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Abstract: Mixed-effects models are commonly used to fit longitudinal or repeated

measures data. A complication arises when the response is censored, for example,

due to limits of quantification of the assay used. Although normal distributions are

commonly assumed for random effects and residual errors, such assumptions make

inferences vulnerable to outliers. The sensitivity to outliers and the need for heavy

tailed distributions for random effects and residual errors motivate us to develop a

likelihood-based inference for linear and nonlinear mixed effects models with cen-

sored response (NLMEC/LMEC) based on the multivariate Student-t distribution.

An ECM algorithm is developed for computing the maximum likelihood estimates

for NLMEC/LMEC with the standard errors of the fixed effects and the exact like-

lihood value as a by-product. The algorithm uses closed-form expressions at the

E-step, that rely on formulas for the mean and variance of a truncated multivariate-

t distribution. The proposed algorithm is implemented in the R package tlmec. It

is applied to analyze longitudinal HIV viral load data in two recent AIDS studies.

In addition, a simulation study is conducted to examine the performance of the

proposed method and to compare it with the approach of Vaida and Liu (2009).

Key words and phrases: Censored data, ECM algorithm, HIV viral load, influential

observations, mixed-effects models, outliers.

1. Introduction

Linear and nonlinear mixed-effects models (LME/NLME) are frequently

used to analyze grouped data because they are capable of modeling the within-

subject correlations often presented in this type of data (Pinheiro and Bates

(2000)). Examples of grouped data include longitudinal data, repeated measures,

and multilevel data. However, in such longitudinal studies, as those on environ-

mental pollution and infection diseases, measurements of some variables may be

subjected to certain threshold values below or above which the measurements

are not quantifiable. For instance, viral load measures the amount of actively

replicating virus and, depending upon the diagnostic assays used, its measure-

ment may be subjected to detection limits, below or above which they are not
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quantifiable. The proportion of censored data in these studies may be nontrivial

and considering such crude/adhoc methods is substituting values for censored

observations (Vaida and Liu (2009)) can lead to biased estimates of fixed ef-

fects and variance components (Wu (2010)). As alternatives to crude imputation

methods, Hughes (1999) proposed a likelihood-based Monte Carlo expectation-

maximization (MCEM) algorithm for LME with censored responses (LMEC).

Vaida, Fitzgerald, and DeGruttola (2007) proposed a hybrid EM (HEM) al-

gorithm for linear and nonlinear mixed-effects models with censored responses.

Vaida and Liu (2009) proposed an exact EM-type algorithm for LMEC/NLMEC

that uses closed-form expressions at the E-step, as opposed to Monte Carlo sim-

ulation, leading to an improvement in the speed of computation up to an order of

10. More recently, Matos et al. (2013) provided some additional tools, including

influence diagnostics analyses, for LMEC/NLMEC.

In the framework of LMEC/NLMEC, random effects and within-subject er-

rors are routinely assumed to be normal for mathematical convenience. However,

this is not always realistic because of atypical observations. To deal with the prob-

lem of atypical observations in LME with complete responses, proposals have

been made in the literature to replace normality with a more flexible class of dis-

tributions. For instance, Pinheiro, Liu, and Wu (2001) proposed a multivariate-t

linear mixed model (t-LME) and demonstrated its robustness against outliers

through extensive simulations. Lin and Lee (2006) and Lin and Lee (2007) de-

veloped some additional tools for t-LME from likelihood-based and Bayesian

perspectives. Arellano-Valle et al. (2012) proposed an extension of the normal

censored regression model to the case where the error terms follow a univariate-t

distribution. Recently, in the context of heavy–tailed LMEC/NLMEC, Lachos,

Bandyopadhyay, and Dey (2011) advocated the use of the normal/independent

(NI) class of distributions (Liu (1996)) and adopted a Bayesian framework to

carry out posterior inference. Although some work with elliptical distributions

has recently been published, there are no studies on censored LMEC/NLMEC un-

der the Student-t family from a frequentist perspective. In this paper, we propose

a robust parametric modeling of LMEC/NLMEC based on the multivariate-t dis-

tribution so that the t-LMEC/t-NLMEC is defined and a fully likelihood-based

approach is carried out, including the implementation of an exact ECM algo-

rithm for maximum likelihood (ML) estimation. As in Vaida and Liu (2009),

we show that the E-step reduces to computing the first two moments of certain

truncated multivariate-t distributions. The general formulas for these moments

were derived by Ho et al. (2012). They require the multivariate-t cumulative

density function (cdf), for which we use the mvtnorm package in R. The like-

lihood function is easily computed as a by-product of the E-step and is used

for monitoring convergence and for model selection using the Akaike information
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criterion (AIC), the Bayesian information criterion (BIC), or the likelihood ratio

test (LRT).

The rest of the paper is organized as follows. In Section 2 we introduce some

notation and outline the main results related to the multivariate-t and truncated-

t distributions. In Section 3 the t-LMEC and related likelihood-based inference

are presented. In Sections 4 the extension to more general t-NLMEC is discussed.

The advantage of the proposed methodology is illustrated through the analysis

of two case studies of HIV viral load in Section 5. Section 6 presents a simulation

study to compare the performance of our methods with other normality-based

methods. Section 7 concludes with a short discussion of issues raised by our

study and some possible directions for the future research.

2. The Multivariate t and Truncated t-distributions

A random variableY having a p-variate t distribution with location vector µ,

scale matrix Σ and degrees of freedom ν, denoted by tp(µ,Σ, ν), can be written

as

Y = µ+ U−1/2Z, ∼ Np(0,Σ), U ∼ Gamma
(ν
2
,
ν

2

)
,

where Z and U are independent and Gamma(a, b) has mean a/b and density

G(.|a, b). The density of Y, is

tp(y|µ,Σ, ν) =
Γ((p+ ν)/2)

Γ(ν/2)πp/2
ν−p/2|Σ|−1/2

(
1 +

δ

ν

)−(p+ν)/2

,

where Γ(.) is the standard gamma function and δ = (y − µ)⊤Σ−1(y − µ) is the

Mahalanobis distance. The cdf is denoted by Tp(.|µ,Σ, ν). If ν > 1, µ is the

mean of Y, and if ν > 2, ν(ν − 2)−1Σ is its covariance matrix. As ν tends

to infinity, U converges to one with probability one, and so for large ν, Y is

approximately multivariate normal with mean µ and covariance matrix Σ.

Proposition 1. Let Y ∼ tp(µ,Σ, ν) and Y be partitioned as Y⊤ = (Y⊤
1 ,Y

⊤
2 )

⊤,

with dim(Y1) = p1, dim(Y2) = p2, p1+ p2 = p, and where Σ =

(
Σ11 Σ12

Σ21 Σ22

)
and

µ = (µ⊤
1 ,µ

⊤
2 )

⊤, are the corresponding partitions of Σ and µ. Then, we have

(i) Y1 ∼ tp1(µ1,Σ11, ν); and

(ii) The conditional cdf of Y2|Y1 = y1 is given by

P (Y2 ≤ y2|Y1 = y1) = Tp2

(
y2|µ2.1, Σ̃22.1, ν + p1

)
,

where Σ̃22.1 = [(ν + δ1)/(ν + p1)]Σ22.1, δ1 = (y1−µ1)
⊤Σ−1

11 (y1−µ1), Σ22.1 =

Σ22 −Σ21Σ
−1
11 Σ12, and µ2.1 = µ2 +Σ21Σ

−1
11 (y1 − µ1).
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The proof of (i) is straightforward from (1). The proof of (ii) follows from

Proposition 4 given in Arellano-Valle and Genton (2010) by setting λ = τ = 0.

Let Ttp(µ,Σ, ν;A) be the distribution tp(µ,Σ, ν) constrained to lie within

the right-truncated hyperplane

A = {x = (x1, . . . , xp)
⊤|x1 ≤ a1, . . . , xp ≤ ap}. (2.1)

Thus X ∼ Ttp(µ,Σ, ν;A) if its density is

f(x|µ,Σ, ν;A) =
tp(x|µ,Σ, ν)

Tp(a|µ,Σ, ν)
IA(x),

where a = (a1, . . . , ap)
⊤ and IA(x) is the indicator function of A. The proofs of

the following propositions are given in the Web Appendix A.

Proposition 2. If X ∼ Ttp(µ,Σ, ν;A) with A as (2.1), then the kth moment of

X, k = 0, 1, 2, is

E

{(
ν + p

ν + δ

)r

X(k)

}
= cp(ν, r)

Tp(a|µ,Σ∗, ν + 2r)

Tp(a|µ,Σ, ν)
EW{W(k)},

W ∼ Ttp(µ,Σ
∗, ν + 2r;A),

where

cp(ν, r) =

(
ν + p

ν

)r (Γ((p+ ν)/2)Γ((ν + 2r)/2)

Γ(ν/2)Γ((p+ ν + 2r)/2)

)
,

δ = (X − µ)⊤Σ−1(X − µ), a = (a1, . . . , ap)
⊤, Σ∗ = [ν/(ν + 2r)]Σ, X(0) = 1,

X(1) = X, X(2) = XX⊤, and ν + 2r > 0.

Proposition 3. Let X ∼ Ttp(µ,Σ, ν;A) with A as (2.1). Consider the partition

X⊤ = (X⊤
1 ,X

⊤
2 ) with dim(X1) = p1, dim(X2) = p2, p1 + p2 = p, and the

corresponding partition of the parameters µ, Σ, a (ax1 ,ax2) and A (Ax1 ,Ax2).

Then using the notation of Proposition 1, the conditional kth moment of X2 is

E
{(ν+p

ν+δ

)r
X

(k)
2 |X1

}
=

dp(p1, ν, r)

(ν + δ1)r
Tp2(a

x2 |µ2.1, Σ̃
∗
22.1, ν + p1 + 2r)

Tp2(a
x2 |µ2.1, Σ̃22.1, ν + p1)

EW{W(k)},

where W ∼ Ttp2(µ2.1, Σ̃
∗
22.1, ν + p1 + 2r;Ax2), δ = (X− µ)⊤Σ−1(X− µ),

δ1 = (X1 − µ1)
⊤Σ−1

11 (X1 − µ1), ax2 = (a1, . . . , ap2)
⊤,

Σ̃
∗
22.1 =

(
ν + δ1

ν + 2r + p1

)
Σ22.1,

dp(p1, ν, r) = (ν + p)r
(
Γ((p+ ν)/2)Γ((p1 + ν + 2r)/2)

Γ((p1 + ν)/2)Γ((p+ ν + 2r)/2)

)
, and ν + p1 + 2r > 0.
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Formulas for E[W] and E[WW⊤], where W ∼ Ttp(µ,Σ, ν;A), have been

recently developed in closed form by Ho et al. (2012); they depend on the

multivariate-t cdf. The computation uses existing functions for the cumulative

t-distribution, for which the pmvt() function of the mvtnorm library (Genz et al.

(2008)) from R can be used.

3. Linear Mixed-effects with Censored Response

3.1. Model specification

For obtaining robust estimates of the parameters, we proceed as in Pinheiro,

Liu, and Wu (2001) by considering a generalization of the classical N-LME as

follows:

yi =Xiβ + Zibi + ϵi, with (3.1)

(bi, ϵi)
⊤ ∼ tni+q{0,Diag(D, σ2Ini), ν}. (3.2)

Here the subscript i is the subject index; Ip denotes the p × p identity matrix,

Diag(A,B) is a block diagonal matrix whose elements are the square matrices A

and B, yi = (Yi1, . . . , Yini)
⊤ is a ni×1 vector of observed continuous responses for

sample unit i, Xi is the ni×p design matrix corresponding to the fixed effects, β

is a p×1 vector of population-averaged regression coefficients called fixed effects,

Zi is the ni× q design matrix corresponding to the q×1 vector of random effects

bi, ϵi is the ni×1 vector of random errors, and the dispersion matrix D = D(α)

depends on unknown and reduced parameters α.

Note that bi and ϵi are uncorrelated, once Cov(bi, ϵi)=E[biϵ
⊤
i ]=E[E(biϵ

⊤
i |

Ui)] = 0, where Ui is a scalar generated from Gamma(ν/2, ν/2). Classical in-

ference on the parameter vector θ = (β⊤, σ2,α⊤, ν)⊤ is based on the marginal

distribution of yi, yi
ind.∼ tni(Xiβ,Σi, ν), for i = 1, . . . , n, where Σi = σ2Ini +

ZiDZ⊤
i . The estimates from the multivariate t-LME are more robust against

outliers than those based on the standard LME. In a simulation study, Pinheiro,

Liu, and Wu (2001) showed that the t-LME substantially outperforms the nor-

mal or standard LME when outliers are present in the data. This issue has also

been discussed by Wu (2010) in the context of censored mixed-effects models.

Following Vaida and Liu (2009), we consider the case in which the response

Yij is not fully observed for all i, j. Thus, let the observed data for the i-th

subject be (Qi,Ci), where Qi represents the vector of uncensored reading or

censoring level, and Ci the vector of censoring indicators:

yij ≤ Qij if Cij = 1, and yij = Qij if Cij = 0, (3.3)

so that the t-LMEC is defined. For ease of presentation, we assume that the data

are left-censored. The extensions to arbitrary censoring are immediate. In the
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next section, we present the likelihood function. It can be easily computed by

using a sequence of simple steps.

3.2 The likelihood function

The first step is to treat separately the observed and censored components

of yi. Partition yi into the observed and censored components: yi = vec(yo
i ,y

c
i ),

with Cij = 0 for all elements in yo
i , and 1 for all elements in yc

i ; write accordingly

Qi = vec(Qo
i ,Q

c
i ), where vec(.) denotes the function which stacks vectors or

matrices of the same number of columns, with Σi =
(Σoo

i Σoc
i

Σco
i Σ

cc
i

)
. Then, from

Proposition 1, we have that yo
i ∼ tno

i
(Xo

iβ,Σ
oo
i , ν), and yc

i |yo
i ,∼ tnc

i
(µco

i ,Sco
i , ν+

no
i ), where

µco
i = Xc

iβ +Σco
i Σoo−1

i (yo
i −Xo

iβ), Sco
i =

(
ν +Q(yo

i )

ν + no
i

)
Σcc.o

i , (3.4)

with Σcc.o
i = Σcc

i − Σco
i Σoo−1

i Σoc
i and Q(yo

i ) = (yo
i − Xo

iβ)
⊤Σoo−1

i (yo
i − Xo

iβ).

Thus, the likelihood for cluster i is

Li(θ|y) = f(Qi|Ci,θ) = f(yc
i ≤ Qc

i |yo
i = Qo

i ,θ)f(y
o
i = Qo

i |θ),
= Tnc

i
(Qc

i |µco
i ,Sco

i , ν + no
i )tno

i
(Qo

i |Xo
iβ,Σ

oo
i , ν) = Li,

and the log-likelihood function for the observed data is given by ℓ(θ|y) =
∑n

i=1

{logLi}. This can be computed at each step of the EM-type algorithm without

additional computational burden, because the Li’s have already been computed

at the E-step. In addition, the log-likelihood function can be used to monitor

the convergence of the EM algorithm and for the model selection via AIC, BIC,

or LRT.

Lucas (1997) carried out an interesting study on the robust aspects of the

Student-tM-estimator in the univariate case using influence functions. He showed

that the protection against outliers is preserved only if the degrees of freedom

parameter are fixed. In this paper, we assume the degrees of freedom and the

shape parameters for Student-t to be fixed, and we use a model selection proce-

dure based on AIC or BIC to choose the most appropriate value of ν (see Lange,

Little, and Taylor (1989); Meza, Osorio, and De la Cruz (2011)). Thus, hereafter

we consider that the parameter vector is θ = (β⊤, σ2,α⊤)⊤.

3.3. The EM algorithm

The EM algorithm originally proposed by Dempster, Laird, and Rubin (1977)

has several appealing features such as stability of monotone convergence with

each iteration increasing the likelihood and simplicity of implementation. How-

ever, ML estimation in model (3.1)−(3.3) is complicated and the EM algorithm



MULTIVARIATE-T CENSORED MIXED-EFFECTS MODELS 1329

is less advisable due to the computational difficulty in the M-step. To cope with

this problem, we apply an extension of the EM algorithm, called the ECM algo-

rithm (Meng and Rubin (1993)), that shares the appealing features of the EM

and has a typically faster convergence rate than the EM.

Let y = (y⊤
1 , . . . ,y

⊤
n )

⊤, b = (b⊤
1 , . . . ,b

⊤
n )

⊤, u = (u1, . . . , un)
⊤, Q = vec(Q1,

. . . ,Qn), and C = vec(C1, . . . ,Cn) such that we observe (Qi,Ci) for the i-th

subject. Treating b, u, and y as hypothetical missing data, and augmenting

with the observed data Q,C, we set yc = (C⊤,Q⊤,y⊤,b⊤,u⊤)⊤. Hence, the

ECM algorithm is applied to the complete data log-likelihood function ℓc(θ|yc) =∑n
i=1 ℓi(θ|yc), with

ℓi(θ|yc) = −1

2

[
ni log σ

2 +
ui
σ2

(yi −Xiβ − Zibi)
⊤(yi −Xiβ − Zibi)

+ log |D|+ uib
⊤
i D

−1bi

]
+ h(ui|ν) + C,

where C is a constant that is independent of the parameter vector θ and h(ui|ν)
is the density of Gamma(ν/2, ν/2). Given the current value θ = θ̂

(k)
, the E-

step calculates the conditional expectation of the complete data log-likelihood

function

Q(θ|θ̂
(k)

) =

n∑
i=1

Qi(θ|θ̂
(k)

) =

n∑
i=1

Q1i(β, σ
2|θ̂

(k)
) +

n∑
i=1

Q2i(α|θ̂
(k)

), (3.5)

where

Q1i(β, σ
2|θ̂

(k)
) = −ni

2
log σ2 − 1

2σ2

[
â
(k)
i − 2β̂

(k)⊤
X⊤

i (ûy
(k)
i − Ziûb

(k)

i )

+û
(k)
i β̂

(k)⊤
X⊤

i Xiβ̂
(k)

]
and

Q2i(α|θ̂
(k)

) = −1

2
log |D| − 1

2
tr

(
ûb2

i

(k)
D−1

)
.

Here

â
(k)
i = tr

(
ûy2

i

(k)
− 2ûybi

(k)
Z⊤
i + ûb2

i

(k)
Z⊤
i Zi

)
;

ûb2
i

(k)
= E{uibib

⊤
i |Qi,Ci, θ̂

(k)
}

= σ̂2
(k)

Λ̂
(k)

i + φ̂
(k)
i (ûy2

i

(k)
− ûy

(k)
i β̂

(k)⊤
X⊤

i −Xiβ̂
(k)

ûy
(k)⊤
i

+û
(k)
i Xiβ̂

(k)
β̂
(k)⊤

X⊤
i )φ̂

⊤
i ;

ûb
(k)

i = E{uibi|Qi,Ci, θ̂
(k)

} = φ̂
(k)
i (ûy

(k)
i − û

(k)
i Xiβ̂

(k)
);
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ûybi

(k)
= E{uiyib

⊤
i |Qi,Ci, θ̂

(k)
} = (ûy2

i

(k)
− ûy

(k)
i β̂

(k)⊤
X⊤

i )φ̂
⊤
i ,

with

Λ̂
(k)

i = (σ̂2
(k)

D̂−1(k) + Z⊤
i Zi)

−1 and φ̂
(k)
i = Λ̂

(k)

i Z⊤
i .

Note that in this case we do not consider the computation of E[h(ui|ν)|Q,C, θ̂
(k)

]

because ν is fixed.

The conditional maximization (CM) step then conditionally maximizes

Q(θ|θ̂
(k)

) with respect to θ and obtains a new estimate θ̂
(k+1)

β̂
(k+1)

=
( n∑

i=1

û
(k)
i X⊤

i Xi

)−1
n∑

i=1

X⊤
i

(
ûy

(k)
i − Ziûb

(k)

i

)
, (3.6)

σ̂2
(k+1)

=
1

N

n∑
i=1

[
â
(k)
i − 2β̂

(k)⊤
X⊤

i (ûy
(k)
i −Ziûb

(k)

i )+û
(k)
i β̂

(k)⊤
X⊤

i Xiβ̂
(k)

]
, (3.7)

D̂(k+1)=
1

n

n∑
i=1

ûb2
i

(k)
, (3.8)

where N =
∑n

i=1 ni. In our EM algorithm we assume that the scale matrix D

is unstructured and, in this case, α is the upper triangular elements of D. The

algorithm is iterated until the distance involving two successive evaluations of

the log-likelihood, |ℓ(θ̂
(k+1)

)/ℓ(θ̂
(k)

)− 1|, is sufficiently small. From (3.6)−(3.8)

it is easy to see that the E-step reduces to the computation of ûy2
i , ûyi, and

ûi. These expected values can be determined in closed form, using Propositions

1−3, as follows (see the Web Appendix B for details).

1. If individual i has only censored components, from Proposition 2

ûy2
i = E{uiyiy

⊤
i |Qi,Ci, θ̂} =

Tni(Qi|µ̂i, Σ̂
∗
i , ν + 2)

Tni(Qi|µ̂i, Σ̂i, ν)
E{WiW

⊤
i },

ûyi = E{uiyi|Qi,Ci, θ̂} =
Tni(Qi|µ̂i, Σ̂

∗
i , ν + 2)

Tni(Qi|µ̂i, Σ̂i, ν)
E{Wi},

ûi = E{ui|Qi,Ci, θ̂} =
Tni(Qi|µ̂i, Σ̂

∗
i , ν + 2)

Tni(Qi|µ̂i, Σ̂i, ν)
,

where Wi ∼ Ttni(µ̂i, Σ̂
∗
i , ν + 2;Ai), µ̂i = Xiβ̂, Σ̂

∗
i =

ν

ν + 2
Σ̂i, Σ̂i = σ̂2Ini +

ZiD̂Z⊤
i and Ai = {Wi = (w1, . . . , wni)

⊤|w1 ≤ Qi1, . . . , wni ≤ Qini}.
2. If individual i has only non-censored components, then,

ûy2
i =

ν + ni

ν +Q(yi)
yiy

⊤
i , ûyi =

ν + ni

ν +Q(yi)
yi, ûi =

ν + ni

ν +Q(yi)
,
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where Q(yi) = (yi −Xiβ)
⊤Σ−1

i (yi −Xiβ).

3. If individual i has censored and uncensored components, then from Proposi-

tion 3 and the fact that {yi|Qi,Ci}, {yi|Qi,Ci,y
o
i }, and {yc

i |Qi,Ci,y
o
i } are

equivalent processes, we have

ûy2
i = E{uiyiy

⊤
i |yo

i ,Qi,Ci, θ̂} =

(
yo
iy

o⊤
i ûi ûiy

o
i ŵ

c⊤
i

ûiŵ
c
iy

o⊤
i ûiŵ2

c

i

)
,

ûyi = E{uiyi|yo
i ,Qi,Ci, θ̂} = vec(yoi ûi, ŵ

c
i ),

ûi = E{ui|yo
i ,Qi,Ci, θ̂} =

( no
i + ν

ν +Q(yo
i )

)Tp(Qi|µco
i , S̃co, ν + no

i + 2)

Tp(Qi|µco
i ,Sco, ν + no

i )
,

where

S̃co =
( ν +Q(yo

i )

ν + 2 + no
i

)
Σcc.o

i , ŵc
i = E{Wi},

and ŵ2
c

i = E{WiW
⊤
i }, with Wi ∼ Ttnc

i
(µco

i , S̃co, ν + no
i + 2;Ac

i ) and Σcc.o
i ,

µco
i , and Sco are as in (3.4).

3.4. Estimation of random effects and the expected information matrix

In this subsection, we consider the conditional approach by using the con-

ditional mean to estimate the random effects (Lin and Lee (2006); Ho et al.

(2012)); this is useful for evaluating such subject-specific quantities as individual

intercepts and slopes. Thus, if the values of parameter vector θ = (β⊤, σ2,α⊤)⊤

and ν are known, the conditional mean of bi given Ci and Qi is

b̂i(θ) = E{bi|Qi,Ci} = E{E{E{bi|ui}|yi, ui}|Qi,Ci}
= E{ΛiZ

⊤
i (yi −Xiβ)|Qi,Ci} = ΛiZ

⊤
i (ŷi −Xiβ), (3.9)

where Λi is defined in Subsection 3.3 and ŷi = E{yi|Qi,Ci} is the first moment

of the truncated multivariate-t distribution (Ttni(Xiβ,Σi, ν;Ai)). In practice,

the estimators of bi, b̂i, can be obtained by substituting the ML estimate θ̂ into

(3.9), which leads to b̂i = b̂i(θ̂). The conditional covariance matrix of bi given

Ci and Qi is

V ar{bi|Qi,Ci} = E{bib
⊤
i |Qi,Ci} − b̂i(θ)b̂i(θ)

⊤

=
ν + ni

ν + ni − 2
E
{
(

ν + ni

ν +Q(yi)
)−1|Qi,Ci

}
Λiσ

2 +ΛiZ
⊤
i V ar(yi|Qi,Ci)ZiΛi.

These expected values can be easily accomplished from Steps 1−3 given in Sec-

tion 3.3 as a by-product of our proposed ECM algorithm (E-step).

Louis (1982) derived a result that can be used to adjust the variances of

the estimated fixed effects for the information lost due to censoring. Using this
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method, from the results given in Appendix B in Lange, Little, and Taylor (1989),

an asymptotic approximation for the variances of the fixed effects is given by, see

Web Appendix C,

Jββ = V ar(β̂) =
( n∑

i=1

ν + ni

ν + ni + 2
X⊤

i Σ
−1
i Xi−

n∑
i=1

X⊤
i Σ

−1
i BiΣ

−1
i Xi

)−1
, (3.10)

where

Bi = V ar
{ ν + ni

ν +Q(yi)
(yi −Xiβ)|Qi,Ci

}
with yi ∼ Ttni(Xiβ,Σi, ν;Ai). Asymptotic confidence intervals and hypothesis

tests for the fixed effects are obtained assuming that the ML estimates β̂ has

approximately a Np(β,J
−1
ββ) distribution. In practice, Jββ is usually unknown

and needs to be replaced by its ML estimates J
β̂β̂

.

4. The Nonlinear Case

Extending the notation of the previous section and ignoring censoring, we

first propose a general mixed-effects model in which the random terms are as-

sumed to follow a multivariate-t distribution (t-NLME). Let yi = (yi1, . . . , yini)
⊤

denote the (continuous) response vector for subject i, and η = (η(Xi1,ϕi), . . .,

η(Xini ,ϕi))
⊤ be a nonlinear vector-valued differentiable function of the random

parameter ϕi and a vector of covariates Xi. The t-NLME can then be expressed

as

yi = η(ϕi,Xi) + ϵi, ϕi = Aiβ +Bibi, (4.1)

where the joint distribution of (bi, ϵi) is given as (3.2), Ai and Bi are known

design matrices of dimensions r × p and r × q, respectively, possibly depend-

ing on some covariable values, β is the (p × 1) vector of fixed effects, and

bi is the (q × 1) vector of random effects. Thus, from the properties of the

multivariate-t distribution, we have that marginally, ϕi
ind∼ tr(Aiβ,BiDB⊤

i , ν)

and ϵi
ind.∼ tni(0, σ

2Ini , ν) and, as in the linear case, they are uncorrelated be-

cause Cov(ϕi, ϵi) = 0. For NI-NLME with non censoring responses, the marginal

distribution is

f(y|θ) =
n∏

i=1

∫ ∞

0

∫
Rq

ϕni(yi; η(ϕi,Xi), u
−1
i σ2Ini)ϕq(ϕi;Aiβ, u

−1
i BiDB⊤

i )

×G(ui|
ν

2
,
ν

2
)dϕidui,

which generally does not have a closed form expression because the model func-

tion is not linear in the random effect. In the normal case, various first-order

Taylor series expansions of the model function around the conditional mode of
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bi, say b̃i, have been proposed to achieve tractable numerical optimizations (Wu

(2010)). Most algorithms for computing the approximate ML estimates θ̂ and the

estimators (predictors) of the random effects b̂i involve the iterative maximiza-

tion of the approximate log-likelihood functions ℓ(θ, b̃) =
∑n

i=1 log f(yi|θ, b̃i).

Following Taylor series expansions, we have a theorem that is useful for the im-

plementation of the EM algorithm; it uses simultaneously a neighborhood of bi

and β as expansions points, with the advantage that the likelihood is completely

linearized (in bi and β). This result can be considered as an extension of the

results in Lindstrom and Bates (1990) and Pinheiro and Bates (2000) for the

Student-t case. The proof is given in Web Appendix A.

Theorem 1. Let b̃i and β̃ be expansion points in a neighborhood of bi and β,

respectively. Under the t-NLME model in (4.1) we have the linearized model

ỹi = W̃iβ + H̃ibi + ϵi, i = 1, . . . , n, (4.2)

where ỹi = yi − η̃(Aiβ̃ +Bib̃i,Xi), bi
ind∼ tq(0,D, ν), ϵi

ind.∼ tni(0, σ
2Ini , ν),

H̃i =
∂η(Aiβ +Bibi,Xi)

∂b⊤
i

∣∣∣
bi=b̃i

, W̃i =
∂η(Aiβ +Bibi,Xi)

∂β⊤

∣∣∣
β=β̃

,

and η̃(β̃, b̃i) = η(Aiβ̃ +Bib̃i,Xi)− H̃ib̃i − W̃iβ̃.

The estimates of the random effects b̃, given in (3.9), can be used iteratively

in the linearization procedure from Theorem 1. Note that the distribution of

bi|yi is approximately symmetric (Student-t), and thus b̃i is the mode of the

distribution at each step. As in Vaida and Liu (2009), the linearization (L)

procedure to obtain the approximate ML estimates of θ = (β⊤, σ2,α⊤)⊤ consists

of iteratively solving the LME model (L-step) in (4.2). For the censored response,

the linearized model (4.2) is an LME with censored data that has the same

structure as (3.1)−(3.2), which is then solved as indicated in the previous section.

The matrices in (4.2) depend on the current parameter values and need to be

recalculated at each iteration. The algorithm iterates to convergence between

the L-, E-, and CM-steps. Extension to more general t-LMEC and to t-NLMEC

is discussed in the Web Appendix D.

5. Applications to HIV Data

We apply the proposed methods to the two HIV data sets previously analyzed

using LMEC models.

5.1. UTI data

The first application is to a study of 72 perinatally HIV-infected children
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Figure 1. UTI data. (a) Plot of the profile log-likelihood of the degrees of
freedom ν. (b) Individual profiles and overall mean (in log10 scale) using the
Normal and t distributions for HIV viral load at different follow-up times.
The trajectories for the influential individuals are numbered.

(Saitoh et al. (2008)). The data set is available in the R package (R Develop-

ment Core Team (2009)) lmec. Primarily due to treatment fatigue, unstruc-

tured treatment interruptions (UTI) are common in this population. Subop-

timal adherence can lead to ARV resistance and diminished treatment options

in the future. The subjects in the study had taken ARV therapy for at least

6 months before UTI, and the medication was discontinued for more than 3

months. Out of 362 observations, 26 were below the detection limits (50 or 400

copies/mL) and considered left-censored at those values. The individual pro-

files of viral load at different followup times after UTI are shown in Figure 1

(right panel). We consider a profile LME model with random intercepts bi as

yij = bi + βj + ϵij , where yij is the log10 HIV RNA for subject i at time tj , with

t1 = 0, t2 = 1, t3 = 3, t4 = 6, t5 = 9, t6 = 12, t7 = 18, and t8 = 24. Vaida and

Liu (2009) analyzed the same data set by fitting a similar N-LMEC (hereafter

LMEC) via the EM algorithm, but from Figure 1 given in Lachos, Bandyopad-

hyay, and Dey (2011) it is clear that inference based on normality assumptions

is questionable (presence of heavy tails). We revisit the UTI data with the aim

of carrying out robust inferences, from a frequentist perspective, by using the

Student-t distribution. The ML estimates were obtained using the ECM algo-

rithm described in Section 3. Starting values were obtained by using the library

lmec.

For the Student-t model, we assumed the degree of freedom ν known and, by

using the AIC criterion, we found ν = 10 (see left panel in Figure 1), indicating

that the normal model is inadequate. Table 1 presents the ML estimates and the
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Table 1. ML estimates (MLe) under normal and Student-t models fitted to
the UTI data. SE is the corresponding standard error. The Student-t model
has 10 degrees of freedom.

Model Parameter AIC BIC

β1 β2 β3 β4 β5 β6 β7 β8 σ2 α
normal MLe 3.604 4.166 4.241 4.360 4.566 4.569 4.677 4.794 0.341 0.765 844.117 883.034

SE 0.125 0.129 0.130 0.131 0.140 0.149 0.165 0.202
Student-t MLe 3.618 4.253 4.314 4.458 4.623 4.611 4.698 4.787 0.350 0.666 759.015 797.931

SE 0.125 0.129 0.130 0.131 0.140 0.149 0.165 0.202

Figure 2. UTI data. (a) Mahalanobis distance, (b) Estimated d2ei
(error)

and (c) Estimated d2bi
(R.E.), for the LMEC model.

corresponding standard errors of the fixed effects θ. Comparing these values we

notice a similarity between the estimates under normal and Student-t models.

Additionally, the inferences for the variance components are similar for the two

models, but are not comparable since they are on different scales. According

to the AIC or BIC values given in Table 1, we notice that the t-LMEC model

outperforms the LMEC model. For the LRT statistics described in Subsection

3.5, we obtained maximum log-likelihoods of −412.059 for the LMEC model and

−369.507 for the t-LMEC model, which gave the corresponding likelihood ratio

statistic of LRT = 42.552. Here the LRT statistic follows a equally weighted

mixture of χ2
0 and χ2

1 distributions (see the Web Appendix E). Therefore, the

resulting p-value 3.441 × 10−11 suggests the appropriateness of the use of the

multivariate-t distribution. With the missing-at-random assumption as in Vaida

and Liu (2009), our dropout (censored) model does not bias the inference regard-

ing the mean of βj . For both models the mean viral load E(yij) = βj increases

gradually throughout 24 months under the two models. For the best model (t-

LMEC), it increases from 3.62 at the time of UTI to 4.79 at 24 months. This is in

contrast with the mean profiles of the observed data alone, which show a leveling

off and a decrease in viral load between 6 and 12 months (see Figure 1 in Vaida

and Liu (2009)). The estimates of the between-subject (α) and within-subject

(σ2) scale parameters (in log10 scale) are 0.6662 and 0.3503, respectively.
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Figure 3. UTI data. (a) Estimated weight ûi for the t-LMEC fit. (b) The
influential observations for the LMEC are numbered.

To determine possible influential observations, we used the Mahalanobis dis-

tance d2i (θ) = (ŷi−Xiβ̂)
⊤Σ−1

i (ŷi−Xiβ̂), i = 1, . . . , 72. As in Pinheiro, Liu, and

Wu (2001), replacing θ and bi with their current estimates, we obtain a decompo-

sition for the Mahalanobis distance: d2i (θ̂) = −(1/σ̂2)êi
⊤êi+ b̂i

⊤
D̂b̂i,= d̂2ei + d̂2bi

where êi = ŷi −Xiβ̂ − Zib̂i and b̂i is as in (3.9). The estimated distances d2ei
(Error) and d2bi

(Random Effect-R.E.) are useful diagnostic statistics for iden-

tifying subjects with outlying observations (see, for example,Meza, Osorio, and

De la Cruz (2011)). Figure 2 presents these diagnostic statistics for the LMEC

model. Subject #42 has large values of d2i and d2ei , suggesting an outlying ob-

servation at the within-subject level (e-outlier). Moreover, observations #20,

#35 and #41 present large values of d2bi
, suggesting outlying observations at the

between-subject level (b-outlier). In a Bayesian analysis, these observations were

also detected as influential (Lachos, Bandyopadhyay, and Dey (2011)).

It is well known that outlying observations may affect the estimation of

the parameters under the normality assumption. However, when we use the

Student-t distribution, the EM algorithm allows one to accommodate discrepant

observations attributing small weights to them in the estimation procedure. The

estimated weights (ûi, i = 1, . . . , 72) for the t-LMEC model are presented in

Figure 3. We see there that observations #20, #35, #41 and #42, indicated as

outliers under the normal model, have smaller values of d2i and d2ei , confirming

the robust aspects of the ML estimates against outlying observations under the t-

LMEC model. This robustness is also observed in Figure 1(b), where the presence

of these outliers might lead to the underestimation of the predicted mean curve

for the LMECmodel as compared to the t-LMECmodel. In summary, we see that
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Table 2. ML estimates (MLe) under normal and Student-t models fitted to
the AIEDRP data. SE are the corresponding standard errors. The Student-t
model presented has 10 degrees of freedom.

Model Parameter AIC BIC

β1 β2 β3 β4 β5 σ2 α11 α12 α22

normal MLe 1.610 0.142 3.526 1.056 -0.004 0.265 0.01769 0.00016 0.00004 1610.814 1700.521
SE 0.015 0.095 0.024 0.268 0.001

Student-t MLe 1.611 0.161 3.524 0.987 -0.003 0.207 0.01611 0.00013 0.00004 1581.416 1623.908
SE 0.013 0.085 0.021 0.246 0.001

Figure 4. AIEDRP data. (a) plot of the profile log-likelihood of the degrees
of freedom ν. (b) Individual profiles and overall mean (in log10 scale) using
the Normal and t distributions for HIV viral load at different follow-up times.
The trajectories for the influential individuals are numbered.

the robust aspects of the t-LME models (Pinheiro, Liu, and Wu (2001)) against

outlying observations can extend to the case in which censoring components are

present.

5.2 AIEDRP study

The second AIDS case study is from the AIEDRP program, a large multi-

center observational study of subjects with acute and early HIV infection. We

consider 320 untreated individuals with acute HIV infection; see Vaida and Liu

(2009) for more details. Of the 830 recorded observations, 185 (22%) were above

the limit of assay quantification, hence they were considered as right-censored.

We considered a right-censored version and accommodate it within our NLME.

Following Vaida and Liu (2009), we chose the five-parameter NLME model (in-
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verted S-shaped curve)

yij = α1i +
α2

(1 + exp((tij − α3)/α4))
+ α5i(tij − 50) + ϵij ,

where yij is the log10 HIV RNA for subject i at time tij . The parameters α1i and

α2 represent subject-specific (random) set points and decrease from the maximum

HIV RNA. In the absence of treatment (following acute infection), the HIV RNA

varies around a set-point which may differ among individuals, hence the set point

was chosen to be subject-specific. The location parameter α3 indicates the time

point at which half of the change in HIV RNA is attained, α4 is a scale parameter

modeling the rate of decline, and α5i allows for increasing HIV RNA trajectory

after day 50. To force the parameters to be positive, we reparameterized as

follows: β1i = log(α1i) = β1 + b1i, βk = log(αk), k = 2, 3, 4, and α5i = β5 + b2i.

Within a classical framework, we used the Student-t (t-NLMEC) with the ECM

algorithm as described in Section 3. As in the previous application, the estimation

of the parameter ν was chosen following the strategy proposed by Lange, Little,

and Taylor (1989), which selected ν = 10 (see Figure 4(a)). This parameter

acts as a tuning constant in robust estimation methods and in our case we see

that is provided an adequate protection against outliers. For the sake of model

comparison, we also fit the normal NLMEC (hereafter NLMEC) counterparts,

which can be treated as the reduced t-NLMEC as ν tends to infinity.

Table 2 presents the ML estimates of the parameters under the NLMEC

model and the t-NLMEC model, together with the corresponding standard errors

of the fixed effects and the associated AIC and BIC values. From this table, we

observe that the standard errors under the t-NLMEC are smaller, indicating that

the Student-t model produces more precise estimates. According to the AIC or

BIC values, the t-NLMEC provided a much improved model fit over the NLMEC.

In fact, the maximum log-likelihoods were -781.708 for the NLMEC and -775.951

for the t-NLMEC model, which gives the corresponding likelihood ratio statistic

of 11.508 (p-value = 0.00035). This further confirms that the t-NLMEC model

fits the data substantially better than the NLMEC model.

To identify outlying observations, we computed the Mahalanobis distance

d2i (θ̂), i = 1, . . . , 320, and the estimated distances d2ei (Error) and d2bi
(Random

Effect). Figure 5 presents these diagnostic statistics for the LMEC model. We

see there that observations #9, #166, #230 and #259 appear to be outliers.

The observations #9, #166 and #230 have large values of d2ei , suggesting e-

outliers; observation #259 presents a large value of d2bi
, suggesting an b-outlier.

From Figure 4(b), the fitted viral load curve appears to be underestimated as

compared to the t-NLMEC due to the presence of these outliers. This suggests

that the t-NLMEC, which downweights the influence of outliers, provides a more

appropriate way for achieving robust inference.
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Figure 5. AIEDRP data. (a) Mahalanobis distance, (b) Estimated d2ei
(er-

ror) and (c) Estimated d2bi
(R.E.). The influential observations are num-

bered.

Figure 6. AIEDRP data. Relative changes on the ML estimates of θ from
the normal NLMEC (solid line) and the t-NLMEC (dashed line) for different
contaminations κ.

The robustness of the t-LMEC model can also be assessed by considering the

influence of a single outlying observation on the ML estimate of θ. In particular,

we can assess how much the ML estimate of θ is influenced by a change of κ units

in a single observation yik. We replace a single observation yik by yik(δ) = yik+κ,

and record the relative change in the estimates ((θ̂(κ) − θ̂)/θ̂), where θ̂ denotes

the original estimate and θ̂(κ) is the estimate for the contaminated data. In this
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application we contaminated the first observation on subject 198 and varied δ

between -10 and 10. In Figure 6 we present the results of the relative changes of

the estimates β and σ2 for different values of κ under the NLMEC and t-NLMEC

models. As expected, the estimates from the t-NLMEC were less affected by

variations of κ than the NLMEC.

6. Simulation Studies

To examine the performance of our proposed methodology, we conducted a

simulation study. The goal was to investigate the consequences on parameter

inference when the normality assumption is inappropriate, as well as to inves-

tigate whether the model comparison measures, AIC and BIC, determine the

best-fitting model to the simulated data. A similar study for the linear case is

presented in the Web Appendix F.

Following Vaida and Liu (2009), we considered the nonlinear mixed model

yij = α1i +
α2

(1 + exp((tij − α3)/α4i))
+ ϵij , i = 1, . . . , 100, j = 1, . . . , 10,

where (b1i, b2i)
iid.∼ t2(0,D, ν) and ϵij ∼ t(0, σ2, ν). We re-parameterized as

β1i = log(α1i) = β1 + b1i, βk = log(αk), k = 2, 3, and α4i = β4 + b2i. In

addition, we set tij = (1, 10, 20, 30, 40, 50, 60, 70, 80, 90), β⊤ = (β1, β2, β3, β4) =

(1.6094, 0.6931, 3.8067, 2.3026), D =

(
0.0025 −0.0010

−0.0010 0.0100

)
, σ2 = 0.55, and ν = 4.

We chose various settings of censoring proportions, 0%, 5%, 10%, 20% and

50%, to study the effect of the level of censoring in the estimation. In this way,

we have five settings with 100 simulated data sets under each setting. Once the

simulated data were generated, we fit the proposed NLMEC model assuming

normal and Student-t distributions to each simulated data set. The model se-

lection criterion AIC and BIC as well as the estimates of the model parameters

were recorded for each simulation. For the five censoring patterns, the summary

statistics for β (the fixed-effects parameters) are presented in Table 3 assuming

normal and Student-t distributions.

From Table 3, we observe that for all levels of censoring percentages, the

Student-t distribution outperforms the normal distribution and has small stan-

dard deviations in the estimates. The arithmetic average (MC AIC and MC

BIC) of the model comparison criteria are also strongly in favor of the Student-t

model in comparison to the normal model, reinforcing the notion that these mea-

sures are capable of detecting departures from normality. In Table 3, σ̂2 under

the normal distribution model is almost twice the true σ2, this is because in the

normal scenario σ2 represents the variance and therefore should be compared

with [ν/(ν − 2)]σ2, which is 1.10. Notice also that, the Student-t model has a
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Table 3. Results based on 100 simulated Student-t samples. MC mean, MC
Sd (in parentheses), and MC CP are the respective mean estimates, standard
deviations, and coverage probability from fitting LMEC with Student-t and
normal assumptions with different settings of censoring proportions. IM SE
is the average value of the approximate standard error obtained through
the information-based method. MC AIC and MC BIC are the arithmetic
averages of the respective model comparison measures.

Simulated Student-t data
Censoring Fit β1 β2 β3 β4 σ2 MC AIC MC BIC

0% Normal MC Mean 1.622 0.661 3.788 2.225 1.071 2986.253 3025.515
IM SE 0.018 0.070 0.043 0.196
MC Sd (0.016) (0.068) (0.048) (0.156) (0.187)
MC CP 85% 93% 93% 97%

Student-t MC Mean 1.616 0.676 3.798 2.258 0.551 2740.333 2779.595
IM SE 0.014 0.055 0.032 0.150
MC Sd (0.012) (0.056) (0.031) (0.150) (0.042)
MC CP 93% 90% 93% 98%

5% Normal MC Mean 1.627 0.642 3.796 2.205 0.967 2865.279 2904.541
IM SE 0.017 0.068 0.041 0.191
MC Sd (0.016) (0.073) (0.043) (0.192) (0.146)
MC CP 81% 87% 96% 95%

Student-t MC Mean 1.615 0.667 3.805 2.230 0.642 2654.928 2694.190
IM SE 0.015 0.058 0.035 0.161
MC Sd (0.012) (0.056) (0.031) (0.150) (0.060)
MC CP 96% 93% 99% 95%

10% Normal MC Mean 1.623 0.657 3.801 2.235 0.970 2815.475 2854.737
IM SE 0.018 0.070 0.042 0.191
MC Sd (0.017) (0.069) (0.046) (0.178) (0.141)
MC CP 86% 88% 92% 95%

Student-t MC Mean 1.613 0.676 3.803 2.253 0.629 2608.471 2647.733
IM SE 0.015 0.059 0.035 0.160
MC Sd (0.014) (0.057) (0.036) (0.150) (0.057)
MC CP 94% 94% 95% 97%

20% Normal MC Mean 1.616 0.683 3.806 2.240 0.975 2705.762 2494.963
IM SE 0.019 0.070 0.042 0.190
MC Sd (0.016) (0.069) (0.042) (0.183) (0.145)
MC CP 95% 95% 98% 96%

Student-t MC Mean 1.616 0.678 3.797 2.259 0.579 2494.963 2534.225
IM SE 0.015 0.059 0.035 0.157
MC Sd (0.015) (0.060) (0.032) (0.162) (0.044)
MC CP 89% 92% 99% 95%

50% Normal MC Mean 1.614 0.684 3.781 2.131 0.978 1982.382 2021.644
IM SE 0.022 0.073 0.043 0.208
MC Sd (0.023) (0.069) (0.045) (0.160) (0.186)
MC CP 94% 95% 90% 93%

Student-t MC Mean 1.624 0.650 3.789 2.226 0.546 1879.266 1918.528
IM SE 0.022 0.075 0.041 0.187
MC Sd (0.016) (0.066) (0.040) (0.151) (0.038)
MC CP 90% 93% 95% 95%

smaller confidence interval due to the smaller standard error although its cover-

age probability is slightly better than that of the normal model. This is a strong

evidence of the robustness in estimation of the Student-t method. Table 3 also

provides the average values of the approximate standard errors of the EM esti-

mates obtained through the information-based method described in Subsection

3.4 (IM SE) and the Monte Carlo standard deviation (MC Sd) for the parame-

ters. We also see from Table 3 that the estimation method of the standard errors

provides relatively close results for the normal and Student-t models, indicating
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Figure 7. (a) Represents the bias of β4 in comparison with the true value
for the normal and Student-t models for the 5 censoring patterns (0%, 5%,
10%, 20%, 50%) in the NLMEC setup. (b) Presents the Mean Square Error
(MSE) for β4 for the normal and Student-t models.

that the proposed asymptotic approximation for the variances of the fixed effects

(Equation (3.10)) is reliable.

In Figure 7 we only present the bias and MSE for the parameter estimate of

β4 under each of the normal and Student-t distributions, a similar pattern was

observed for the other parameters. It is clear that the Student-t model is more

robust here, providing more accurate estimates when the data has departures

from the normality.

7. Conclusions

We have proposed a robust approach to linear and nonlinear mixed effects

models with censored observations based on the multivariate-t distribution, called

the t-LMEC/t-NLMEC. This offers a great deal of flexibility in dealing with

longitudinal data in the presence of outliers. A novel ECM algorithm to obtain

approximated ML estimates is developed by exploring the statistical properties

of the multivariate truncated Student-t distribution. Our proposed algorithm

has a closed-form expression for the E-step, based on formulas for the mean and

variance of the truncated Student-t distribution. For NLMEC, the analysis is

computationally feasible through approximating the t-NLMEC for a multivariate

t distribution with specified parameters. We applied our methodology to two

recent AIDS studies (freely downloadable from R) as well as to simulated data

to illustrate how the procedures can be used to evaluate model assumptions,
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identify outliers, and obtain robust parameter estimates. From these results it

is encouraging that the use of t-LMEC/t-NLMEC models offer better fitting,

better protection against outliers and more precise inferences than their normal

counterparts.

An anonymous referee brought up the issue of model identifiability. It is

known that the Student-t family tends to the Normal as the degrees of freedom

ν → ∞, and in this case we retrieve the LMEC/NLMEC model proposed by

Hughes (1999), Vaida, Fitzgerald, and DeGruttola (2007) and Vaida and Liu

(2009). Our model is identifiable since Ci, Qi, and ν are known, while, the

unknown parameters are related to existing well developed mixed-effects models

in the statistical literature.

Although the t- LMEC considered here has shown great flexibility to model-

ing symmetric data, its robustness against outliers can be seriously affected by the

presence of skewness. Recently, Lachos, Ghosh, and Arellano-Valle (2010) (see

also Ho and Lin (2010)) proposed a remedy to accommodate skewness and heavy-

tailedness simultaneously, using scale mixtures of skew-normal (SMSN) distribu-

tions. We conjecture that our methodology can be used under LMEC/NLMEC,

and should yield satisfactory results at the expense of additional complexity in

implementation. An in-depth investigation of such extensions is beyond the scope

of the present paper, but it is an interesting topic for further research. Finally,

the proposed EM algorithm has been coded and implemented in the R package

tlmec (Matos, Prates, and Lachos (2012)), which is available for download at

CRAN repository.

8. Supplementary Material

The web Appendices referenced in the paper are available under the Paper

Information link at the Statistica Sinica website http://www.stat.sinica.edu.

tw/statistica.
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