation of 0.350, and 5.842 for the gra-

dient boosting approach, with a deviation of 0.832. Therefore, we draw similar

conclusions to those for Simulation 3.

5. An Application

In this section, we apply the proposed approach to analyze a data set from

one of China’s largest liquor companies. The purpose of the analysis is to in-

vestigate whether and how various factors affect the sale of liquor. The data

set includes monthly sales (Yi) and covariate information for n = 1941 obser-

vations in 31 provinces of China for the period 2011 to 2018. The covariates
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comprise four parts: (1) the company’s product information, including price, ad-

vertising investment, and reimbursement expense of dealers; (2) brewing industry

information, including monthly liquor yields, monthly beer yields, beer imports

and exports, monthly trading amounts of 12 stocks of the brewing industry, and

the profit of affiliated companies; (3) economic information of related cities and

towns, including per capita GDP, per capita disposable income, consumer price

index, retail price index, total retail sales of consumer goods, housing sales prices,

residential investment, and permanent population; and (4) geographic informa-

tion, including monthly average temperature, monthly average relative humidity,

geographical divisions, and the distance from the liquor producing area. Together

with the lagged variables, we have 2,051 covariates. A log transformation is taken

of the response variable, and all covariates and responses are standardized. Then,

the multiple-index stochastic frontier model (1.3) and the proposed approach are

applied to the data. The bandwidths are as described in Remark 3. The se-

lected important variables and their regression coefficient estimates are reported

in Figure 2, and the estimated functions are displayed in Figure 3.

Figure 2 (a) displays the 13 important variables for the frontier of sales.

Combining this with the monotone increasing function of f1(·) in Figure 3 (a),

we can draw the following conclusions. First, the negative coefficients of both per

capita GDP (per capita gdp) and its lagged variable (per capita gdp lastyear)

indicate that consumers in cities with a lower level of economic development buy

more liquor, which is consistent with the fact that the considered product is

cheap, and thus popular among low consumption groups. Second, the positive

coefficients of residents and the previous year’s value show that the greater the

population, the larger is the demand for liquor. Third, the sales in the previous

months (SL lag1,2,4,5,6,7) have positive coefficients, which means that larger

past sales result in larger sales in the current month, which is consistent with

our intuition. Fourth, the price (PRICE lag5) is statistically significant, because

this is a low-end liquor product targeting price-sensitive low-consumption groups.

Fifth, the coefficient of liquor production (taking the value one if a city belongs

to a province with large liquor production, and zero otherwise) is positive, which

shows that people in a province with large liquor production tend to purchase

more liquor. Sixth, the variable xlj sichuan (taking the value one if a city is in

Sichuan Province, where the liquor is produced, and zero otherwise) has quite a

large coefficient, reflecting that the product sells well around the place of origin.

The 18 important variables selected for the inefficiency function are shown

in Figure 2 (b). Combining this with the monotone increasing function of f2(·)
displayed in Figure 3 (b), we can draw the following conclusions. First, subsidy re-
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Figure 2. Selected important variables and their estimates of βk, k = 1, 2, 3 for liquor
data.

imbursement expenses and their lagged variables (btl & btl lag1, 2 & btl three m)

have positive coefficients, illustrating that they are a relatively inefficient input.

This is because the company subsidizes dealers based on their purchases before

a particular day, and dealers usually buy much more than they can sell before

that day, causing large inventories. Second, per capita GDP (per capita gdp)

and its lagged variable (per capita gdp lastyear) have negative coefficients, and

thus have different effects on sales than that shown in Figure 2 (a). This may be

because cities with a higher GDP are usually more efficient in terms of commer-

cial operation. Third, the GDP from the primary industry, mainly agriculture,
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Figure 3. Plots of the kernel smoothing nonparametric estimates in liquor data analysis.

in the current and previous years (gdp1 & gdp1 lastyear) have positive regres-

sion coefficients, indicating a negative effect on sales. This may be because areas

with a high agricultural output usually have a low commercial operation ability.

Fourth, the positive coefficients of sales in the past one to five months (SL lag1–

5) show that there may be some waste of costs in areas with large sales in the

past. Fifth, cumulative expenses on meetings and events, such as a wine expo,

during the past half year and the past year (prov meeting six m & prov meeting

twelve m, respectively) have a positive effect on sales, reflecting that effective

promotional activities can increase the market share of the product. Sixth, the

variable xlj hunan (taking the value one if a city belongs to Hunan Province,

which is the province with the second largest sales, and zero otherwise) has a

positive regression coefficient, and thus a negative effect on sales. The dealers in

this province may have some cost waste.

Figure 2 (c) shows that per capita GDP (per capita gdp) and the per capita

GDP in the previous year (per capita gdp lastyear) affect the variance function,

which is estimated to have a quadratic form (Figure 3 (c)). This may be because

consumers in areas with a higher level of economic development have more choices

of alcohol, increasing the uncertainty.

6. Conclusion

To investigate whether and how ultrahigh-dimensional factors affect various

measurements, such as the mean, frontier, inefficiency, and variance, we propose

an ultrahigh-dimensional structured multiple-index model. We estimate all of

the functions and parameters based on a penalized full likelihood-type function.

The proposed estimators are shown to be consistent, asymptotically normal, and

semiparametrically efficient. To solve the computational problem caused by the
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nonconvexity of the likelihood function, nonsmoothness of the penalty term, and

the large number of functions and ultrahigh-dimensional predictors, we blend

spline and kernel smoothing with a majorized coordinate descendent algorithm, so

that the computation is easily performed using existing software. Our simulation

studies show that the proposed method outperforms existing methods in terms of

selection and estimation for all of the cases considered, the settings of which are

taken from the existing literature, if available. We apply the proposed method to

a real data from one of China’s largest liquor companies, finding that 31 out of

2051 factors, including price, previous sales, per capita GDP, and residents, are

important for the mean, stochastic frontier, inefficiency, and variance of liquor

sales.

There are several potential extensions of the model and estimation strategy.

We use sparsity as a regularization strategy to solve the problem of a ultrahigh

dimension. The sparse assumption implies that the correlations between the

high-dimensional covariates are restricted. To handle correlated high-dimensional

covariates, other regularization strategies, for example, the low rank or fusion

methods, can be considered. Whether the procedure and associated theoretical

results hold for these regularization strategies is unclear and warrants further

investigation.

Supplementary Material

The online Supplementary Material provides additional notation, conditions,

the proofs of the theorems, results from Section 4, and additional simulation

studies on mixed-effects models.
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