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Abstract: It is well known that the likelihood sequence of the EM algorithm is non-

decreasing and convergent (Dempster, Laird and Rubin (1977)), and that the limit

points of the EM algorithm are stationary points of the likelihood (Wu (1982)),

but the issue of the convergence of the EM sequence itself has not been completely

settled. In this paper we close this gap and show that under general, simple,

verifiable conditions, any EM sequence is convergent. In pathological cases we show

that the sequence is cycling in the limit among a finite number of stationary points

with equal likelihood. The results apply equally to the optimization transfer class

of algorithms (MM algorithm) of Lange, Hunter, and Yang (2000). Two different

EM algorithms constructed on the same dataset illustrate the convergence and the

cyclic behavior.
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1. Introduction

This paper contains new results concerning the convergence of the EM al-

gorithm. The EM algorithm was brought into the limelight by Dempster, Laird

and Rubin (1977) as a general iterative method of computing the maximum

likelihood estimator by maximizing a simpler likelihood on an augmented data

space. However, the problem of the convergence of the algorithm has not been

satisfactory resolved. Wu (1983), the main theoretical contribution in this area,

showed that the limit points of the EM algorithm are stationary points of the

likelihood, and that when the likelihood is unimodal, any EM sequence is con-

vergent. Boyles (1983) has a number of results along similar lines. These results

still allow the possibility of a non-convergent EM sequence when the likelihood is

not unimodal. More importantly, the EM algorithm is useful when the likelihood

is hard to obtain directly; for these cases, the unimodality of the likelihood is

very difficult to verify. Here we give simple, general, verifiable conditions for con-

vergence: our main result (Theorem 3) is that any EM sequence is convergent,

if the maximizer at the M-step is unique. This condition is almost always satis-

fied in practice (otherwise the particular EM data augmentation scheme would
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have limited usefulness), and it is verifiable by direct examination of the E-step

function.

In an interesting recent development, Lange, Hunter and Yang (2000) pro-

posed a new class of algorithms, called optimization transfer algorithms, or the

MM algorithm. This is a generalization of the EM algorithm which does not

involve missing data. The MM algorithm has already proven useful in compu-

tations for various statistical applications (Lange, Hunter and Yang (2000) and

Becker, Yang and Lange (1997)). The convergence results proven for EM extend

immediately to the MM algorithm.

After setting the regularity conditions (notably, that the stationary points of

the likelihood are isolated) in the next section, we establish two results regarding

the convergence of the EM algorithm. The first is Theorem 2, which states that

any EM sequence either converges to a stationary point, or to a finite cycle of

stationary limit points. The second is the convergence theorem mentioned above.

The two results are illustrated on an example with inference for multivariate

normal data with missing observations: two different data augmentation schemes

lead to EM algorithms with different convergence properties, one convergent

and the other cyclical. Section 5 extends the convergence results to the MM

algorithm. A brief discussion closes the paper.

2. Preliminaries

Let y denote the observed data, with distribution p(y|θ) and log-likelihood

ly(θ) = log p(y|θ), where θ is a point in the parameter space Ω ⊂ Rd.

The EM algorithm (EM) is best applied in problems with a natural missing

random information structure, such as partially missing observations, censored

data or random effects, where the direct maximization of the log-likelihood is

typically a difficult task. The EM iteratively maximizes a function based on the

augmented data Yaug. The augmented data can be written as Yaug = (y, Ymis),

where Ymis is the missing data; more generally, Yaug is such that y is a random

function of Yaug and θ. The algorithm starts with θ(0) ∈ Ω; after t steps, θ(t+1)

is defined as follows.

E-step (Expectation): Calculate Q(θ|θ(t)) = E[log p(Yaug|θ)|y, θ(t)] for all

θ ∈ Ω; Q(θ|θ(t)) is the expected log-likelihood of the augmented data, conditional

on the observed data and current parameter θ(t).

M-step (Maximization): Put θ(t+1) = M(θ(t)) where, for any θ, M(θ) is the

global maximizer of Q(·|θ): Q(M(θ)|θ) ≥ Q(θ ′|θ), for all θ′ ∈ Ω.

We assume that the maximizer at the M-step, M(·), called the EM transition

function, is well defined, i.e., either the global maximizer of Q(·|θ) is unique, or

there is some deterministic procedure by which M(θ) is chosen among several
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global maxima. Let the score function be sy(θ) = ∂ly(θ)/∂θ. For θ, θ′ ∈ Ω, let

H(θ′|θ) = E[log p(Yaug|y, θ′) | y, θ], and note that

ly(θ
′) = Q(θ′|θ) − H(θ′|θ). (1)

The EM algorithm is completely defined by the likelihood ly, together with

the data augmentation scheme, Yaug; alternatively, EM is characterized by the

transition function M(·). An EM sequence {θ(t)} is given by its starting value

θ(0) and by the iteration θ(t+1) = M(θ(t)). We denote the set of stationary points

of the log-likelihood ly(·) by Sl, Sl ⊂ Ω, i.e., θ∗ ∈ Sl iff sy(θ
∗) = 0.

For a function f of two variables, let D10f denote the first partial derivative

with respect to the first argument. If f(x) = x, then x is a fixed point for the

function f . The point θ is a limit point, or subconvergence point for a sequence

{θk} if there is a subsequence {θkj
} that converges to θ. An element θ∗ ∈ Ω is

called a subconvergence point for EM if there exists an EM sequence {θ (t)} for

which θ∗ is a subconvergence point. If {θ(t)} converges to θ∗, then the latter

is called a convergence point for EM. The EM algorithm is called convergent if

any EM sequence converges. Note that we do not require for a convergent EM

algorithm that all sequences converge to the same point for all starting values,

but merely that each EM sequence is convergent.

Regularity conditions

The following conditions will be assumed to hold throughout.

R1: Ω is an open set in Rd.

R2: ly(·) is differentiable, with continuous derivative sy(·).
R3: The level set Ωθ = {θ′ ∈ Ω : ly(θ

′) ≥ ly(θ)} is compact in Rd (i.e., closed

and bounded.)

R4: The missing data distribution p(Yaug|y, θ) has the same support for all θ ∈ Ω.

R5: Q(θ′|θ) is continuous in both θ′ and θ, and differentiable in θ′.

R6: All the stationary points in Sl are isolated.

The conditions R1−R3 refer to the likelihood, and are needed for the asymp-

totic maximum likelihood theory to hold; the compactness condition R3 ensures

that the local maxima of ly(·) do not occur on the boundary of Ω. R1−R3 are

similar to equations (5)−(8) in Wu (1983). R4 and R5 are linked to the data

augmentation procedure. In particular, R4 implies that H(θ|θ) ≥ H(θ ′|θ), for all

θ, θ′ ∈ Ω (see e.g., Lehmann (1983, p.409)), and therefore D10H(θ|θ) = 0 for all

θ ∈ Ω (the existence of D10H is ensured by R2, R5 and (1)). Under conditions

R1−R5, for all θ ∈ Ω, the function Q(·|θ) admits a point of maximum, i.e., M(θ)

exists. The condition R6 effectively rules out the case where the likelihood is

maximized on a “ridge”. Boyles (1983) shows an example of a generalized EM

which does not converge, with a maximum likelihood on a ridge. The condition
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R6 is certainly satisfied when Sl is finite, i.e., when the score equation sy(θ) = 0

has a finite number of solutions.

The following is a simplifying assumption needed in the sequel.

C1: The function M(·) is continuous at the stationary points in Sl.

This continuity assumption is hard to check directly, but it can be replaced

by the following easily verifiable, stronger condition.

C2: For all θ ∈ Sl there exists a unique global maximum of Q(·|θ).

Their connection is shown by the following lemma:

Lemma 1. For a given θ ∈ Ω, if Q(·|θ) has a unique global maximum, then

M(·) is continuous at θ. In particular if C2 holds, then C1 is satisfied.

3. The Main Results

We start by summarizing the extant results regarding the limiting behavior of

the EM algorithm. Dempster, Laird and Rubin (1977) and Wu (1983) established

the following properties (see also the monograph of McLachlan and Krishnan

(1996)).

(i) Monotonicity of EM: for all θ ∈ Ω, ly(M(θ)) ≥ ly(θ).

(ii) If ly(M(θ)) = ly(θ), then θ is a stationary point of ly and a maximizer of

Q(·|θ).

(iii) If θ is a fixed point of M(·), then θ is a convergence point of EM, and a

stationary point of the likelihood.

The reverse of (iii) is not true in general, as it is possible to have stationary

points that are not fixed points of M(·), that is, points from which the algorithm

can “escape” — see the second EM in Section 4. Statement (iii) also asserts

that a fixed point of M(·) is a point of convergence for EM. The reverse is true

under the continuity condition C1: if θ(t) converges to θ∗, then θ∗ ∈ Sl,M(θ(t))

converges to M(θ∗), hence M(θ∗) = θ∗. The following is a key result.

Theorem 1.(Wu (1983)) If θ∗ is a limit point of the EM sequence {θ(t)}, then

(a) θ∗ is a stationary point of the likelihood, and (b) the sequence {ly(θ(t))} is

nondecreasing and converges to ly(θ
∗).

In other words, an EM sequence is either convergent, or it has a set of limit

points with identical likelihood value. The restriction on the set of limit points

is a strong one, and it will be exploited later in Theorem 2. Note that the limit

point θ∗ may be any kind of stationary point, i.e., either a local maximum, a

saddle-point, or a local minimum of the likelihood. The theorem does not go

so far as to show that θ(t) → θ∗, which is what we are after. Clearly, if no two
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stationary points have the same likelihood, then the EM algorithm is convergent.
However, this condition depends on the likelihood function, and is hard to verify
in practice. A more gratifying result would replace it with some conditions that
are easier to check, such as condition C2.

After the next lemma, we give a simple and explicit characterization of the
limiting behavior of the EM algorithm in Theorem 2, followed by the main con-
vergence result in Theorem 3.

Lemma 2. Assuming R6, then for any real value l∗ there is at most a finite
number of stationary points θ∗ such that l(θ∗) = l∗.

A finite set of distinct points θ∗1, . . . , θ
∗
m of Ω is called a cycle of length m ≥ 2

for the transition function M(·) if M(θ∗i ) = θ∗i+1, for i = 1, . . . ,m − 1, and
M(θ∗m) = θ∗1.

Theorem 2. Let {θ(t)} be an EM sequence, and assume that C1 holds. Then
either θ(t) converges to a stationary point θ∗ with M(θ∗) = θ∗, or there exists a
finite set C = {θ∗1, . . . , θ∗m}, such that
(i) θ∗1, . . . , θ

∗
m are stationary points (C ⊂ Sl) with the same likelihood value;

(ii) M(θ∗1) = θ∗2, M(θ∗2) = θ∗3, . . . , M(θ∗m) = θ∗1;
(iii)The parallel subsequences {θ(mt+i); t ≥ 1} satisfy θ(mt+i) → θ∗i when t → ∞,

for i = 1, . . . ,m.

It is clear from Theorem 2 that the limit points of an EM algorithm coincide
with the fixed points and the cycles of the transition function M(·). The following
known result (Wu (1983, Theorem 6)) can be alternatively be obtained as a direct
consequence of Theorem 2.

Corollary 1. Under C1, an EM sequence {θ(t)} is convergent iff ||θ(t+1)−θ(t)||
→ 0, when t → ∞.

In practice, the cyclical behavior asserted by Theorem 2 is rarely encoun-
tered, but not impossible; see Section 4 for an illustrative example. However, this
theorem is instrumental in obtaining the main result regarding the convergence
of the EM algorithm.

Theorem 3. Assume that C2 holds. Then for any starting value θ(0) of the
EM sequence {θ(t)}, θ(t) → θ∗ when t → ∞, for some stationary point θ∗ ∈ Sl.
Moreover, M(θ∗) = θ∗, and if θ(t) 6= θ∗ for all t, the sequence of likelihood values
{ly(θ(t))} is strictly increasing to ly(θ

∗).

Theorem 3 offers a general, verifiable condition for convergence. This con-
dition is almost always satisfied in practice (otherwise the particular EM data
augmentation scheme would have limited usefulness), and can be established, for
example, by checking the sign of the derivative of the function to be maximized
at the M-step, as illustrated in the next example.
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4. An Illustrative Example

Consider twelve independent observations zi = (xi, yi) from a bivariate nor-

mal distribution with mean zero and variance matrix σ2

(

1 ρ

ρ 1

)

, with σ2, ρ

unknown:

xi 1 1 −1 −1 0 0 0 0 3 3 −3 −3

yi 1 −1 1 −1 . . . . . . . .
,

where the dots correspond to missing values. The purpose is to compute the

MLE for σ2, ρ. This is a modification of the example of Murray (1977).

Direct calculation of the observed log-likelihood yields l = −8 log σ2−18/σ2−
2 log(1 − ρ2) − 4/[σ2(1 − ρ2)]. The log-likelihood is symmetric in ρ, and admits

three stationary points: maxima at ρ = ±1/
√

3, σ2 = 3, and a saddlepoint at

ρ = 0, σ2 = 11/4.

A convergent EM. The MLE can be computed using the EM algorithm, treat-

ing y5 . . . y12 as missing data. The E-step is

Q(ρ, σ2|ρ̃, σ̃2) = −12 log σ2 − 6 log(1 − ρ2) − 4(A − 9ρ̃ρ)

σ2(1 − ρ2)
,

where A = 11/2+9ρ̃2/2+(1− ρ̃2)σ̃2. Straightforward calculations at the M-step

show that Q has a unique maximum at ρ = 9ρ̃/A, σ2 = A/3. From Theorem 3

it follows that the EM algorithm will converge from any starting point ρ0 ∈
(−1, 1), σ2

0 > 0.

It is interesting to note, however, that different EM sequences may converge

to different stationary points. As in the example of Murray (1977), for ρ0 < 0

the sequence converges to ρ = −1/
√

3, σ2 = 3, for ρ0 > 0 to ρ = 1/
√

3, σ2 = 3,

and for ρ0 = 0, to the saddlepoint ρ = 0, σ2 = 11/4. Figure 1 shows the EM

paths for different starting values.

The cyclic EM. Consider now an alternative EM algorithm, in which only

y5 . . . y8 are taken as missing data. The E-step is now

QA(ρ, σ2|ρ̃, σ̃2) = −10 log σ2 − 4 log(1 − ρ2) − 4 + 2(1 − ρ̃2)σ̃2

σ2(1 − ρ2)
− 18

σ2
.

This function has two symmetric maxima, for σ2 = 3, ρ = ±
√

2/3 − σ̃2(1 − ρ̃2)/6;

more specifically, σ2 converges in one step to the MLE σ2 = 3, after which

ρ is updated by the equation ρ = ±
√

1/6 + ρ̃2/2. (In addition, QA has the

saddlepoint ρ = 0, σ2 = 11/5 + (1 − ρ̃2)σ̃2.)
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Figure 1. The standard EM algorithm: EM paths for several starting values

(points, connected by lines; the starting points have σ2 = 0.1 or σ2 = 10).

The two large side circles are the global maxima of the likelihood, and the

middle large circle is the saddlepoint.

When defining the next value of ρ in the EM sequence, we have a choice

between the two solutions. By convention, let us take ρ at the M-step as
√

1/6 + ρ̃2/2 if ρ̃ is negative, and as −
√

1/6 + ρ̃2/2 if ρ̃ is positive. The re-

sulting EM sequence alternates between positive and negative values of ρ, and in

the limit it cycles between the two likelihood maxima.

5. Convergence of the MM Algorithm

In a refreshing recent development, Lange, Hunter and Yang (2000) proposed

the MM algorithm as a generalization of EM, which does not involve missing data.

Briefly, if for the EM algorithm we put U(θ ′|θ) = Q(θ′|θ) − H(θ′|θ), at (1) we

have that

ly(M(θ)) ≥ U(θ′|θ) and ly(θ) = U(θ|θ), (2)

since H(θ′|θ) ≤ H(θ|θ) for all θ′. The MM algorithm is defined in general by

assuming that we can find a function U(θ ′|θ) which satisfies (2). Usually ly is the

likelihood function, but the algorithm does not require it. Similarly to EM, the

transition function M(·) is the global maximizer of U(·|θ): U(M(θ)|θ) ≥ U(θ ′|θ),

for all θ ∈ Ω. The MM algorithm inherits the monotonicity and the convergence

properties of the EM algorithm Lange et al. (2000). Since the transition function

M(·) is defined by U , the surrogate function U in the MM algorithm plays the role
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of Q in EM. Similarly, the convergence results in Theorems 2 and 3 apply to the

MM algorithm, with minor modifications. Specifically, R4 is not necessary, and

R5 and C2 refer to U instead of Q. With this obvious proviso, the proofs follow

unchanged. In particular, if U(·|θ) has a unique maximum at the stationary

points θ ∈ Sl, then the MM algorithm is convergent.

6. Discussion

In this paper we established the convergence of the EM algorithm, and of

its younger relative, the MM algorithm. Regarding the points of convergence

of the EM algorithm, some misconceptions linger on. It is widely held that if

EM converges, the limit is a local maximum or, in unfortunate cases, a saddle-

point of the likelihood (see the previous section). However, Arslan, Constable

and Kent (1993) show a simple example where the algorithm may converge to a

local minimum. Their example also shatters another myth of the EM folklore,

that the algorithm does not “overshoot”, i.e., that it converges to the “closest”

stationary point. The cycling EM presented here is one more instance of bizarre

behavior.

How can cycling be avoided? A simple way is to impose additional conditions

on the parameters: in the example in Section 4, if we enforce ρ > 0, the Q function

has a unique maximum on the restricted parameter space, therefore the algorithm

is convergent. However, in general, cycling is good and should be promoted, not

avoided: a single cycling EM sequence identifies several likelihood maxima at

once!

An alternative mathematical framework for dealing with multiple maxima

at the M-step is to think of the EM transition function M as a set function

taking the set Θt of all current parameter values to Θt+1, the set of all maxima

of Q(·|θ) over all θ ∈ Θt: Θt+1 = M(Θt). The starting set has a single element,

Θ0 = {θ0}. Using the results in Section 3 we can show that Θt converges to a

set Θ∗ of stationary points of ly of equal likelihood value. The cycling sequences

appear through certain choices of points θt in Θt at step t of EM.

Pathological cases aside, in most cases of practical interest the EM and the

MM algorithms are convergent. By checking on the unicity of the maxima at

the M-step, the practitioners can establish this convergence, rather than merely

hope for it.
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Appendix

Proof of Lemma 1. To prove the continuity of M(·), we assume that θk → θ and

show that M(θk) → M(θ) when k → ∞. Since for any θ′ and k, Q(M(θk)|θk) ≥
Q(θ′|θk), we have

lim inf
k→∞

Q(M(θk)|θk) ≥ Q(θ′|θ). (3)

Because {M(θk)} is a bounded sequence (since {M(θk)} ⊂ Ωθ0
, and Ωθ0

is

bounded), it admits a limit point. Take {M(θkn
)}n≥0 to be a convergent subse-

quence, with limit M̃ . Then, from (3) and R5, Q(M̃ |θ) ≥ Q(θ′|θ) for all θ′ in Ω,

and from C2, we have M̃ = M(θ). Therefore any limit point of M(θk) is M(θ),

so M(θk) → M(θ).

Proof of Lemma 2. If ly(θ
∗) = l∗ for some θ∗ ∈ Sl, then Sl(l

∗) ⊂ Ωθ∗,

and therefore Sl(l
∗) is bounded. Assume Sl(l

∗) is infinite. Then there exists a

sequence θ∗k of distinct values of Sl(l
∗) that converges to some value θ0 ∈ Ωθ∗.

Since the score function is continuous, 0 = sy(θ
∗
k) → sy(θ0), hence θ0 ∈ Sl; but

now θ0 is not an isolated stationary point, contradicting R6.

Proof of Theorem 2. If the sequence {θ(t)} is convergent to θ∗, then the limit

is a stationary point (from Wu’s Theorem), and a fixed point of M(·), since

M(θ∗) = M(limt θ(t)) = limt M(θ(t)) = limt θ(t+1) = θ∗.

Assume now that the sequence {θ(t)} is not convergent, and has the set of

limit points C. By Wu’s Theorem, C ⊂ Sl and, by the corollary to Lemma 2, this

set is finite, hence (i).

To prove (ii), we note that since M(·) is continuous, the sequence M(θ (t))

has the limit set {M(θ∗i ) : i = 1, . . . ,m}. But M(θ(t)) = θ(t+1), so the limit

set must coincide with C. It follows that M(·) permutes the elements of C; it

remains to show that this permutation is a cycle, i.e., it does not have cycles

of length smaller than m. Put σ(i) for the corresponding permutation of the

indexes 1, . . . ,m: M(θ∗i ) = θ∗σ(i).

The positive integers may be partitioned into infinite sets T1, . . . , Tm with

θ(t) → θ∗i for t → ∞, t ∈ Ti. Take V1, . . . , Vm as disjoint neighborhoods of the

points θ∗1, . . . , θ
∗
m respectively, and find t0 large enough so that t ∈ Ti whenever

θ(t) ∈ Vi and t ≥ t0. For each i in {1 . . . m} we have M(θ(t)) → M(θ∗i ) when

t → ∞, t ∈ Ti, therefore t + 1 ∈ Tσ(i). Then for some ti > 0,M(θ(t)) ∈ Vσ(i)

whenever t > ti, t ∈ Ti.

Take now t̃ = max(t0, . . . , tm). Then for t ≥ t̃,

t ∈ Ti implies t + 1 ∈ Tσ(i) i = 1, . . . ,m. (4)
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For a cycle C of σ, put T = ∪i∈CTi. For t ≥ t̃, t ∈ T implies t + 1 ∈ T ,

therefore the algorithm ‘stays’ in T . It follows that the cycle has to contain all

the set indexes 1, . . . ,m, so σ(·) is a cyclic permutation, and C is a cycle of M(·).
In particular, σm(i) = i for i = 1, . . . ,m.

For (iii), notice now that from (4), when t ≥ t̃, t ∈ Ti implies that t+m ∈ Ti.

Therefore the m parallel cyclic subsequences converge to each of the m points

in C.

Proof of Corollary 1. The direct implication is immediate. Assume now that

the EM sequence is not convergent. Then the distances between consecutive EM

iterations converge to the distances between the different limit points in the cycle

C of Theorem 2, and they cannot go to 0.

Proof of Theorem 3. From Lemma 1 (i), M(·) is continuous at the points of

Sl, and the conditions of Theorem 2 are satisfied. Assume that θ∗
1 and θ∗2 are

distinct limit points of an EM sequence as in Theorem 2, with M(θ∗
1) = θ∗2. Then

ly(M(θ∗1)) = ly(θ
∗
1), and from (ii) at the top of Section 3, θ∗1 is also a maximizer

of Q(·|θ∗1), as is θ∗2, contradicting the assumption of the theorem. It follows that

the sequence converges to a stationary point θ∗, with M(θ∗) = θ∗. Assume now

that for some t we have a non-increasing likelihood, i.e., ly(θ
(t)) = ly(θ

(t+1)).

Then using the result (ii) at the top of Section 3 and C2 again, we get that

θ(t+1) = θ(t) = θ∗, which completes the proof of the theorem.
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