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Abstract: This paper investigates minimal dependent sets used for evaluating super-

saturated designs. Unlike the popular E(s2) criterion, the criteria based on minimal

dependent sets directly capture the properties of designs in terms of estimation and

identification of active factors. This paper provides a theoretical investigation into

the number and structure of minimal dependent sets in a supersaturated design,

and presents some construction results on supersaturated designs with large mini-

mal dependent sets.
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1. Introduction

At the outset of a systematic investigation of a process, a screening exper-

iment may be used to sift through a set of candidate factors to find those that

have an important impact on the response. As subsequent experiments will focus

on these factors, the primary purpose of a screening experiment is model identifi-

cation rather than model estimation. A good screening design is one that allows

the investigator to consider a large number of factors in a relatively small number

of runs. The question of how many candidate factors can be screened using a de-

sign of a given size arises. If the purpose of an experiment is estimation, then the

answer is straightforward: assuming that each factor has two levels and there are

no interactions between factors, then main effects for up to n− 1 factors can be

estimated using an n-run experiment. However for screening applications, Booth

and Cox (1962) and Lin (1993) raised the possibility that more than n−1 factors

can be considered in an n-run experiment. The key difference is that for screen-

ing applications the investigator may be willing to place a cap on the number of

active factors. Thus it is not necessary to simultaneously estimate the effects of

all of the candidate factors and the possibility of having the number m of factors

exceed n− 1 exists. Such designs are said to be supersaturated. Supersaturated

designs are special fractional factorial designs. For a general discussion on the

construction and optimality of fractional factorial designs, we refer the reader to

Dey and Mukerjee (1999).

http://dx.doi.org/10.5705/ss.2010.185
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The literature on supersaturated designs is quite rich – for details see Wu

(1993), Nguyen (1996), Tang and Wu (1997), Cheng (1997), Butler et al. (2001),

Fang, Lin, and Liu (2003), Liu and Dean (2004), Bulutoglu and Cheng (2004)

and Xu and Wu (2005). The criterion used most often to evaluate supersaturated

designs is E(s2) which represents the average of the cross products between all

possible pairs of columns. It can be thought of as a measure of nonorthogonality

– clearly a supersaturated design of n runs cannot be orthogonal because the

number m of factors is greater than n − 1. This criterion is easy to use and

makes intuitive sense, and has played a very important role in the studies of

supersaturated designs. However, E(s2) does not directly measure the ability of

a design to screen for active factors.

This paper considers the use of minimal dependent sets (MDS’s) to evaluate

the screening capability of supersaturated designs. Unlike E(s2), there is a direct

connection between criteria based on MDS’s and the ability of a design to identify

active factors from a candidate set. Minimal dependent sets were first introduced

by Miller and Sitter (2004), and later used by Lin, Miller, and Sitter (2008), to

assess nonorthogonal foldover designs. Similar to what is done in Lin, Miller,

and Sitter (2008), MDS-resolution and MDS-aberration criteria can be defined

for supersaturated designs. The present article provides an investigation into

the theoretical properties of MDS’s in the context of supersaturated designs.

These properties were utilized to design an extensive computer search for MDS-

aberration optimal supersaturated designs – the results of this search will be

reported in a separate paper (Miller and Tang (2011)).

In Section 2, we define the concepts of MDS’s, MDS-resolution and MDS-

aberration, and some general theoretical results concerning MDS’s are presented.

In Section 3, results on two-level balanced supersaturated designs are reported. In

particular, a supersaturated design of n runs for n factors that has the maximum

MDS-resolution is constructed. Section 4 concludes the paper with a discussion.

2. General Results on Minimal Dependent Sets

2.1 Minimal dependent sets

To evaluate the ability of a design to differentiate between competing models,

Miller and Sitter (2004) proposed looking at the MDS’s of the column vectors. An

MDS is defined as a set of column vectors that are linearly dependent but if any

one of them is removed the resulting subset becomes linearly independent. Lin,

Miller, and Sitter (2008) further defined the criteria of MDS-resolution and MDS-

aberration, and constructed a catalog of nonorthogonal foldover designs based

on these criteria. The same concepts can also be used to evaluate supersaturated

designs.



MINIMAL DEPENDENT SETS FOR EVALUATING SUPERSATURATED DESIGNS 1275

We focus on two-level supersaturated designs in this paper. A supersaturated

design with two levels is represented by an n × m matrix X of ±1, where the

number m of factors is no smaller than the run size n. We consider even n. Each

column of a design has the same number of ±1 to ensure that the main effects

are orthogonal to the grand mean. Because m ≥ n, the m columns of design

X cannot be linearly independent. A dependent subset of columns of design X

can cause problems in differentiating between certain models. MDS’s provide a

concise way of capturing all the dependent relationships among the columns of a

design as any dependent subset can be obtained by adding columns to an MDS

(Lemma 2 of Section 2.2). The size of an MDS is defined to be the number of

columns it contains. For design X, let Aj be the number of MDS’s of size j.

The MDS-resolution is defined as the size of the smallest MDS. The criterion

of MDS-aberration selects a design by sequentially minimizing the components

A1, . . . , Am in the MDS word length pattern (A1, . . . , Am).

2.2. Some general results

Let V1, . . . , Vm be a set ofm column vectors whose elements are real numbers.

A lemma provides a characterization of when these column vectors form an MDS.

Lemma 1. The set of vectors V1, . . . , Vm is an MDS if and only if Vm can be

written as

Vm = a1V1 + · · ·+ am−1Vm−1,

where the coefficients a1, . . . , am−1 are non-zero real numbers and form a unique

set.

The proof is simple, thus omitted. In Lemma 1, there is nothing special

about Vm and the result holds true if Vm is replaced by any other Vj .

Lemma 2. Every dependent set of vectors V1, . . . , Vm contains at least one MDS.

Let r be the rank of the set of vectors V1, . . . , Vm where r < m since the set

is dependent. Assume that V1, . . . , Vr are independent. Then Vm can be uniquely

written as Vm = a1V1 + · · · + arVr. Dropping those Vj ’s with aj = 0, produces

an MDS by Lemma 1.

Two questions arise: how many MDS’s exist and what are their structures?

The rest of this section addresses them. First, we show that every linear depen-

dency is determined by those that correspond to the MDS’s. Again let r denote

the rank of the vectors V1, . . . , Vm and assume that V1, . . . , Vr are independent.

To facilitate the discussion, let U1, . . . , Us denote Vr+1, . . . , Vm. Therefore the

set of dependent vectors is now represented as {V1, . . . , Vr, U1, . . . , Us} where
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s = m − r ≥ 1. Each Uj can be uniquely written as a linear combination of

V1, . . . , Vr:

Ui = ai1V1 + · · ·+ airVr (2.1)

for i = 1, . . . , s. It will be seen that the matrix A = [aij ]s×r contains all the infor-

mation regarding the MDS’s in the set of dependent vectors V1, . . . , Vr, U1, . . . , Us.

Consider the set of all row vectors (a1, . . . , ar, a
′
1, . . . , a

′
s) that satisfy a1V1 +

· · · + arVr + a′1U1 + · · · + a′sUs = 0. This set forms an s-dimensional linear

subspace with one basis given by the rows of the s× (r+s) matrix (A,−I) where

A = [aij ]s×r with aij from (2.1), and I the identity matrix of order s. This leads

to the following conclusion.

Lemma 3. All linear relations among the set of vectors {V1, . . . , Vr, U1, . . . , Us}
can be obtained by linearly combining those in (2.1), and thus are of the form

s∑
i=1

ciUi =

(
s∑

i=1

ciai1

)
V1 + · · ·+

(
s∑

i=1

ciair

)
Vr, (2.2)

for real coefficients c1, . . . , cs.

We are ready to examine the number and structure of MDS’s for a given

dependent set. First consider the case where s = 1. If the terms with zero

coefficients are dropped from U1 = a11V1 + · · · + a1rVr in (2.1), we obtain an

MDS by Lemma 1. Lemma 3 confirms that this is the only linear relation (up to

a constant) among the vectors V1, . . . , Vr, U1. Therefore, there exists exactly one

MDS when s = 1. For s = 2, a complete characterization on the number and

structures of the MDS’s can also be obtained. In order not to disrupt the flow of

the paper, the results and their derivations are presented in Appendix A.

We could proceed to provide a complete characterization on the number

and structures of the MDS’s given a dependent set of r + s vectors for s = 3,

4 . . . as is given by Lemmas A1 and A2 for s = 2 in Appendix A. We choose

not to do so because the presentation of such results would inevitably get very

complicated without providing further insight. Instead, we present the following

general version of Lemmas A1 and A2.

Theorem 1. Suppose that a dependent set of r + s vectors has rank r. Let

an independent subset of r vectors be V1, . . . , Vr, and the remaining s vectors

U1, . . . , Us. Each Ui can be uniquely written as

Ui = ai1V1 + · · ·+ airVr, for i = 1, . . . , s. (2.3)

In each expression drop the terms with zero coefficients to form an MDS and call

these s basic MDS’s. Let A = [aij ]. Then
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(i) the number of MDS’s is bounded below by s and is bounded above by
(
r+s
r+1

)
;

(ii) the lower bound is attained if and only if the s basic MDS’s are mutually

exclusive;

(iii) the upper bound is attained if and only if every t× t submatrix of A has full

rank for each t = 1, . . . ,min(r, s), in which case every subset of r+1 vectors

is an MDS.

Theorem 1 can be proved in a manner similar to that of establishing Lemmas

A1 and A2 in Appendix A, and we omit the details. In addition to providing

theoretical insights, the results in this section are practically useful as well. Illus-

trations are given in Section 3. These general results provide useful tools in the

search for supersaturated designs based on the criteria of MDS-resolution and

MDS-aberration.

3. Results for Balanced Two-Level Designs

This section presents results for balanced two-level supersaturated designs,

which are restricted to those where no column is fully aliased with another column

– i.e. no two columns are either identical or mirror images. Thus any two columns

are independent, implying that the minimum size of an MDS is at least three.

In fact, a stronger result holds.

Lemma 4. The MDS-resolution of a balanced two-level supersaturated design is

at least four.

To the contrary, suppose three columns V1, V2, V3 constitute an MDS. By

Lemma 1, V3 = a1V1 + a2V2 where a1, a2 are unique and nonzero. For balanced

V1 and V2 that are not fully aliased with each other, each of the four possible pairs

(1, 1), (1,−1), (−1, 1) and (−1,−1) must occur at least once in the n× 2 matrix

(V1, V2). The corresponding entries of V3 for these pairs are a1 + a2, a1 − a2,

−a1 + a2, −a1 − a2, of which at least three must be distinct because a1 and a2

are not zero. This contradicts the fact that V3 has only two possible entries ±1

and thus Lemma 4 is established.

Lemma 5. For any even n ≥ 6, there exists a balanced two-level supersaturated

design with MDS-resolution 4.

The result follows if we can construct four columns that form an MDS. For
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n = 6, take 

1 1 -1 -1

-1 -1 1 1

1 -1 1 -1

-1 1 -1 1

1 -1 -1 1

-1 1 1 -1


,

as the sum of these four columns is zero. For n ≥ 8, simply add (n− 6)/2 rows

of (1, 1,−1,−1) and (n− 6)/2 rows of (−1,−1, 1, 1).

One attractive way to construct supersaturated designs is to add balanced

columns to a saturated two-level orthogonal array – designs created in this man-

ner have been investigated in Deng, Lin, andWang (1996) and in Yamada and Lin

(1997). First, consider adding an interaction column to a saturated orthogonal

array and note that a saturated orthogonal array of n runs has n− 1 factors.

Lemma 6. Consider a supersaturated design of n runs for n factors obtained by

adding an interaction column to a saturated orthogonal array. Then we have

(i) the MDS-resolution of this design is n− 2 or lower;

(ii) the MDS-resolution is exactly n− 2 if n is not a multiple of 8.

Let V1, . . . , Vn−1 be the columns of the saturated orthogonal array, and let

U1 = V1V2 denote the added interaction column. Because V1, . . . , Vn−1 form an

orthogonal basis in the n− 1 dimensional space that is orthogonal to the column

of all plus ones, we have

U1 = a1V1 + · · ·+ an−1Vn−1, where aj = UT
1

Vj

n . (3.1)

Since U1 = V1V2 is the interaction column of V1 and V2, we have a1 = a2 = 0.

Dropping the terms with aj = 0 in (3.1) gives an MDS, the size of which is at

most n− 2. If n is not a multiple of 8, we have that aj ̸= 0 for j = 3, . . . , n− 1

based on a result in Deng and Tang (2002, Prop. 1). Therefore the MDS obtained

from (3.1) is of size n− 2.

For a supersaturated design of n runs for n factors, the best possible scenario

is to have a single MDS of size n that gives an MDS-resolution of n. Lemma

6 indicates that such a design cannot be constructed by adding an interaction

column to a saturated orthogonal array. We have explored the possibility of

obtaining MDS-resolution n designs by adding a balanced column that is not an

interaction column to a saturated orthogonal array. The results are mixed. We

can prove that this is not possible for n ≤ 16, a result confirmed by an exhaustive

computer search. We have also conducted an exhaustive search for n = 20, and

very extensive searches for n = 24, 28 and found no such designs. Somewhat
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surprisingly, a computer search for n = 32 did find such an MDS-resolution n

design. We postulate that for sufficiently large n it is possible to create an MDS-

resolution n design of n runs for n factors by adding a balanced column to a

saturated orthogonal array.

Better results are obtained if the restriction of starting with a saturated

orthogonal array is lifted. In this case, a balanced supersaturated design of n

runs for n factors with MDS-resolution n can be constructed for any even n ≥ 6.

The rest of this section presents a construction of such designs. To illustrate the

structure of such designs, we present the design for n = 10:

X =



−1 −1 −1 −1 −1 −1 −1 −1 −1 −1

1 1 1 1 1 −1 1 1 1 −1

1 1 1 1 1 1 −1 1 1 −1

1 1 1 1 1 1 1 −1 1 −1

1 1 1 1 1 1 1 1 −1 −1

1 −1 −1 −1 −1 1 1 1 1 1

−1 1 −1 −1 −1 1 1 1 1 1

−1 −1 1 −1 −1 −1 −1 −1 −1 1

−1 −1 −1 1 −1 −1 −1 −1 −1 1

−1 −1 −1 −1 1 −1 −1 −1 −1 1


.

The construction can be described in three steps, and works for any even n ≥ 6:

Step 1. Let the (n− 1)× (n− 1) matrix[
A B

C D

]
,

have A as an (n/2 − 1) × n/2 matrix of all 1’s, B as an (n/2 − 1) × (n/2 − 1)

matrix with diagonal elements −1 and off-diagonal elements 1, C as an n/2×n/2

matrix with diagonal elements 1 and off-diagonal elements −1, and D as an

n/2× (n/2− 1) matrix with the entries in the first two rows all 1 and all other

entries −1.

Step 2. Add a row of −1’s as the top row to obtain an n × (n − 1) matrix

X0 = (V1, . . . , Vn−1), where Vj is the jth column of this matrix.

Step 3. Final design X is (V1, . . . , Vn−1, U), obtained by adding a column vector

U to X0, where U has its first n/2 entries −1 and the other n/2 entries 1.

Theorem 2. The n-run design X for n factors constructed above has MDS-

resolution n.

Proof. It is obvious that all columns of X are balanced. Theorem 2 follows

from Lemma 1 if we can prove that (i) the first n − 1 columns V1, . . . , Vn−1 of
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design X are linearly independent, and (ii) none of the coefficients in the linear

combination U =
∑n−1

j=1 ajVj is zero.

Columns V1, . . . , Vn−1 are linearly independent if and only if matrix X0 =

(V1, . . . , Vn−1) has rank n−1. Equivalently, we show that the matrix X1 obtained

by adding a top row of all −1’s to[
C D

A B

]
,

has full rank n−1. For i = 2, . . . , (n/2+1), subtract the first row of X1 from the

ith row and, for i = (n/2 + 2), . . . , n, add the first row to the ith row. Omitting

the first row, the resulting matrix is an upper triangle matrix with diagonal

elements ±2. This shows that matrix X1 has rank n− 1. For n = 10, the upper

triangle matrix is 

2 0 0 0 0 2 2 2 2

0 2 0 0 0 2 2 2 2

0 0 2 0 0 0 0 0 0

0 0 0 2 0 0 0 0 0

0 0 0 0 2 0 0 0 0

0 0 0 0 0 −2 0 0 0

0 0 0 0 0 0 −2 0 0

0 0 0 0 0 0 0 −2 0

0 0 0 0 0 0 0 0 −2


.

Because V1, . . . , Vn−1 are linearly independent, column U can be uniquely

written as

U = a1V1 + · · ·+ an−1Vn−1. (3.2)

We show that aj = −(n/2− 2) for j = 1, 2 and aj = 1 for j = 3, . . . , n− 1. Let

(v1, . . . , vn−1, u) denote a row of design X. We then need to show that

u = −(
n

2
− 2)v1 − (

n

2
− 2)v2 + v3 + · · ·+ vn−1, (3.3)

is true for every row (v1, . . . , vn−1, u) of design X. This can be verified separately

for (a) row 1, (b) rows 2 to n/2, (c) rows n/2+1 and n/2+2 and (d) rows n/2+3

to n. All verifications are straightforward and we only give some details here.

For row 1, (3.3) easily follows from the fact that v1 = · · · = vn−1 = u = −1. For

row 2, we have that u = −1, vj = −1 for j = n/2 + 1 and vj = 1 for all other

j’s. For row n/2 + 1, we have that u = 1, v1 = 1, vj = −1 for j = 2, . . . , n/2

and vj = 1 for j = n/2 + 1, . . . , n − 1. Since n ≥ 6, the coefficient aj in (3.2) is

nonzero for every j. Theorem 2 is established.
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Consider a supersaturated design of n runs for n factors, obtained by adding

one balanced column to a saturated orthogonal array. According to Cheng

(1997), such a design is E(s2) optimal with E(s2) = 2.29, 2.18, 2.13 for n =

8, 12, 16, respectively. The MDS-resolution of such a design is 5, 10, and 11 for

n = 8, 12, and 16, respectively. The design in Theorem 2 has the maximum

MDS-resolution of n but its performance in terms of E(s2) is not ideal, with

E(s2) = 10.86, 45.82, 111.33 for n = 8, 12, 16, respectively. In view of these sharp

contrasts, it is of great interest to construct designs that, though not optimal,

perform well under both the MDS-resolution and E(s2) criteria.

4. Discussion and Concluding Remarks

This paper focuses on the relationship between the ability of a supersaturated

design to differentiate between alternative models and the MDS’s of the columns

of its design matrix. If the combined set of columns for two competing models

form a linearly dependent set, problems can arise in differentiating between the

models. Thus the ability of a design to differentiate between models is directly

related to the linear dependencies of its design matrix. Each dependent set (DS)

of columns must either be an MDS or contain one. As a result, the set of MDS’s

for a design determine the set of DS’s and it is sufficient to study the (much

smaller) set of MDS’s. For a supersaturated design, there is a direct connection

between the structures and number of its MDS’s and its ability to differentiate

between models. It follows that the MDS-resolution and MDS-aberration criteria

are directly related to the capability of a design to identify the active factors.

Note that such a connection does not exist for the E(s2) criterion.

There are clear connections between the MDS’s and two other criteria that

have been used to evaluate supersaturated designs: estimation capacity (Cheng,

Steinberg, and Sun (1999)) and resolution rank (Deng, Lin, and Wang (1999)).

These connections are obvious if we consider the DS’s in a supersaturated design

and note that a dependent set (DS) of columns corresponds to a non-estimable

model. Define DS-resolution and DS-aberration as follows: If Bj represents the

number of DS’s of size j in a supersaturated design, then the DS-resolution is the

smallest j such that Bj ̸= 0, and the DS-aberration criterion selects designs by

sequentially minimizing B1, B2, . . .. Clearly, sequentially minimizing B1, B2, . . .

is equivalent to sequentially maximizing E1, E2, . . ., where Ej is the proportion

of estimable models of size j – this is the estimation capacity criterion used by

Cheng, Steinberg, and Sun (1999). Also note that if a design has DS-resolution

j then all subsets of j − 1 columns are linearly independent. Thus maximizing

DS-resolution is equivalent to maximizing c, where c is the largest value such

that all sets of columns of size c are linearly independent – this is the resolution

rank criterion used by Deng, Lin, and Wang (1999).
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Note that DS-resolution is identical to MDS-resolution since the smallest DS

must be an MDS. However, it is difficult (and may be impossible) to establish

an exact equivalence between DS-aberration and MDS-aberration. As in Section

2, let Aj be the number of MDS’s of size j. Then the MDS-aberration criterion

sequentially minimizes A1, A2, . . .. If a supersaturated design has MDS-resolution

r, then we must have Aj = Bj for j = 1, . . . , r, and Aj < Bj for j ≥ r + 1. Here

Aj < Bj occurs because Bj is Aj plus the number DS’s of size j that can be

created by adding columns to an MDS of size < j, and for j ≥ r+1 there must be

some such DS’s. The difficulty in establishing an exact equivalence between DS-

aberration and MDS-aberration arises because a DS may contain more than one

MDS. Thus the possibility of finding two designs that have identical Aj ’s for all j

but non-identical Bj ’s appears to exist. However, we believe that such examples

are rare (if they exist at all), and thus DS-aberration and MDS-aberration are

(at least) near equivalent criteria.

MDS’s in a supersaturated design capture the dependent relations among

its columns. One may wish to supplement this assessment of a supersaturated

design with an evaluation of the extent of these dependent relations. Some of the

ways in which this can be done can be found in Jones et al. (2007) and Cheng,

Deng, and Tang (2002).
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Appendix A. MDS’s in r + 2 Vectors with Rank r

For s = 2, consider the U1 and U2 as in (2.1). Dropping the terms with

zero coefficients from U1 = a11V1 + · · · + a1rVr gives one MDS containing U1

but not U2; it is the only MDS for the set {U1, V1, . . . Vr}. Doing the same for

U2 = a21V1 + · · · + a2rVr gives an MDS that contains U2 but not U1; it is the

only MDS for the set {U2, V1, . . . Vr}. For convenience, these two MDS’s are

referred to as the basic MDS’s. Now consider the question: are there any MDS’s

that contain both U1 and U2? A complete answer can be given. Without loss of

generality, the Vj ’s can be labeled such that

U1 = a1V1 + · · ·+ apVp, U2 = bqVq + · · ·+ bkVk, (A.1)

where the aj ’s and the bj ’s are all non-zero, 1 ≤ p and q ≤ k ≤ r.

If p < q, then the two basic MDS’s {U1, V1, . . . , Vp} and {U2, Vq, . . . , Vk} are

disjoint and no MDS containing both U1 and U2 exists. To see this, note that
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applying Lemmas 1 and 3 when p < q dictates that any MDS that contains U1

and U2 must contain all of V1, . . . , Vp, Vq, . . . , Vk as well. Thus it would contain

both basic MDS’s as proper subsets, violating the definition of an MDS.

If p ≥ q, {U1, V1, . . . , Vp} and {U2, Vq, . . . , Vk} have an overlap of the vectors

Vq, . . . , Vp, and it can be shown that an MDS that contains both U1 and U2 exists.

By Lemmas 1 and 3, to obtain an MDS containing both U1 and U2, we only need

to consider the linear relation U1 = −cU2+a1V1+ · · ·+apVp+c(bqVq+ · · ·+bkVk)

for nonzero c. Rewrite this relation as

U1 = −cU2 +

q−1∑
j=1

ajVj + c

 k∑
j=p+1

bjVj

+

p∑
j=q

(aj + cbj)Vj . (A.2)

Setting c = −aq/bq eliminates Vq in (A.2). Note that this choice results in non-

zero coefficients for U2 and for all Vj ’s where j = 1, . . . , q−1 and j = p+1, . . . , k.

For the Vj ’s where j = q+1, . . . , p, the coefficients are zero if and only if aj/bj =

aq/bq. Since c = −aq/bq is the only choice that will eliminate Vq in (A.2), the set

of non-zero coefficients must be unique and by Lemma 1, we have identified an

MDS that contains both U1 and U2; it also contains all Vj ’s except Vq and, for

j = q + 1, . . . , p, those Vj ’s with aj/bj = aq/bq.

It is straightforward to expand this result to identify the number of MDS’s

that contain both U1 and U2. Let g be the number of distinct values in the

sequence βq, . . . , βp where βj = aj/bj . Corresponding to these g distinct values,

the set of vectors Vq, . . . , Vp is partitioned into g ≥ 1 subsets of vectors. Let

S1, . . . , Sg denote these subsets.

Lemma A.1. If the two basic MDS’s in (A.1) overlap with each other, then

there are precisely g MDS’s containing both U1 and U2. The ith of these can

be obtained by deleting the vectors in Si from the set U1, U2, V1, . . . , Vk for

i = 1, . . . , g.

The maximum value that g can take is r, which occurs when q = 1 and

p = k = r, and the βj ’s are all distinct. In this case, every subset of r+1 vectors

in the set of vectors {V1, . . . , Vr, U1, U2} is an MDS.

Lemma A.2. Suppose that a dependent set of r + 2 vectors has rank r. Then

the number of MDS’s can be any integer between 2 and r+ 2. This number is 2

if and only if the two basic MDS’s are disjoint, and is r + 2 if and only if every

subset of r + 1 vectors is an MDS.
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