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A BLOCKWISE EMPIRICAL LIKELIHOOD

FOR SPATIAL LATTICE DATA

Daniel J. Nordman

Iowa State University

Abstract: This article considers an empirical likelihood method for data located on

a spatial grid. The method allows inference on spatial parameters, such as means

and variograms, without knowledge of the underlying spatial dependence structure.

Log-likelihood ratios are shown to have chi-square limits under spatial dependence

for calibrating tests and confidence regions, and maximum empirical likelihood

estimators permit parameter estimation and testing of spatial moment conditions.

A practical Bartlett correction is proposed to improve the coverage accuracy of

confidence regions. The spatial empirical likelihood method is investigated through

a simulation study and illustrated with a data example.

Key words and phrases: Data blocking, discrete index random fields, estimating

equations.

1. Introduction

Empirical likelihood (EL), introduced by Owen (1988, 1990), is a statisti-

cal method allowing likelihood-based inference without requiring a fully specified

parametric model for the data. For independent data, versions of EL are known

to share many qualities associated with parametric likelihood, such as limit-

ing chi-square distributions for log-likelihood ratios; see Owen (1988) for means,

Hall and La Scala (1990) for smooth mean functions and Qin and Lawless (1994)

for parameters satisfying moment restrictions. More recently, attention has fo-

cused on formulating EL for dependent time series. For weakly dependent time

series, Kitamura (1997) proposed a general EL method based on data block-

ing techniques, and related “blockwise” versions of EL have been developed for

other time series inference: Lin and Zhang (2001) for blockwise Euclidean EL;

Chuang and Chan (2002) for autoregressive models; Chen, Härdle and Li (2003)

for goodness-of-fit tests; Bravo (2005) for time series regressions; Zhang (2006)

for negatively associated series. In econometrics, much research has considered

EL for testing moment restrictions and comparisons between EL and generalized

method of moments estimators; see, for example, Kitamura, Tripathi and Ahn

(2004) and Newey and Smith (2004). Monti (1997) and Nordman and Lahiri
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(2006) have considered periodogram-based EL inference for short- and long-

memory time series, respectively.
In contrast to time series, the potential application of EL for spatially depen-

dent data has received little consideration. The aim of this paper is to propose an

EL method for spatial lattice data and demonstrate that it has some important

inference properties in the spatial setting. The method has nonparametric and
semiparametric uses and is valid for many spatial processes under weak condi-

tions; this can be appealing when there is uncertainty about an appropriate para-

metric model. Spatial EL provides a general framework for inference on many

spatial parameters through a likelihood function based on estimating equations.
Applying the EL method to different spatial problems requires only adjusting the

estimating functions that describe the inference scenario. In addition, the spatial

EL method does not require variance estimation steps to set confidence regions

or conduct tests. This feature of spatial EL is particularly important because
standard errors can be difficult to obtain for many spatial statistics under an un-

known spatial dependence structure. Current nonparametric methods for spatial

data, such as spatial subsampling and the spatial block bootstrap, often require
direct estimation of the variance of spatial statistics under data dependence (see

Sherman and Carlstein (1994), Politis, Romano and Wolf (1999), Lahiri (2003),

and references therein).

An example of a situation where spatial EL provides an attractive approach
is illustrated in Figure 1(a), which presents a map of high and low cancer mor-

tality rates for the United States. High and low mortality are defined as in

Sherman and Carlstein (1994), who fit an autologistic model to assess evidence

of clustering among high mortality cases. To estimate the autologistic parameter
that describes clustering, these authors employed maximum pseudo-likelihood

(Besag (1975)) followed by a spatial subsampling step. In particular, subsam-

pling was used to obtain a standard error for the pseudo-likelihood estimate in

order to set a confidence interval for the autologistic parameter through a nor-
mal approximation. This example is revisited in Section 6, where the spatial EL

method produces a confidence interval for the clustering model parameter auto-

matically, and no separate determination of standard error is required. Intervals

from the spatial EL approach indicate spatial clustering, but suggest the evidence
for clustering is not as strong as reported by Sherman and Carlstein (1994).

In what follows, a spatial blockwise EL method is developed, based on spa-

tial estimating equations combined with either maximally overlapping or non-

overlapping blocks of spatial observations. Data blocking is used as a device to
accommodate unknown spatial dependence, similar to the time series blockwise

EL of Kitamura (1997). For a broad class of spatial parameters, the spatial EL

method yields log-ratios that are asymptotically chi-square, allowing the formu-

lation of tests and confidence regions without knowledge of the data dependence
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Figure 1. (a) Cancer mortality map, where • and ◦ respectively denote a

high, Zs = 1, or low, Zs = 0, mortality rate at site s ∈ Rn ∩ Z
2 of the

sampling region Rn. (b) Sampling region R5,n for vectors Ys, s ∈ R5,n ∩Z
2,

where Ys consists of Zs and its four nearest neighbors Zh, ‖s − h‖ = 1;

at each site s ∈ R5,n ∩ Z
2, the indicated value denotes the sum Ss of the

four neighboring indicators Zh of Zs where values in dark (light) font denote

Zs = 1 (Zs = 0) at site s.
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structure. Our EL results include distributions for EL point estimators of spatial

parameters as well (i.e., so-called maximum EL estimators). Based on recent

results in Chen and Cui (2006, 2007) for independent data, a procedure for a

practical Bartlett correction for the spatial EL method is proposed and investi-

gated using simulation. The Bartlett correction makes an adjustment to the log

EL ratio that improves coverage accuracy.

The rest of the paper is organized as follows. In Section 2, we describe the

spatial sampling and estimating function frameworks, with some examples pro-

vided for illustration. We also construct the spatial blockwise EL. The main

distributional results for the spatial EL method are presented in Section 3. Sec-

tion 4 outlines an empirical Bartlett correction. The proposed methodology is

assessed through a numerical study in Section 5, and illustrated with the cancer

mortality map of the United States in Section 6. Section 7 provides a discussion

of EL block selection. Assumptions and detailed proofs for the main results are

deferred to an Appendix, available in the online supplement to this manuscript.

2. Spatial Empirical Likelihood Method

To set the stage for development of spatial EL, recall the formulation of EL

using a sample Y1, . . . , Yn of independent, identically distributed (i.i.d.) data

(e.g., Owen (1990) and Qin and Lawless (1994)). First, a parameter of interest

θ ∈ R
p is linked to each observation by creating a function Gθ(Yi) of both,

using a vector of r ≥ p estimating functions Gθ(·). The estimating functions

are chosen so that, at the true parameter value θ = θ0, we have an expectation

condition E {Gθ0
(Yi)} = 0r that identifies θ0. With such estimating functions

in place, an EL function for θ can be constructed by maximizing a product

of n probabilities placed on Gθ(Y1), . . . , Gθ(Yn) under a linear “expectation”

constraint. The resulting EL function for θ has important uses: the function can

be maximized for point estimators for θ, or chi-square calibrated to set confidence

regions.

An EL for spatial lattice data is similarly based on estimating functions

that satisfy a moment condition, but requires modifications to handle spatial

dependence. First, we need a spatial sampling region Rn ⊂ R
d, d ≥ 1, on

which a spatial process {Zs : s ∈ Z
d} is observed on a grid; here d denotes

the dimension of sampling. Then we develop estimating functions involving a

spatial parameter θ of interest and the spatial Zs-observations. To provide more

generality in the spatial setting, we consider functions Gθ(Ys), s ∈ Z
d, that

connect θ to vectors of spatial observations Ys = (Zs+h1
, . . . , Zs+hm)′ based on

some selection of fixed spatial lags h1, . . . ,hm ∈ Z
d; these Ys-observations have

their own sampling region Rn,Y based on the region Rn for the observed spatial



SPATIAL EMPIRICAL LIKELIHOOD 1115

process {Zs : s ∈ Z
d}. These formulations are made precise in Section 2.1, which

also provides some examples. A spatial EL function for θ is then constructed

using an estimating function Gθ(·), along with spatial blocks of Ys-observations,

instead of using individual observations, as described in Section 2.2.

For clarity throughout the sequel, a bold font denotes a vector in R
d, e.g., s,

h, i ∈ R
d.

2.1. Spatial estimating equations

To describe the spatial EL method, we adopt a sampling framework that

allows a spatial sampling region Rn ⊂ R
d to grow as the sample size n increases.

Using a subset R0 ⊂ (−1/2, 1/2]d containing an open neighborhood and an in-

creasing positive sequence {λn} of scaling factors, suppose the sampling region Rn

is obtained by inflating the “template” set R0 by the constant λn: Rn = λnR0.

This formulation permits a wide variety of shapes for the sampling region Rn,

which shape is preserved as the sampling region grows. For spatial subsampling,

Sherman and Carlstein (1994), Sherman (1996), and Nordman and Lahiri (2004)

use a comparable sampling structure. We assume that a real-valued, strictly sta-

tionary process {Zs : s ∈ Z
d} is observed at regular locations on the grid Z

d

inside Rn. Hence, the available data are {Zs : s ∈ Rn ∩ Z
d} observed at n sites

{s1, . . . , sn} = Rn ∩ Z
d, with n as the sample size of the observed Zs.

To describe a finite dimensional parameter θ ∈ Θ ⊂ R
p of the spatial

process {Zs : s ∈ Z
d} with estimating functions, we collect observations from

Rn into vectors. For a positive integer m, we form an m-dimensional vector

Ys = (Zs+h1
, Zs+h2

, . . . , Zs+hm)′, s ∈ Rn,Y ∩ Z
d, where h1,h2, . . . ,hm ∈ Z

d are

selected lag vectors, and Rn,Y = {s ∈ Rn : s + h1, . . . , s + hm ∈ Rn} denotes

the sampling region for the process {Ys : s ∈ Z
d} containing nY ≡ |Rn,Y ∩ Z

d|

observations. Here and throughout the sequel, |A| represents the size of a finite

set A.

As in the i.i.d. data formulation of EL (Qin and Lawless (1994)), suppose

information about θ ∈ Θ ⊂ R
p exists through r ≥ p estimating functions linking

θ to a vector form Ys, s ∈ Z
d of the spatial process {Zs : s ∈ Z

d}. With arguments

y = (y1, . . . , ym)′ ∈ R
m and θ ∈ Θ, define Gθ(y) = (g1,θ(y), . . . , gr,θ(y))′ : R

m ×

R
p → R

r as a vector of r estimating functions satisfying

E {Gθ0
(Ys)} = 0r ∈ R

r, s ∈ Z
d, (1)

at the true and unique parameter value θ0. When r > p, the above functions are

said to be “overidentifying” for θ. In Section 2.2, we build an EL function for a

spatial parameter θ via the moment condition in (1).
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With appropriate choices of vectors Ys and estimating functions Gθ(·), EL

inference is possible for a large class of spatial parameters, as is illustrated in the

following examples.

Example 1. (Poisson counts). Consider a pattern of events in a spatial

region that may exhibit spatial randomness (e.g., tree locations in a forest).

It is common to partition the region into rectangular plots on a grid, and the

number of events occurring in each plot (or quadrat) is considered as a lattice

observation Zs, s ∈ Z
d (e.g., counts of trees in a quadrat), where each count Zs

follows a Poisson distribution with mean E (Zs) = θ when the events exhibit

complete spatial randomness (Cressie (1993, Chap. 8.2)). For EL inference, we

set Ys = Zs, s ∈ Z
d, and use estimating functions Gθ(Ys) = (Zs−θ, Z2

s −θ2−θ)′,

based on Poisson moments, so that (1) holds with p = m = 1, r = 2. Using

EL results in Section 3, it is possible to estimate the mean count θ, or more

importantly test if the Poisson assumption (1) holds, without nonparametric

variance estimation as used in some previous applications (Sherman (1996)).

Example 2. (Variogram inference). Estimation of the variogram 2γ(hi) ≡

Var (Zs − Zs+hi
) = E {(Zs − Zs+hi

)2} of the process {Zs : s ∈ Z
d} at given lags

h1, . . . ,hp ∈ Z
d is an important problem. Least squares variogram fitting is com-

monly proposed in the geostatistical literature; see Lee and Lahiri (2002) and ref-

erences therein. For EL inference on the variogram θ = (2γ(h1), . . . , 2γ(hp))
′ ∈

R
p, we define a vector function Gθ(Ys) = (g1,θ(Ys), . . . , gp,θ(Ys))

′ of the (p +

1)-dimensional process Ys = (Zs, Zs+h1
, . . . , Zs+hp)

′, where gi,θ(Ys) = (Zs −

Zs+hi
)2 − 2γ(hi). This selection fulfills (1) with r = p, m = p + 1.

Example 3. (Pseudo-likelihood inference). Markov random fields provide

an important class of models for spatial lattice data. They allow the conditional

distribution of an observation Zs, s ∈ Z
d, to be written through a neighborhood

structure as

fθ(z | {Zh : h 6= s})=

{

Pθ(Zs =z | {Zh : h ∈ Ns}) if Zs is discrete

density fθ(z | {Zh : h ∈ Ns}) if Zs is continuous,
z∈R,

(2)

where Ns ⊂ Z
d denotes a neighborhood of Zs (Cressie (1993, Chap. 6). Besag

(1974) developed models based on conditional distributions from one-parameter

exponential families in (2) and estimated them through maximum pseudo-likelihood

(Besag (1975)), where the pseudo-likelihood estimator θ̂PL
n of θ ∈ Θ ⊂ R

p solves

the score-based system

∑

s∈Rn∩Zd

∂ log fθ(Zs | {Zh : h ∈ Ns})

∂θ
= 0p ∈ R

p.
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Confidence regions for θ based on a normal approximation for θ̂PL
n often require

estimating the variance Var (θ̂PL
n ) of the pseudo-likelihood estimator, a difficult

task in general. This issue is relevant when fitting (2) with pseudo-likelihood to

examine clustering in the mortality map described in the Introduction. However,

the EL method may be generally applied for pseudo-likelihood inference with the

advantage that a confidence region for a parameter θ characterizing (2) can be set

by simply calibrating an EL function. This will be illustrated for the mortality

map example in Section 6.

To set up EL inference for a conditional distribution (2), suppose the neigh-

borhoods Ns, s ∈ Z
d, have a constant structure, such as “four-nearest neighbor”

Ns ≡ {s±e ∈ Z
2 : e = (0, 1)′, (1, 0)′} when d = 2. For describing θ ∈ Θ ⊂ R

p, we

choose r = p score-functions Gθ(Ys) = ∂ log fθ(Zs | {Zh : h ∈ Ns})/∂θ involving

a vector Ys = (Zs, Zs+h1
, . . . , Zs+h|Ns|

)′, hi ∈ Ns − s, formed by Zs and its |Ns|

neighbors, s ∈ Z
d. For Markov random fields based on exponential-family models

(2), these functions entail the moment condition (1) for θ.

2.2. Spatial blockwise empirical likelihood construction

Suppose a spatial parameter θ ∈ Θ ⊂ R
p is identified through a vector

process Ys, s ∈ Z
d, and estimating functions Gθ(·) satisfying (1). Construction

of the spatial EL function for θ requires spatial blocks of observed vectors Ys,

s ∈ Rn,Y ∩ Z
d. We consider two possible sources of rectangular blocks within

Rn,Y , namely, maximally overlapping (OL) and non-overlapping (NOL) blocks.

Such blocking schemes are common with other block-based spatial resampling

methods, such as the spatial block bootstrap and spatial subsampling (Lahiri

(2003)).

Let {bn}n≥1 be a sequence of positive integers and define general d-dimension-

al blocks as Bbn(i) ≡ i + bnU , i ∈ Z
d, using the cube U = (−1/2, 1/2]d . To keep

the blocks small relative to the sampling region Rn,Y , we suppose bn grows at a

slower rate than the sample size nY , and require that

b−1
n +

b2d
n

nY

= o(1) (3)

as n → ∞. We elaborate on this block condition in Section 7. The integer index

set IOL
bn

= {i ∈ Z
d : Bbn(i) ⊂ Rn,Y } identifies all integer-translated cubes bnU

lying completely inside the sampling region Rn,Y for the Ys-observations. From

this, the collection of maximally OL blocks is given by {Bbn(i) : i ∈ IOL
bn

}; see

Figure 2(c). For NOL blocks, the region Rn,Y is divided into disjoint cubes of Ys-

observations. Letting INOL
bn

= {bnk : k ∈ Z
d,Bbn(bnk) ⊂ Rn,Y } ⊂ Z

d represent

the index set of all NOL cubes Bbn(bnk) = bn(k + U) lying completely inside

Rn,Y , the NOL block collection is then {Bbn(i) : i ∈ INOL
bn

}; see Figure 2(b).
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Figure 2. (a) Sampling region Rn,Y ; (b) NOL complete blocks; (c) OL

blocks; (d) Bootstrap region R∗

n,Y formed by the complete blocks in (b).

(Bootstrap samples on R∗

n,Y are found by resampling data blocks from (c)

and concatenating these into block positions in (d).)

In the following, we let In generically denote either chosen index set IOL
bn

or

INOL
bn

and denote the number of blocks as NI = |In|. Using estimating functions

Gθ in (1), we compute a sample mean Mθ,i =
∑

s∈Bbn (i)∩Zd Gθ(Ys)/b
d
n, i ∈ In, for

each block Bbn(i) in the collection, which provides |Bbn(i)∩Z
d| = bd

n observations

of Gθ(Ys), s ∈ Z
d. The EL function Ln(θ) and EL ratio Rn(θ) for θ ∈ Θ are then

given by

Ln(θ)=sup

{

∏

i∈In

pi : pi ≥ 0,
∑

i∈In

pi = 1,
∑

i∈In

piMθ,i = 0r

}

, Rn(θ)=
Ln(θ)

( 1
NI

)NI
.

(4)

The EL function for θ ∈ Θ involves maximizing a multinomial likelihood created

from probabilities assigned to each block sample mean, under an expectation-

based linear constraint. Without the expectation constraint in Ln(θ), the product

has a maximum when each pi = 1/NI , yielding the EL ratio in (4). If 0r ∈ R
r

is interior to the convex hull of {Mθ,i : i ∈ In}, then Ln(θ) represents a positive,

constrained maximum and (4) may be written as

Ln(θ)=
∏

i∈In

pθ,i, Rn(θ)=
∏

i∈In

(

1+t′θMθ,i

)−1
, pθ,i={NI(1+t′θMθ,i)}

−1∈(0, 1),

(5)

where tθ solves
∑

i∈In
Mθ,i/(1 + t′Mθ,i) = 0r. We define Ln(θ) = −∞ when

the set in (4) is empty. See Owen (1990) and Qin and Lawless (1994) for these

computational details on EL.

In the next section, we consider the distribution of the log EL ratio given by

ℓn(θ) = −2Bn log Rn(θ), Bn =
nY

bd
nNI

. (6)
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The factor Bn is a block adjustment to ensure chi-square limits for (6), and

represents the spatial analog of the block correction used for the time series

blockwise EL (Kitamura (1997)).

3. Main Results

Distributional results for the spatial EL are established under a set of as-

sumptions referred to as “Assumptions 1-4” in the sequel. We defer technical

details on these assumptions to Section 8.1 of the online Appendix. In brief,

Assumption 1 provides a condition equivalent to the block growth rate (3). As-

sumptions 2-4 describe spatial mixing and moment conditions which allow the

spatial EL method to be valid for a large class of spatial processes exhibiting

weak spatial dependence. All of the EL results to follow apply equally to EL

functions Rn(θ), ℓn(θ) constructed of either OL or NOL blocks (i.e., In = IOL
bn

or INOL
bn

).

3.1. Smooth function model

We first establish the distribution of spatial blockwise EL ratios for inference

on “smooth function” parameters, as in Hall and La Scala (1990) for i.i.d. data

and Kitamura (1997) for mixing time series. Suppose θ = E {G(Ys)} ∈ Θ ⊂ R
p

represents the mean of a function G : R
m → R

p applied to an m-dimensional

vector Ys, s ∈ Z
d. EL inference on a more general parameter θH = H(θ) ∈ R

u

may be considered using a smooth function H : R
p → R

u of θ. This “smooth

function” model permits a wide range of spatial parameters θH , including ratios

or differences of means θ. For example, θ = {E (Ys),E (Y 2
s ),E (YsYs+h)}′ ∈ R

3

and H(x1, x2, x3) = (x3 − x2
1)/(x2 − x2

1) : R
3 → R yield a spatial autocorrelation

θH = H(θ) at lag h ∈ Z
d. For smooth model inference, we first define an EL

ratio Rn(θ) for θ using functions Gθ(Ys) = G(Ys)− θ, s ∈ Z
d in (5), which satisfy

(1) with the same number of parameters and estimating functions r = p. An EL

ratio and log-ratio for a parameter θH are then defined as

Rn(θH) ≡ sup
θ∈Θ:H(θ)=θH

Rn(θ), ℓn(θH) ≡ −2Bn log Rn(θH).

Theorem 1 provides a nonparametric recasting of Wilks’ theorem for spatial data,

useful for calibrating confidence regions and tests of spatial “smooth model”

parameters based on a chi-square approximation. In the following, χ2
ν denotes a

chi-square variable with ν degrees of freedom with a lower α-quantile given by

χ2
ν;α and

d
−→ denotes distributional convergence.

Theorem 1. (Smooth functions of means) Suppose In = IOL
bn

or INOL
bn

;

E {G(Ys)} = θ ∈ R
p; Assumptions 1-4 hold with r = p estimating functions
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Gθ(Ys) = G(Ys) − θ, s ∈ Z
d; H : R

p → R
u is continuously differentiable in a

neighborhood of θ0 and θH
0 = H(θ0). Then,

ℓn(θH
0 )

d
−→ χ2

ν

as n → ∞, where ν denotes the rank of the u × p matrix ∂H(θ)/∂θ|θ=θ0
.

See Hall and La Scala (1990) for properties of EL confidence regions for

smooth model parameters.

3.2. Maximum empirical likelihood point estimation

We refer to the maximum of Rn(θ) from (5) as the maximum empirical likeli-

hood estimator (MELE) and denote it by θ̂n. Using general estimating equations,

Qin and Lawless (1994) and Kitamura (1997) considered the distribution of the

MELE with independent data and mixing time series, respectively. With spatial

data, we show the MELE has properties resembling those available in other EL

frameworks.

We first consider establishing the existence, consistency and asymptotic nor-

mality of a sequence of maxima of the EL ratio Rn(θ) from (5), along the lines of

the classical arguments of Cramèr (1946). The conditions are mild and have the

advantage that they are typically easy to verify. Let ‖ · ‖ denote the Euclidean

norm in the following.

Theorem 2. (General estimating equations) Assume In = IOL
bn

or INOL
bn

,

Assumptions 1−4 and (1) hold. In addition, suppose in a neighborhood of θ0,

∂Gθ(·)/∂θ, ∂2Gθ(·)/∂θ∂θ′ are continuous in θ and ‖∂Gθ(·)/∂θ‖, ‖∂2Gθ(·)/∂θ∂θ′‖

are bounded by a nonnegative, real-valued J(·) with E {J3(Ys)} < ∞; and Dθ0
≡

E {∂Gθ(Ys)/∂θ|θ=θ0
} has full column rank p. Then, as n → ∞, P

(

Rn(θ) is

continuously differentiable on ‖θ − θ0‖ ≤ n
−5/12
Y

)

→ 1; there exists a sequence

{θ̂n} such that P
(

Rn(θ̂n) = max
‖θ−θ0‖≤n

−5/12

Y

Rn(θ) & ‖θ̂n − θ0‖ < n
−5/12
Y

)

→ 1; and

n
1

2

Y

(

θ̂n − θ0

b−d
n tθ̂n

)

d
−→ N

((

0p

0r

)

,

[

Vθ0
0

0 Uθ0

])

,

where Vθ0
=
(

D′
θ0

Σ−1
θ0

Dθ0

)−1
, Uθ0

= Σ−1
θ0

− Σ−1
θ0

Dθ0
Vθ0

D′
θ0

Σ−1
θ0

.

Remark. For an i.i.d. sample of size n, Qin and Lawless (1994) established a

related result for a ball ‖θ − θ0‖ ≤ n−1/3. We could replace n
−5/12
Y with n

−1/3
Y ,

to allow a larger ball in Theorem 2, by strengthening moment assumptions (i.e.,

E (‖Gθ(Ys)‖
12+δ) < ∞ in Assumption 1 of Section 8.1 of the online Appendix).
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However, regardless of the ball radius n
−5/12
Y or n

−1/3
Y , the maximizer of the EL

function on each ball satisfies ‖θ̂n−θ0‖ = Op(n
−1/2
Y ), and thereby maximizers on

the different balls must ultimately be equal.

Theorem 2 establishes the existence of a local maximizer of the spatial EL

function. When the likelihood Rn(θ) has a single maximum with probability

approaching 1, by the concavity of Rn(θ) for example, then the sequence {θ̂n}

corresponds to a global MELE. Under stronger conditions, as in Kitamura (1997),

a global maximum on Θ can be shown to satisfy ‖θ̂n − θ0‖ = Op(n
−1/2
Y ), thereby

coinciding with the sequence in Theorem 2. However, Theorem 2 conditions

are often sufficient, for many estimating functions, to ensure that the sequence

{θ̂n} in Theorem 2 corresponds to global maximizers without more restrictive

assumptions, such as compactness of the parameter space Θ. For example, this

is true with estimating functions of the common form Gθ(Ys) = G(Ys)− γ(θ) for

some G : R
m → R

r and differentiable γ : Θ → R
r with ‖γ(θ) − γ(θ0)‖ increasing

in ‖θ − θ0‖; see Example 1 of Section 2.1 for illustration.

3.3. Empirical likelihood tests of hypotheses

As in the EL frameworks of Qin and Lawless (1994) and Kitamura (1997),

the spatial EL method allows test statistics based on θ̂n for both spatial pa-

rameter and moment hypotheses. The distribution of the log-EL ratio rn(θ) ≡

ℓn(θ)− ℓn(θ̂n) at θ = θ0 is useful for simple hypothesis tests or for calibrating ap-

proximate 100(1 − α)% EL confidence regions for θ as {θ ∈ Θ : rn(θ) ≤ χ2
p;1−α}.

For testing the null hypothesis that the moment condition (1) holds for the es-

timating functions, the log-ratio statistic ℓn(θ̂n) may be applied. Theorem 3

provides the limiting chi-square distributions of these EL log-ratio statistics.

In Theorem 3, we show additionally that the profile spatial EL ratio statistics

can be developed to conduct tests and set confidence regions in the presence of

nuisance parameters; see Qin and Lawless (1994) for the i.i.d. data case. Let

θ = (θ′1, θ
′
2)

′, where θ1 denotes the q × 1 parameter of interest and θ2 denotes

a (p − q) × 1 nuisance vector. For fixed θ1, suppose that θ̂
(θ1)
2 maximizes the

EL function Rn(θ1, θ2) with respect to θ2 and define the profile log-EL ratio

ℓn(θ1) ≡ −2Bn log Rn(θ1, θ̂
(θ1)
2 ) for θ1.

Theorem 3. Under the assumptions of Theorem 2 with the sequence {θ̂n}, as

n → ∞,

(i) rn(θ0) = ℓn(θ0) − ℓn(θ̂n)
d

−→ χ2
p and ℓn(θ̂n)

d
−→ χ2

r−p.

(ii) If H0: θ1 = θ0
1 holds, then rn(θ0

1) = ℓn(θ0
1) − ℓn(θ̂1n)

d
−→ χ2

q , where θ̂n =

(θ̂1n, θ̂2n)′.
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We examine the performance of the spatial EL in subsequent sections. EL

inference for spatial parameters under constraints is also possible, as considered

by Qin and Lawless (1995) and Kitamura (1997) for i.i.d. and time series data;

see Section 8.4 of the online Appendix for this.

4. A Bartlett Correction Procedure

A Bartlett correction is often an important property for EL methods. This

involves making a mean adjustment to the EL log-ratio in order to improve

the limiting chi-square approximation, and to enhance the coverage accuracy

of EL confidence regions. For EL with independent data, a Bartlett correction

has been established by DiCiccio, Hall and Romano (1991) for smooth function

means, and by Chen and Cui (2006, 2007) under general estimating equations

and nuisance parameters; see Chen and Cui (2007) for additional references with

i.i.d. data. With weakly dependent time series, Kitamura (1997) and Monti

(1997) considered Bartlett corrections for blockwise EL with mean parameters

and a periodogram-type EL, respectively.

While a formal justification of a Bartlett correction in the spatial setting is

difficult, a practical Bartlett correction for the spatial EL may be proposed using

a spatial block bootstrap. Let rn(θ) = ℓn(θ)−ℓn(θ̂n), θ ∈ Θ ⊂ R
p, denote the log

EL ratio from Section 3.3 based on the MELE θ̂n and (6). By Theorems 2−3,

we have rn(θ0)
d

−→ χ2
p and θ̂n is consistent for θ0, so that a bootstrap Bartlett

correction factor may be calculated as follows. Pick some large M ∈ N. For

i = 1, . . . ,M , independently generate a block bootstrap rendition, say Y∗i
n , of the

original vectorized spatial data Yn ≡ {Ys : s ∈ Rn,Y ∩Z
d} and compute r∗in (θ̂n) =

ℓ∗in (θ̂n)−ℓ∗in (θ̂∗in ), where ℓ∗in and θ̂∗in are the log EL ratio and MELE analogs based

on Y∗i
n . We then compute r̄∗n = M−1

∑M
i=1 r∗in (θ̂n) to estimate E {rn(θ0)} and set

a Bartlett-corrected 100(1−α)% confidence region as {θ : (p/r̄∗n)rn(θ) ≤ χ2
p,1−α}.

If θ = (θ′1, θ
′
2)

′ with interest on θ1 ∈ R
q, treating θ2 ∈ R

p−q as nuisance parameter

as in Theorem 3, we take a Bartlett-corrected confidence region for θ1 as {θ1 :

(q/r̄∗n)rn(θ1) ≤ χ2
q,1−α} with respect to rn(θ1) = ℓn(θ1)−ℓn(θ̂1n) and r̄∗n based on

r∗in (θ̂1n) = ℓ∗in (θ̂1n) − ℓ∗in (θ̂∗i1n). Under the smooth function model in Theorem 1,

the same algorithm applies for the EL ratio rn(θH
0 ) ≡ ℓn(θH

0 ), with ℓn(θ̂n) = 0 in

this case.

As an alternative to the Bartlett correction, another option would be to

calibrate confidence regions for the log El ratio rn(θ) using sample quantiles from

the M bootstrap replicates r∗in (θ̂n). The Bartlett correction involves estimating

the mean of rn(θ0) at the true parameter θ0 while the bootstrap calibration

aims to approximate extreme quantiles of the distribution of rn(θ0). Intuitively,

mean estimation is a more robust task and may possibly require fewer bootstrap
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replicates M for adequate estimates. Simulation studies with independent data

in Chen and Cui (2007) appear to suggest this as well. For this reason, we

concentrate our numerical studies in Section 5 on the Bartlett correction.

For completeness, we describe a spatial block bootstrap method for gener-

ating a bootstrap version of Yn on Rn,Y in Section 8.5 of the online Appendix.

The bootstrap involves spatial blocks determined by a block scaling factor bn,bt,

satisfying b−1
n,bt + bd

n,bt/nY = o(1). The bootstrap scaling bn,bt may differ from the

EL block scaling bn and might be expected to be larger than bn in many cases.

5. Numerical Study

We conducted a simulation study to compare OL and NOL versions of the

blockwise EL method, and to examine the Bartlett correction algorithm for in-

ference on the mean E (Zs) = θ of a real-valued spatial process Zs, s ∈ Z
2,

on the integer grid. Sampling regions Rn = λn(−1/2, 1/2]2 ⊂ R
2 of different

sizes were considered with λn = 10, 20, 30; a fourth region was taken as Rn =

(−5, 5]×(−15, 15]. We used the circulant embedding method of Chan and Wood

(1997) to generate real-valued mean-zero Gaussian random fields on Z
2 with an

Exponential or Gaussian covariance structure:

h=(h1, h2)
′∈Z

2,Cov (Zs, Zs+h)=

{

exp
[

− β1|h1|−β2|h2|
]

model E(β1, β2)

exp
[

− β1|h1|
2−β2|h2|

2
]

model G(β1, β2),

with values (β1, β2) = (0.8, 0.8) and (0.4, 0.2). Using Ys = Zs and Gθ(Ys) = Zs−θ

in (1), we calculated approximate two-sided 90% EL intervals for θ as {θ : rn(θ) ≤
χ2

1;0.9} using OL/NOL blocks of length bn = Cn1/5, C = 1, 2, where n = |Rn∩Z
2|

and rn(θ) = ℓn(θ); note ℓn(θ̂n) = 0 here for the mean and nY = n. This order

of the EL block factor was intuitively chosen to be smaller than the optimal

order O(n1/(d+2)) known for spatial subsampling variance estimation when d =

2 (Sherman and Carlstein (1994); EL block scaling bn is discussed further in

Section 7. Using the algorithm from Section 4, Bartlett-corrected EL intervals

were also computed using M = 1, 000 Monte Carlo approximations and bootstrap

block sizes bn,bt = n1/4, n1/3. Additionally, for comparison to EL intervals, normal

approximation intervals for θ were taken as Z̄n ± 1.645Sn using the sample mean

Z̄n over Rn and a spatial subsampling variance estimator S2
n of Var (Z̄n) based

on a plug-in estimate of its optimal block size, with pilot block sizes n1/(2+2i), i =

1, 2, see Nordman and Lahiri (2004). Table 1 provides summaries of the coverage

accuracies and interval lengths for the EL method based on 1,000 simulation runs

for each sampling region and covariance structure; Table 2 provides the same for

the subsampling-based intervals. The Bartlett correction appears to provide large

improvements in the EL intervals across a variety of dependence structures. From

the results, we make the following observations:
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Table 1. Coverage probabilities for approximate two-sided 90% EL confi-

dence intervals for the process mean, with expected interval lengths, based
on OL/NOL blocks of length bn; UC, BC3, BC4 denote uncorrected and

Bartlett-corrected intervals based on bootstrap blocks bn,bt = n1/3, n1/4, re-

spectively, and n1×n2 denotes the size of the sampling region with n = n1n2.

bn = n1/5 bn = 2n1/5

NOL OL NOL OL

E(0.4,0.2) UC BC3 BC4 UC BC3 BC4 UC BC3 BC4 UC BC3 BC4

10×10 39.6 68.1 76.6 38.7 60.9 65.7 47.9 68.8 68.8 42.4 76.5 74.4
0.57 1.11 1.54 0.57 0.96 1.12 0.63 1.08 1.08 0.58 1.31 1.28

20×20 41.8 69.3 77.2 42.0 61.4 73.0 39.6 75.1 62.3 51.0 79.3 74.2
0.35 0.65 0.90 0.36 0.54 0.72 0.42 0.98 0.74 0.51 0.91 0.82

30×30 50.9 72.6 77.6 50.0 68.0 79.5 55.2 95.7 95.4 58.8 78.6 77.1
0.30 0.48 0.55 0.30 0.44 0.59 0.40 1.21 1.25 0.41 0.63 0.63

10×30 42.3 75.6 80.2 40.4 58.3 69.9 48 80.3 80.3 50.1 80.0 90.5
0.40 0.91 1.28 0.40 0.61 0.83 0.49 1.21 1.21 0.53 1.02 1.47

E(0.8,0.8)

10×10 64.6 88.8 84.9 63.8 81.5 78.7 62.8 83.6 83.6 55.2 91.3 89.0
0.49 0.98 1.06 0.50 0.76 0.76 0.47 0.81 0.81 0.46 1.06 1.00

20×20 69.4 86.9 83.6 71.4 83.6 85.4 53.2 82.7 71.6 70.8 86.3 81.1
0.28 0.42 0.49 0.28 0.37 0.41 0.28 0.62 0.48 0.32 0.52 0.46

30×30 74.9 87.8 85.4 73.6 85.6 88.1 73.7 98.4 98.0 76.7 89.3 87.9
0.21 0.28 0.27 0.21 0.27 0.29 0.22 0.61 0.60 0.24 0.33 0.31

10×30 71.9 92.2 87.8 70.5 82.3 84.5 62.7 91.3 91.0 70.5 89.2 92.4
0.32 0.56 0.63 0.32 0.43 0.47 0.33 0.81 0.81 0.36 0.61 0.82

G(0.4,0.2)

10×10 64.3 89.7 90.4 62.6 86.0 83.6 62.5 80.1 80.1 56.1 87.9 86.4
0.63 1.27 1.55 0.64 1.08 1.09 0.60 1.02 1.02 0.58 1.30 1.26

20×20 66.7 89.0 86.1 67.6 83.4 85.0 54.3 86.1 77.5 70.1 91.9 85.8
0.35 0.57 0.65 0.35 0.49 0.55 0.34 0.80 0.63 0.41 0.70 0.60

30×30 76.3 90.4 87.5 76.6 87.1 89.6 71.4 98.6 98.3 74.9 89.8 86.5
0.27 0.38 0.36 0.27 0.35 0.39 0.29 0.81 0.78 0.30 0.43 0.40

10×30 70.6 92.9 87.6 69.1 83.6 85.2 59.8 91.3 91.0 69.0 92.4 94.9
0.40 0.77 0.85 0.40 0.57 0.63 0.42 1.04 1.04 0.46 0.84 1.15

Table 2. Coverage probabilities and expected interval lengths for approx-
imate two-sided 90% confidence intervals for the process mean based on a

normal approximation with a subsampling variance estimator. Sampling

region Rn sizes noted by n1 × n2.

(β1, β2) E(β1, β2) G(β1, β2)

10×10 20×20 30×30 10×30 10×10 20×20 30×30 10×30

(0.4,0.2) 44.2 50.9 64.0 53.9 70.4 71.9 81.4 76.0
0.59 0.40 0.38 0.50 0.64 0.36 0.28 0.45

(0.8,0.8) 69.0 77.9 79.7 76.7 80.4 81.9 86.0 82.5
0.50 0.30 0.22 0.34 0.49 0.27 0.19 0.31
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1. The coverage accuracies of the intervals often improved, and the interval

lengths decreased, as the strength of underlying spatial dependence de-

creased and the size of the sampling region increased.

2. Coverage probabilities of uncorrected EL and normal approximation inter-

vals were similar, and often far below the nominal level. This agrees with

other simulation results for EL with independent data, in which uncorrected

EL intervals often appeared too narrow (DiCiccio, Hall and Romano (1991)

and Chen and Cui (2007)).

3. Bartlett-corrected EL intervals based on NOL and OL blocks were gener-

ally competitive and had coverage accuracies that were much closer to the

nominal level than uncorrected intervals. The NOL block version typically

performed better with shorter blocks bn.

4. Under spatial dependence E(0.4,0.2), the Bartlett-corrected EL intervals

were most sensitive to the EL and bootstrap block sizes. In this case, larger

blocks seemed preferable to capture the stronger dependence structure.

Repeating the simulation with M = 500 or 250 bootstrap renditions did not

change the results significantly, suggesting an adequate Bartlett correction may

also be possible with fewer spatial bootstrap replicates.

6. Data Example: Cancer mortality map

The spatial EL method was applied to the cancer mortality map shown in

Figure 1(a), constructed using mortality rates from liver and gallbladder cancer

in white males during 1950-1959. Sherman and Carlstein (1994) considered these

data for applying subsampling. We use their division of high and low mortality

rates for illustration purposes, recognizing that the map’s binary nature discards

useful information relevant to the underlying scientific problem. The sampling

region Rn in Figure 1(a) contains 2298 sites on a portion of the integer grid

(0, 66] × (0, 58] ∩ Z
2. For a given site s ∈ Z

2, we code Zs = 0 or 1 to indicate a

low or high mortality rate, and let Ss =
∑

h∈Ns

Zh denote the sum of indicators

Zh over the four nearest-neighbors Ns = {h ∈ Z
2 : ‖s − h‖ = 1} of site s.

To test whether incidences of high cancer mortality exhibit clumping, Sher-

man and Carlstein proposed examining the spatial dependence parameter β of

an autologistic model of the type introduced by Besag (1974). That is, suppose

the binary process Zs, s ∈ Z
2 was generated by the conditional model, with

parameters θ = (α, β)′, written as

fθ(z|{Zh : h 6= s}) = Pθ

(

Zs = z | {Zh ∈ Ns}
)

=
exp

[

z(α + βSs)
]

1 + exp
[

α + βSs

] , z = 0, 1.

(7)
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(0.1753, 0.5882)

b=4, Bartlett Corrected

MELEs 0.3444, -1.3923

(0.1619, 0.534)

b=6, Bartlett Corrected

MELEs 0.3114, -1.3599

(0.1349, 0.504)

b=8, Bartlett Corrected

MELEs 0.2963, -1.3524

(0.1185, 0.5027)

b=10, Bartlett Corrected

MELEs 0.2713, -1.3413

(0.0483, 0.5554)

b=12, Bartlett Corrected

Figure 3. Spatial log-EL ratio rn(β) for β, and a Bartlett-corrected version
rn(β)/r̄∗n for various block lengths bn. Horizontal lines indicate the chi-square

quantile χ2
1;0.95, and approximate 95% confidence intervals for β appear in

brackets; MELEs β̂n, α̂n are given for each bn.
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Positive values of β suggest a tendency for clustering, while β = 0 implies no

clustering among sites. Sherman and Carlstein set a normal-theory confidence

interval for β based on the pseudo-likelihood estimate β̂PL
n and a spatial subsam-

pling variance estimate for Var (β̂PL).

The spatial EL may be applied to investigate evidence of clumping without

a variance estimation step. For this, we use pseudo-likelihood-type estimating

functions as described in Example 3 of Section 2.1. For θ = (α, β)′ in (7),

we consider the vector process Ys of dimension m = 5, formed by Zs and its

four nearest neighbors Zh, h ∈ Ns, along with r = p = 2 estimating functions

Gθ(Ys) = ∂ log fθ(Zs | {Zh : h ∈ Ns})/∂θ based on (7). Figure 1(b) shows

the sampling region R5,n of these Ys-observations. Treating α as a nuisance

parameter, we obtain a profile log-EL ratio rn(β) = ℓn(β) − ℓn(β̂n) for each β

value, where ℓn(β) = ℓn(β, α̂
(β)
n ), α̂

(β)
n = arg maxα Rn(β, α), and β̂n is the MELE

for β. For various block choices bn, we computed the MELEs θ̂n = (α̂n, β̂n)′

and, by Theorem 3, calibrated approximate 95% confidence intervals for β based

on a χ2
1 distribution for rn(β). Figure 3 shows the log-EL ratio rn(β), MELEs,

and corresponding approximate 95% confidence interval for β with and without

Bartlett corrections for each block size used. The Bartlett correction factor r̄∗n
was computed based on M = 1, 000 bootstrap renditions of R5,m and a block

factor bn,bt = 6.

As in the simulation study of Section 5, Bartlett-corrected EL intervals for

β are notably wider than their uncorrected counterparts. EL intervals for β sug-

gest clustering but these are shifted much closer to zero compared to Sherman

and Carlstein’s subsampling-based 95% confidence interval (0.2185, 0.6183) (af-

ter re-parameterization there). In comparison, the EL method gives a slightly

moderated interpretation of clustering. Of additional note, the behavior of EL

intervals in Figure 3 also suggests a visual way of selecting a block size for the

EL method; this is described in the next section.

7. Spatial Empirical Likelihood Block Scaling

The spatial EL proposed in this article involves a block condition (3), stating

that the spatial sample size nY for Rn,Y must be of larger order than the squared

number of observations in a spatial block b2d
n . This appears also to be necessary

for the results presented previously. To see why, note that, from Theorem 2,

the exact order of the EL Lagrange multiplier tθ̂n
is Op(b

d
n/n

1/2
Y ), which is also

the order of tθ0
at the true parameter θ0. Under the EL moment condition (1),

we expect tθ0
to converge to zero in probability (requiring bd

n/n
1/2
Y → 0) as the

sample size increases, so that the EL block probabilities pθ0,i from (5) become

close to the probabilities 1/NI maximizing the EL function. Hence, (3) may

represent the weakest possible requirement on the blocks.
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Potential EL block scaling in R
d can involve bn = Cnκ

Y , for some C > 0 and

0 < κ < 1/(2d), although the best EL block orders for coverage accuracy are

presently unknown for any d. With some time series block resampling methods,

MSE-optimal blocks for distribution estimation are usually smaller than optimal

blocks for variance estimation (Lahiri (2003)). This motivated the choice bn =

Cn
1/5
Y in the simulation study of Section 5 so as to be smaller than the optimal

block order O(n
1/4
Y ) known for subsampling variance estimation when d = 2

(Sherman (1996)). This order choice of κ = 1/5 is also a compromise between

the optimal block orders κ ∈ [1/4, 1/6] for some R
2-subsampling distribution

estimators studied by Garcia-Soidan and Hall (1997).

In practice, EL block sizes might be chosen by the “minimum volatility”

method, described by Politis, Romano and Wolf (1999, Sec. 9.3.2) for time se-

ries subsampling. The method is heuristic and based on the idea that, while

some block sizes bn may be too large or small, we might expect to find a range

of bn-values yielding approximately correct inference. In this range, confidence

regions should be stable as a function of the block size. Hence, by creating EL

confidence regions over a range of block sizes, an appropriate block size could

be chosen by visual inspection. For illustration, we consider the EL confidence

intervals in Figure 3 from the mortality map example. The apparent stability of

these intervals over bn = 6, 8, 10 seems to indicate that these block choices are

reasonable for applying the EL method.
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