
Statistica Sinica 27 (2017), 1265-1280
doi:https://doi.org/10.5705/ss.202016.0243

UPPER EXPECTATION PARAMETRIC REGRESSION

Lu Lin1, Ping Dong1, Yunquan Song2 and Lixing Zhu3

1Shandong University, 2China University of Petroleum

and 3Hong Kong Baptist University

Abstract: In regression analysis, some predictors might be unobservable, not ob-

served, or ignored. These factors actually affect the response randomly. The ob-

served data thus follows a conditional distribution when these factors are given.

This phenomenon is called the distribution randomness. For such a working model,

we propose an upper expectation regression and a two-step penalized maximum

least squares procedure to estimate parameters in the mean function and the upper

expectation of the error. The resulting estimators are consistent and asymptotically

normal under certain conditions. Simulation studies and a data example are used

to show that the classical least squares estimation fails but the proposed estimation

performs well.

Key words and phrases: Distribution randomness, penalized least squares, upper

expectation.

1. Introduction

In classical regression modelling, collected data are often assumed to contain

a response and all relevant predictors. Here we consider that some predictors

are unobservable, unobserved, or ignored so that the working model can be suf-

ficiently parsimonious. In high-dimensional paradigms, this is typically the case

because a selected working model is parsimonious and unlikely to (or simply

cannot) include all the predictors.

Suppose then that a random sample {(X1, Y1), · · · , (XN , YN )} is available

in a regression setting, but there is a relevant predictor Ti that is unobservable,

unobserved, or ignored. We call it the unobserved factor. Let

Yi = g(β,Xi) + εi for i = 1, · · · , N, (1.1)

where g(·, ·) is a given function, Xi = (X
(1)
i , · · · , X(p)

i )T are the associated p-

dimensional predictors with a probability density fX(·). The parameters of in-

terest are β and those associated with the distribution of ε, here εi(Ti).

Since the unobserved factor Ti can affect the response randomly, εi has a

conditional on Ti. We call this distribution randomness. A relevant example is in
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(a) Histogram of residuals.

−
−

(b) Model fitting of residuals.

Figure 1. Figure for OLS fitting.

Huber (1981) where the model is Yi = εi, and the data may contain gross errors.

Often one only uses a fraction of the predictors to build a parsimonious working

model, ignoring the impact of unobserved or ignored factors on the response. As

an example we consider, Fan and Peng (2004) where a linear regression model

was used, together with OLS, to fit a data set of the Fifth National Bank of

Springfield (see also examples 11.3 and 11.4 in Albright, Winston and Zappe

(1999)). Linear regression of annual salary on four predictors was considered:

job level, education level, gender and an indicator of a computer-related job.

Figure 1 presents the histogram of residuals and a kernel-based fitting for the

residuals. The histogram presents large dispersion of the residuals, indicating a

poor fit. Nonlinear models did not show much improvement. Part (b) of Figure

1 suggests that the residuals do not follow the same distribution, and perhaps

years of experience and age have some impact on the salary. Unobserved/ignored

factors are not included in the linear regression function, but in fact are absorbed

into the error term.

When a classical regression model is fitted, and unobserved factors affect the

distributions of the responses, we have difficulty defining a common expectation

of the errors as the intercept of the regression model. In simulations in the

supplement, we show that an upper expectation regression model works better

even under the linear regression model of Fan and Peng (2004).

In a high-dimensional paradigm, variable selection is often required and many

variables are absorbed into the error term. When a model is not sparse and vari-

able selection is implemented, the error term may not be centered and consistent
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estimation of the parameter of interest cannot be easily obtained. A relevant

discussion by Lin, Zhu and Gai (2016) considers a nonsparse model and a semi-

parametric method to achieve estimation consistency. Here we define an upper

expectation that avoids distribution randomness and allows estimation of in-

volved parameters.

The notion of upper expectation is not new, see Huber (1981). For Yi = εi,

he proposed upper and lower expectations for data that contain gross errors.

With F = {ft : t ∈ T } a class of distributions, where T is an index set, Huber

(1981) defined upper and lower expectations, respectively, as µ = supft∈F Eft [εt]

and µ = infft∈F Eft [εt]. We discuss a more general model: there are covariates in

a regression model, and the distribution of each error is randomly selected from

a class of distributions, say F . Thus f ∈ F can be regarded as a “conditional”

distribution when the unobserved affecting factor T = t ∈ T is given, where T
is a set of values of unobserved factors. Observations can then be written as Zti
when T = ti is given, and Zti follows a conditional distribution F (·|T = ti).

Consider the case where every distribution fi of εi belongs to F . The indi-

vidual expectation Efi(Y |X) = g(β,X) +Efi(ε|X) is difficult to estimate by the

sample {(X1, Y1), · · · , (XN , YN )} because we do not know from which distribu-

tion fi ∈ F each εi comes.

Under (1.1), the expectations of the εi are conditional expectations when

the unobserved random variables T = ti are given, and are not estimable. The

upper expectation can be employed. If ε has a distribution f randomly selected

from F , then

E[Y |X] = g(β,X) + µ, (1.2)

where µ is the upper expectation of ε, µ = E[ε] = supf∈F Ef [ε].

In related matters, if Y is a risk measure of a financial product, the upper

expectation regression can describe the relationship between the maximum risk

and relevant factors in the sense of averaging; see, e.g. Chen and Epstein

(2002). Under the framework of Knight uncertainty (Knight (1921)), different

observations may come from different distributions randomly selected from a class

of distributions and the related economic analysis is based on this uncertainty,

refer to Gilboa and Schmeidler (1989).

Here interest is in consistently estimating β and µ using observations from

the model (1.1). The definition of upper expectation implies the sub-additivity:

E[U + V ] ≤ E[U ] + E[V ]

for any random variables U and V . Consequently, even if g(β,X) ≡ 0 at (1.1), the
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Law of Large Numbers (LLN) under sublinear expectation, Peng (2008, 2009),

has the sample mean Y of Y1, · · · , Yn satisfying only, with large probability,

µ ≤ Y ≤ µ,

where µ = inf
f∈F

Ef [Y ] and µ = sup
f∈F

Ef [Y ] are, respectively, the lower and upper

expectations. Our problem is then to, under certain conditions, identify those

observations that can be used for estimating β and µ.

As a first attempt, we consider a finite class F . A penalized maximum least

squares (PMLS) is introduced, and a two-step estimation procedure is suggested.

The key feature of this method is that, for different parameters β and µ in the

model (1.2), it can identify available data for estimation. The resulting estimators

are consistent and asymptotically normal in a certain sense. Moreover, the PMLS

offers a potentially useful tool in data analysis when we are not sure whether

all predictors/factors have been included in a working model and whether an

identical distribution assumption is appropriate.

The paper is organized as follows. In Section 2, we consider the random

selection of distributions, the upper expectation regression, and the motivation

for an estimation procedure. Section 3 contains the methodology development,

the asymptotic properties of the estimators, the tuning parameter selection, and

a related algorithm. The method is extended in Section 4 to the case where the

upper expectation can be attained by several distributions, and the estimator for

the upper expectation is constructed. The paper concludes with some discussions

in Section 5. Simulation studies, a data example, and the proofs of the theorems

are given in the supplementary materials.

2. Motivation and Upper Expectation Regression

Suppose that F is a distribution class with a factor set T , F = {f(·, t) : t ∈
T }, and suppose the factor variable T has distribution p(·). Let Z = Z(T ) be a

random variable such that for any fixed T = t ∈ T , the distribution of Z = Z(t)

is ft(z) = f(z(t), t) ∈ F .

Here there exists an unobserved random factor(s) T that has impact on the

distribution of the random variable Z. Under the present framework, what we

can observe is just Zi(Ti) in which Ti is unobserved. Therefore, any element

f(·, t) within the class F could be the distribution of Z(T ) . We write Z(T ) as

Z. Thus, for a random variable function g(Z), the expectation Eft [g(Z)] is the

conditional expectation with conditional density ft = f(Z(t), t).

We mainly consider the linear regression, model Y = β>X + ε, where >
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stands for transposition, β = (β1, · · · , βp)> is a p-dimensional vector of unknown

parameters. The extension of results to the nonlinear model (1.1) is discussed in

Section 4. For the model, the error ε = ε(T ) is of the distribution randomness

as Z(T ). By (1.2), the upper expectation linear regression is

E[Y |X] = β>X + µ, (2.1)

and the model is supposed to be identifiable, where µ = supt∈T Eft [ε(t)]. Note

that the original model (1.1) has no constant intercept term because there is no

need to consider a common constant intercept term that it is not identifiable. In

model (2.1), the intercepts with all ε(ti) are absorbed in µ.

2.1. Motivation for estimating β and µ

To estimate β and µ, we start with a brief distribution of the estimation at

the population level. Consider the upper expectation squared loss

E
[
(Y − β>X − µ)2

]
, (2.2)

and the minimizer of this loss over β. Because β>X + µ is identifiable and X

follows a certain distribution fX , the true β is the minimizer over all β. Next,

for true β the above squared upper expectation loss is equal to

E
[
(ε− µ)2

]
. (2.3)

Suppose that there is a distribution ft∗ ∈ F such that

E
[
(ε(T )− µ)2

]
= Eft∗

[
(ε(t∗)− µ)2

]
. (2.4)

Then, by the projection theory, the minimizer of the loss over µ is Eft∗ (ε). There-

fore, we need a two-step procedure to estimate β and µ separately. First, use

the above criterion to estimate β and µ. The estimator β̂ of β can be consistent.

After β̂ being obtained, we re-estimate µ to obtain consistent estimation. For

ease in presentation, we suppose T = {1, · · · , L} for a positive integer L. T then

follows a distribution P with unknown probability mass pt for t ∈ {1, · · ·L}.
Recall that (Xi(ti), Yi(ti)), i = 1, · · · , N , are independent observations from

the model:

Yi(ti) = β>Xi(ti) + εi(ti), i = 1, · · · , N. (2.5)

For simplicity, we write (Xi, Yi(ti)) as (Xi, Yi). Every εi = εi(ti) has a distri-

bution fti ∈ F with the unobserved factor ti having the distribution P . For

given tis, we have the linear expectations µi = Efti [εi] and variances σ2i =

Efti [(εi − µi)
2]. We consider the following treatment to get the initial estimates

of β and µ.
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For any given β and µ, let
{
G(j)(β, µ) = (Ykj − β>Xkj − µ)2 : j = 1, · · · , N

}
be the ordered statistics of

{
Gi(β, µ) = (Yi − β>Xi − µ)2 : i = 1, · · · , N

}
satis-

fying

G(1)(β, µ) ≥ G(2)(β, µ) ≥ · · · ≥ G(N)(β, µ). (2.6)

To construct an empirical version of E
[
(Y − β>X − µ)2

]
, one can use larger

G(i)(β, µ)’s. The intuition is as follows. Note that E
[
(Y − β>X − µ)2

]
is the

upper expectation being achieved at the distribution ft∗ . Although t∗ is un-

known, we can expect that relatively larger quantities should be close to the

upper expectation. In particular, it is expected that there exists a positive num-

ber n < N such that most of G(j)(β, µ), j = 1, · · · , n, come from the distribution

ft∗ , or have the same expectation E
[
(Y − β>X − µ)2

]
.

Based on the above explanation, to construct an empirical version of the

squared upper expectation loss E
[
(Y − β>X − µ)2

]
, we employ the following

partial sum:

1

n

n∑
j=1

G(j)(β, µ) for some positive integer n ≤ N. (2.7)

An estimate (β>n , µn) of (β>, µ) is then defined as the minimizer of the partial

sum:

(β>n , µn) = arg min
β∈B,µ∈U

1

n

n∑
j=1

G(j)(β, µ), (2.8)

where B and U are, respectively, the parameter spaces of β and µ.

Two main difficulties exist. First, the integer n is unknown in practice.

Second, the consistency of 1/n
∑n

j=1G(j)(β, µ) to E
[
(Y − β>X − µ)2

]
cannot

automatically result in the consistency of µn to µ. Details of the estimation

procedure are given next.

3. Methodology and Theoretical Properties

3.1. First-step estimators of β and µ

Assume that the distribution f∗ := ft∗ exists.

Using G(j)(β, µ) = (Ykj − β>Xkj − µ)2 for j = 1, · · · , n, we decompose the

index set In = {kj : j = 1, · · · , n} into two subsets as Un = {uj : j = 1, · · · , [n/2]}
and Ln = {ls : s = n− [n/2] + 1, · · · , n} satisfying uj > ls. That is,

In = Un ∪ Ln, where Un ∩ Ln = ∅, and uj > ls for any uj ∈ Un, ls ∈ Ln. (3.1)

Denote ∆n = 1/[n/2]
∑

j∈Un E[(Yj −β>Xj −µ)2]− 1/(n− [n/2])
∑

j∈Ln E[(Yj −
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β>Xj − µ)2]. Since the sums in ∆n are based on the original indices, instead of

the ordered quantities G(j)(β, µ), it can be showed that if most of (Ykj−β>Xkj−
µ)2, j = 1, · · · , n, come from the distribution f∗, or have the same expectation,

then |∆n| should be sufficiently small. Next, assume

C0. The scatter plots of (Yj − β>Xj − µ)2, j = 1, · · · , N , are asymmetric.

Under this condition, |∆n| 9 0 if most of (Ykj − β>Xkj − µ)2, j = 1, · · · , n,

do not come from the distribution f∗, or do not have the same expectation.

Consequently, we choose a tuning parameter τ > 0 and consider a constraint

|∆nτ | < τ , where nτ depends on τ . If |∆n| is given, the estimator of (β>, µ)>

can be defined as(
β̂>, µ̂

)>
= arg min

β∈B,µ∈U ,nτ∈N

1

nτ

nτ∑
j=1

G(j)(β, µ) s.t. |∆nτ | < τ. (3.2)

Because the expectation of 1/nτ
∑nτ

j=1G(j)(β, µ) is a decreasing function of nτ ,

the ideal choice of nτ is nτ = max {n : |∆nτ | < τ} . The relation between τ and

nτ implies that the optimization problem (3.2) only contains a tuning parameter

τ . The condition C4 given below can ensure that the tuning parameter τ is

identifiable. By the Lagrange multiplier, the optimization problem (3.2) can be

rewritten as(
β̂>, µ̂

)>
= arg min

β∈B,µ∈U ,nλ∈N

1

nλ

nλ∑
j=1

G(j)(β, µ) + λ|∆nλ |. (3.3)

Here λ is a tuning parameter, and can be thought of as a replacer of τ . Since

1/nλ
∑nλ

j=1G(j)(β, µ) is a decreasing function of nλ, and |∆nλ | is not small when

the value of nλ exceeds a certain amount, the above objective function is an

approximate convex function of nλ in a certain region. Also it can be directly

verified that the above objective function is a convex function of β and µ. As a re-

sult, the resulting estimator is a unique global solution of the above optimization

problem.

To approximate ∆n, consider

Υn(Y, µ) =
1

[n/2]

∑
j∈Un

(Yj − µ)2 − 1

n− [n/2]

n∑
j∈Ln

(Yj − µ)2.

Lemma 1. Assume that the upper expectation µ is free of X, and the variances

σ2i of εi with distribution fi exist for all i = 1, · · · , N , then

∆n = Υn(Y, µ) +Op

(
1√
n

)
.
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By the lemma, when ∆n is replaced by Υn(Y, µ), the optimization problem

(3.3) is asymptotically equivalent to(
β̂>, µ̂

)>
= arg min

β∈B,µ∈U ,nλ∈N

1

nλ

nλ∑
j=1

G(j)(β, µ) + λ |Υnλ(Y, µ)| . (3.4)

For any given µ and β, a choice of nλ is nτ = max{n : |Υn(Y, µ)| < τ}. The above

estimation method is called the penalized maximum least squares (PMLS). Under

G-normal distribution (see Peng (2007)), it is a penalized maximum-maximum

likelihood. The penalty used is to control the difference between the second-order

moments of the random variables and to identify the available data set.

Denote Gn = {G(1)(β, µ), · · · , G(n)(β, µ)} and suppose that there are only

dn elements G(js)(β, µ), s = 1, · · · , dn, in the set Gn such that G(js)(β, µ), s =

1, · · · , dn, do not come from f∗. Let Gn0
be the smallest set of Gn that con-

tains all the elements G(j)(β, µ) from the distribution f∗. To get the asymptotic

properties, we introduce the following conditions.

C1. The intercept of regression function in model (2.5) is zero, the upper ex-

pectation µ is free of X, E[XX>] is a positive definite matrix, and the

variances σ2i of εi with distributions fi exist for all i.

C2. The distribution f∗ satisfying (2.4) is unique and the size n∗ of the sample

from f∗ tends to infinity as N →∞.

C3. λ = nε−1 for a constant 0 < ε < 1.

C4. dn/n
1−ε = o(1) and n1−ε/n0 < C for a constant C > 0.

Some remarks on the conditions are in order. The conditions in C1 are

standard. Condition C2 is based on (2.3) and (2.4). This condition implies the

second-order moment constraint: Ef∗ [(ε− µ)2] > Ef [(ε− µ)2] for all f 6= f∗, f ∈
F . Based on this constraint, we can judge whether the corresponding errors

εkj , j = 1, · · · , n∗, come from the same distribution f∗. The use of the uniqueness

assumption on f∗ in C2 is to get a simple estimation procedure. However, this

uniqueness assumption may not be always true. Thus, it will be removed when

an adjusted method is introduced in the next section. We need Condition C3 to

constrain the convergence rate at which λ∆n tends to zero. Condition C4 implies

that most of G(j)(β, µ), j = 1, · · · , n, come from the distribution f∗. This also

implies that approximately ∆n has a certain distribution, and as a result, the

related tuning parameters τ and λ are identifiable. In fact C4 gives the range of

n when the penalized estimation is used. Although this condition seems to be

idealistic, an implementation procedure will be given later.
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Denote µ∗ = Ef∗ [ε], σ2∗ = Ef∗ [(ε− µ)2] and Φ(X) =

(
XX> X

X> 1

)
.

Theorem 1. Under the model (2.5), suppose Conditions C1-C4 hold. Then the

PMLS estimator defined in (3.4) satisfies

√
n∗

[
(β̂ − β)>, µ̂− µ∗

]> d−→ N
(
0, σ2∗E

−1[Φ(X)]
)

(n∗ →∞),

where
d−→ stands for convergence in distribution.

A proof of the theorem is given in the Supplement. The key of the proof is

to show that most of the elements in Gn come from f∗ via the penalty in (3.4). It

can be seen from the proof that the uniqueness assumption on f∗ is unnecessary.

In the next section, the assumption can be removed via an additional penalty.

The theorem guarantees that the PMLS estimator β̂ is consistent and nor-

mally distributed asymptotically. However, the PMLS estimator µ̂ is not always

consistent because it tends to µ∗, rather than the true parameter µ. On the

other hand, compared with the properties of parameter estimation in the case of

classical nonlinear regression, here the variance is enlarged and the convergence

rate is reduced to 1/
√
n∗. This is mainly because of the variability of the error

terms, which comes from the distribution randomness.

3.2. Second-step estimator of µ

Similar to (2.3) and (2.4), suppose the following holds:

µ = E[ε] = sup
f∈F

Ef [ε] = E
f̃
[ε] for a f̃ ∈ F . (3.5)

Let {H(j) = Ysj − β̂>Xsj : j = 1, · · · , N} be the order statistics of {Hj =

Yj − β̂>Xj : j = 1, · · · , N} satisfying H(1) ≥ H(2) ≥ · · · ≥ H(N). Similar to the

decomposition in (3.1), the index set In = {sj : j = 1, · · · , n} is decomposed as

In = Un ∪Ln. Then, by the same argument used in the first-step estimation, the

second-step estimator of µ is defined by

µ̂Sec = arg min
µ∈U ,nτ̃∈N

1

nτ̃

nτ̃∑
j=1

(
H(j) − µ

)2
s.t. |Γnτ̃ | < τ̃,

where Γn = 1/[n/2]
∑

j∈Un(Yj − β̂>Xj) − 1/(n− [n/2])
∑

j∈Ln(Yj − β̂>Xj) and

τ̃ is a tuning parameter. Equivalently,

µ̂Sec = arg min
µ∈U ,nλ̃∈N

1

n
λ̃

nλ̃∑
j=1

(
H(j) − µ

)2
+ λ̃ |Γnλ̃ |. (3.6)
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Here the tuning parameter λ̃ ≥ 0 may be different from that in (3.4), but also

satisfies Condition C3. The objective function in (3.6) is a convex function of

µ, and the estimator of (3.6) is a PMLS estimator as well. Comparing with the

estimation procedure in (3.4), the data set {(Xsj , Ysj ) : j = 1, · · · , ñ} used here

should be different from the data set {(Xkj , Ykj ) : j = 1, · · · , n∗} used in (3.4).

Let ñ be the size of the sample from f̃ . The following conditions are required

to establish the estimation consistency for the second-step estimator of µ.

C5. ñ→∞ and n∗/ñ→ c 6= 0 as N →∞.

C6. Condition C4 holds when the notations are replaced by the above accord-

ingly.

Unlike C2, here the uniqueness assumption on f̃ is not required. It is because the

penalty for Γn in (3.6) ensures that most of εsj , j = 1, · · · , ñ, have the common

mean µ.

Denote σ̃2 = E
f̃
[(ε− µ)2], c = 1− E[X>](E[XX>])−1E[X] and

Ω−1(X, θ) = (E[XX>])−1 + (E[XX>])−1E[X]E[X>]
(E[XX>])−1

c
.

Theorem 2. Under the conditions in Theorem 1, Conditions C5 and C6, when

λ̃ satisfies the same condition of λ as given in Condition C3, and {εkj , j =

1, · · · , n∗} and {εsj , j = 1, · · · , ñ} are not overlapped, then the second-step esti-

mator in (3.6) satisfies
√
ñ
(
µ̂Sec − µ

)
d−→ N

(
0, σ̃2 + σ2∗E[X>]E[Ω−1(X)]E[X]

)
(ñ→∞).

Here the constraint of non-overlapping between {εkj , j = 1, · · · , n∗} and

{εsj , j = 1, · · · , ñ} is only for the simplicity of proof and representation. The

condition can be replaced by f∗ 6= f̃ and can be further reduced to that the

number no of overlapping elements in these two sets {εsj , j = 1, · · · , ñ} and

{εkj , j = 1, · · · , n∗} satisfies no/ñ = o(1). After n∗ and ñ being determined, the

condition can be checked by the methods of testing distributions to be equal; the

details are omitted here. By the theorem, the second-step PMLS estimator µ̂Sec
is consistent and normally distributed asymptotically.

3.3. A summary of the algorithm

The above estimation procedures involve two tuning parameters: τ and τ̃ or

λ and λ̃. We use the tuning parameters τ and τ̃ to design the algorithm. The

parameters can be chosen by the cross-validation. But as nτ and nτ̃ are the func-

tions of τ and τ̃ respectively, the cross-validation algorithm used needs to take
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this fact into consideration. If the discrete function s(n) = 1/n
∑n

j=1G(j)(β, µ)

is approximated by a continuously differentiable function, and a prior distribu-

tion π(β, µ, n) for (β, µ, n) is assumed, then, criterion for the Bayesian cross-

validations for τ and τ̃ can be defined, respectively, as

CV (τ) +
(p+ 2) log nτ

nτ
and CV (τ̃) +

(p+ 2) log nτ̃
nτ̃

,

where CV (·) is the cross-validation criterion defined by Fan and Li (2001). The

above Bayesian cross-validations do not depend on the prior distribution, and

they are in fact the large-sample criteria. Combining the above estimation pro-

cedure with the cross-validation for tuning parameter selection, the whole algo-

rithm can be summarized into the following steps:

Step 1. Initial estimator of (β, µ). Let (β1, µ1) be an initial selection of (β, µ),

and {(Ykj −X>kjβ
1 − µ1)2 : j = 1, · · · , N} be the order quantities of the original

squared quantities {(Yj −X>j β1 − µ1)2 : i = 1, · · · , N} in descending order. For

each tuning parameter τ , the full data set T = {(Xkj , Ykj ) : i = 1, · · · , nλ} is

divided at random into cross-validation training sets T − T ν and test sets T ν ,

ν = 1, · · · , 5, and then the initial estimator (β̂(ν)(τ), µ̂
(ν)

(τ)) is obtained by the

training set T − T ν via the method given in the previous subsection.

Step 2. Selection of τ . Write G
(ν)
i (τ) = (Yi −X>i β̂(ν)(τ)− µ̂(ν)(τ))2 and let{

G
(ν)
(j) (τ) =

(
Ykj −X>kj β̂

(ν)(τ)− µ̂(ν)(τ)
)2

: (Xkj , Ykj ) ∈ T ν
}

be the order statistic of {G(ν)
i (τ) : (Xkj , Ykj ) ∈ T ν} in descending order. Define

a Baysian cross-validation criterion as

CV (τ) =
1

nλ

5∑
ν=1

∑
(Xkj ,Ykj )∈T ν ,1≤j≤nλ

G
(ν)
(j) (τ) +

(p+ 2) log nτ
nτ

.

We then get an estimator τ̂ by minimizing CV (τ).

Step 3. Final estimator of β. With the selected estimator τ̂ , we estimate β

as the first component β̂ of the following vector:(
β̂>, µ̂

)>
= arg min

β∈B,µ∈U

1

n̂τ

n̂τ∑
j=1

G(j)(β, µ) + λ̂ |Υn̂τ (Y, µ)| . (3.7)

Step 4. Initial estimator of µ. With the estimator β̂ obtained above, and

for each tuning parameter τ̃ and the training set T − T ν , we find the estimator

µ̂
(ν)

(τ̃) by the method given in the previous subsection.

Step 5. Selection of τ̃ . Write G
(ν)
i (τ̃) = (Yi −X>i β̂ − µ̂

(ν)
(τ̃))2 and let



1276 LU LIN, PING DONG, YUNQUAN SONG AND LIXING ZHU{
G

(ν)
(j) (τ̃) =

(
Ykj −X>kj β̂ − µ̂

(ν)
(τ̃)
)2

: (Xkj , Ykj ) ∈ T ν
}

be the order statistic of {G(ν)
i (τ̃) : (Xkj , Ykj ) ∈ T ν} in descending order. Define

the Bayesian cross-validation criterion as

CV (τ̃) =
1

nτ̃

5∑
ν=1

∑
(Xkj ,Ykj )∈T ν ,1≤j≤nτ̃

G
(ν)
(j) (τ̃) +

2 log nτ̃
nτ̃

.

We then get an estimator ̂̃τ by minimizing CV (τ̃).

Step 6. Final estimator of µ. With the selected estimator ̂̃τ , we estimate µ

by

µ̂Sec = arg min
µ∈U

1

n̂τ̃

n̂τ̃∑
j=1

(
H(j) − µ

)2
+ ̂̃τ |Γn̂τ̃ |. (3.8)

4. Extension and Discussions

It is known that there may be more than one distribution in F that can

attain the upper expectation. In this section we first recommend an extended

method to remove the uniqueness assumption on f∗ in C2. It can be seen from

the proof of Theorem 1 that the uniqueness assumption is only to guarantee that

most of εkj , j = 1, · · · , n∗, have the same mean µ∗. Therefore, all we need in the

data selection procedure is to identify the data that satisfy the first two order

moment conditions: εkj , j = 1, · · · , n∗, have the same mean µ∗ and the variance

σ2∗.

Let {D(j) = Ylj − X>lj β̂LS , j = 1, · · · , N} be the order statistics of {Dj =

Yj −X>j β̂LS , j = 1, · · · , N} in descending order. Similar to (3.1), the index set

In = {lj : j = 1, · · · , n} is decomposed as In = Un ∪ Ln. Write

Λn(X,Y ) =
1

[n/2]

∑
j∈Ln

Dj −
1

n− [n/2]

∑
j∈Ln

Dj .

The proof of Lemma 1 given in the Supplement shows

1

n

n∑
i=1

(Yi −X>i β̂LS) =
1

n

n∑
i=1

µi −
1

N

N∑
j=1

µjE[X>]E−1[XX>]E[X] +Op

(
1√
N

)
.

Thus, we can use Λn(X,Y ) to measure the difference among the means µlj , j =

1, · · · , n, and then use |Λn(X,Y )| < τ1 to control the difference among the means

µlj for all j. Then an improved estimator of β is defined as the first component

of the following solution:
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(β̂>I , µ̂I)
>=arg min

β∈B,µ∈U ,nλ∈N

{ 1

nλ

nλ∑
j=1

G(j)(β, µ)+λ|Υnλ(Y, µ)|+λ1|Λnλ(X,Y )|
}
,

(4.1)

where λ ≥ 0 and λ1 ≥ 0 are two tuning parameters. We now use two penalties

Λn and Υn(Y, µ) to make sure that the selected data satisfy the first and second

order moment conditions. Here a possible choice of nλ is

nτ = max {n : |Υn(Y, µ) < τ, |Λn(X,Y )| < τ1} .

Without the uniqueness assumption on f∗, Condition C2 is replaced by

C7. The number nc of the errors satisfying the first two order moment conditions

tends to infinity as N →∞.

Theorem 3. Under the model (2.5), suppose Conditions C1, C4 and C7 hold, λ

and λ1 satisfy condition C3. Then the PMLS estimator defined in (4.1) satisfies

√
nc

[
(β̂I − β)>, µ̂I − µ∗

]> d−→ N
(
0, σ2∗E

−1[Φ(X)]
)

(nc →∞),

where µ∗ and σ2∗ are defined in the previous section.

A proof of the theorem is given in the Supplement.

Also we can use the second-step estimation procedure given in the previous

section to construct the consistent estimator for µ. Let {HI
(j) = Ymj

− β̂>I Xmj
:

j = 1, · · · , N} be the order statistic of {HI
j = Yj − β̂>I Xj : j = 1, · · · , N}

in descending order, and In = Un ∪ Ln be the decomposition of the index set

In = {mj : j = 1, · · · , n} as in (3.1). The second-step estimator of µ is then

defined by

µ̂
I
Sec = arg min

µ∈U ,nλ̃∈N

1

n
λ̃

nλ̃∑
j=1

(
HI

(j) − µ
)2

+ λ̃ |ΓInλ̃ |, (4.2)

where ΓIn = (1/[n/2])
∑
j∈Un

HI
j − (1/(n− [n/2]))

∑
j∈Ln

HI
j . Then, this second-step

estimator is consistent.

Theorem 4. Under the conditions of Theorem 3, Conditions C5 and C6, when

λ̃ satisfies condition C3 and {εlj , j = 1, · · · , nc} and {εmj
, j = 1, · · · , ñ} are not

overlapped, then the second-step estimator in (4.2) satisfies
√
ñ
(
µ̂
I
Sec − µ

)
d−→ N

(
0, σ̃2 + σ2∗E[X>]E[Ω−1(X)]E[X]

)
(ñ→∞),

where σ̃2, σ2∗ and Ω(X, θ) are defined in the previous section.

The difficulty we are facing now is the computational complexity because
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there are three tuning parameters: λ, λ1 and λ̃. The computational steps are

similar to those in the previous section. Because of the complexity, if the prior

information on the uniqueness of the distribution f∗ is available, we prefer to use

the method given in the previous section to construct the estimators.

Consider the special case of β = 0. The model is simplified to

Y = ε. (4.3)

We can see how the upper expectation µ = E[ε] = E[Y ] is estimated consistently

whereas the existing result only derives µ ≤ Y ≤ µ. Although the methods

proposed can be used, estimation of this simple model, becomes much simpler.

Let {Y(j) = Ytj , j = 1, · · · , N} be the order statistics of {Yj , j = 1, · · · , N} in

descending order. For the index set In = {tj : j = 1, · · · , n}, we define the

decomposition as In = Un ∪ Ln as (3.1). Write ∆n(Y ) = 1/[n/2]
∑

j∈Un Yj −
1/(n− [n/2])

∑
j∈Ln Yj . Then, the estimator for µ is defined by

µ̂ = arg min
µ∈U ,nλ∈N

1

nλ

nλ∑
j=1

(Y(j) − µ)2 + λ|∆nλ(Y )|, (4.4)

where λ ≥ 0 is a tuning parameter.

Let ñ be the sample size from f̃ given in (3.5). We need the following simpler

conditions than before:

C8. The variances σ2i of εi exist for all i = 1, · · · , N .

C9. ñ→∞ as N →∞.

C10. Condition C4 holds when the notations are replaced by the above accord-

ingly.

Theorem 5. Suppose that Conditions C3, and C8-C10 hold. Then the PMLS

estimator µ̂ defined in (4.4) satisfies
√
ñ(µ̂− µ)

d−→ N
(
0, σ2∗

)
(ñ→∞).

5. Concluding Remarks

This paper studied regression analysis with distribution randomness, and

proposed some estimation methods for structing consistent estimators. Under the

framework of distribution randomness, we define an upper expectation regression

and construct consistent estimators for model parameters. Some issues are of

importance.

First, the conditional upper expectation of error, given X, is required to be

free of X. This condition is used to guarantee the identifiability of the upper
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expectation regression so that we can estimate the parameters β and µ. As

discussed in Section 1, the model considered in the paper can be regarded as

an extension of Huber’s upper expectation (Huber (1981)), and parallels to the

classical regression setting with independence between ε and X. It is naturally

to ask whether this condition can be relaxed. For instance, consider the model

E[Y |X] = g(β,X) + µ[X], (5.1)

where both g(β,X) and µ[X] are functions of the variable X. Clearly, without

further constraints on their structures, the model is unidentifiable. Furthermore,

even if the model is identifiable, both parameter and function may not be es-

timable. To explain the two difficulties, consider the identifiability issue first.

Similar to the classical partially parametric models, for model identifiability, the

function µ[X] should have a structure such that it can be separated from g(β,X).

A possible scenario is that µ[X] = m(η>X) for an unknown function m(·) and an

unknown parameter vector η that is orthogonal to β such that g(β,X) + µ[X] is

identifiable. A parallel in the classical setting is the partially linear/parametric

single-index model. However, even with this would-be-identifiable structure, es-

timating the function µ[X] is still difficult because, from the data grouping ap-

proach described in Section 3, each group might not have enough data for different

Xi to construct consistent estimators.

Second, Condition C4 gives the range of the initial choice of n when the

penalized estimation is used. This condition is mainly for technical purpose in

the proof of estimation consistency and the identifiability of tuning parameter τ .

It is also worth of a further investigation.

Third, our methodology is computationally intensive because it involves the

choices of three tuning parameters in different scenarios.

Fourth, because of the lack of the information on the underlying distribution

for every observation, the convergence rate of the estimator is slower than the

typical rate of 1/
√
n in the classical parametric regression setting. Due to its

difficulties, our study is regarded as a first attempt, while provides good oppor-

tunities for further study.

Supplementary Materials

Proofs and numerical studies can be found in the online supplementary ma-

terials.
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