
Statistica Sinica 12(2002), 941-963

DIRICHLET PRIOR SIEVES IN FINITE NORMAL MIXTURES

Hemant Ishwaran and Mahmoud Zarepour

Cleveland Clinic Foundation and University of Ottawa

Abstract: The use of a finite dimensional Dirichlet prior in the finite normal mixture

model has the effect of acting like a Bayesian method of sieves. Posterior consis-

tency is directly related to the dimension of the sieve and the choice of the Dirichlet

parameters in the prior. We find that naive use of the popular uniform Dirichlet

prior leads to an inconsistent posterior. However, a simple adjustment to the pa-

rameters in the prior induces a random probability measure that approximates the

Dirichlet process and yields a posterior that is strongly consistent for the density

and weakly consistent for the unknown mixing distribution. The dimension of the

resulting sieve can be selected easily in practice and a simple and efficient Gibbs

sampler can be used to sample the posterior of the mixing distribution.
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1. Introduction

The finite normal mixture model is a widely applicable model that has re-
ceived considerable attention in the Bayesian statistical literature. See Escobar
(1988, 1994), Diebolt and Robert (1994), Escobar and West (1995), Richardson
and Green (1997) and Roeder and Wasserman (1997) for some recent examples.
The wide scope of applications has led to many different methods for fitting
this model, including Monte Carlo simulation (Lo (1984), Kuo (1986), Ferguson
(1983)), and Markov chain Monte Carlo Gibbs sampling (Escobar (1988, 1994),
MacEachern (1994), Escobar and West (1995)). The selection of priors used in
the normal mixture model is equally varied, with probably the two most popular
choices being the Ferguson (1973, 1974) Dirichlet process prior and finite dimen-
sional priors based on Dirichlet random weights (Diebolt and Robert (1994), Chib
(1995), Richardson and Green (1997), Roeder and Wasserman (1997), Ishwaran
and Zarepour (2000), Neal (2000), Green and Richardson (2001)).

Because of their simplicity, and computational tractability, priors based on
Dirichlet random weights have been gaining in popularity and use (see Ishwaran
and Zarepour (2002) for more discussion). The focus of this paper will be the
study of these priors, which we refer to generally as Dirichlet priors or sometimes
as finite dimensional Dirichlet priors (named so as not to be confused with the
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Ferguson Dirichlet process). We show that the use of such priors in the finite
normal mixture problem has the effect of acting like a Bayesian finite dimensional
sieve procedure with the dimension of the prior N controlling the dimension of
the sieve in terms of the sample size n. With a proper selection of Dirichlet
parameters the method results in a prior that approximates the Dirichlet pro-
cess and a sieve procedure that can be used to consistently estimate the normal
mixture density (see Theorem 6). Moreover, the method also ensures that the
posterior is consistent for the finite mixing distribution (Theorem 7).

The consistency for the mixing distribution is a result that appears to be
new to Gaussian sieve procedures, where the use of finite normal mixtures has
traditionally been employed as a method to estimate an unknown density (not
necessarily a mixture of normals). For example, Roeder and Wasserman (1997)
use Gaussian sieves in a Bayesian approach for consistent density estimation
while, from a non-Bayesian context, Gaussian sieves have been explored as a
method for density estimation by Geman and Hwang (1982) and Priebe (1994).
See also Grenander (1981), Shen and Wong (1994) and Wong and Shen (1995)
for a general discussion on the use of the method of sieves.

Gaussian sieves have also been used as a method for estimating densities that
are explicitly assumed to be a mixture of normals. This was the approach used
in Roeder (1992) and Genovese and Wasserman (2000) who consider mixtures
of normals under mixing distributions restricted to certain classes (for example
mixing distributions with compact support). Density estimation for mixtures of
normals has also been considered using non-sieve based approaches. For exam-
ple, Zhang (1990) uses Fourier techniques for estimating normal mixing densities
and mixing distributions. Closer to our work are the papers by Ghosal, Ghosh
and Ramamoorthi (1999) and Ghosal and van der Vaart (2001), who each con-
sider density estimation for mixtures of normals using a Bayesian approach with
a Dirichlet process prior. Such Dirichlet process approaches are relevant to our
method as the underlying prior used here (for an appropriate selection of Dirich-
let parameters) will be seen to be a weak limit approximation to the Dirichlet
process, and thus, in some sense, our sieve procedure can be seen to be a finite
dimensional analogue of such methods. Thus, it should be not too surprising
that our method is consistent, akin to the results found in those papers. See
Remark 2 of Section 5 for a more thorough comparison of results.

It is important to note that the sieve approach developed here, and the sur-
rounding theory, is more than a study of finite dimensional approximations to
existing Dirichlet process methods. For example, an important feature of our
approach is that it enables simple and efficient computational procedures for es-
timating posterior quantities. Such procedures rely on the finite dimensionality
of our sieves, specifically exploiting the ability to recast the model in terms of a
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finite number of random variables. Such a procedure (the blocked Gibbs sam-
pler) is given in detail in Section 6. Moreover, the theory developed for limits
of Dirichlet priors (Theorem 3 of Section 3) should be important in guiding the
selection of Dirichlet parameters in the many computational methods based on
Dirichlet priors. As we will see, real care needs to be exercised when choos-
ing the Dirichlet parameters, since not all priors will work well. In particular,
we will see that naive use of the popular uniform Dirichlet prior leads to an
inconsistent posterior. Another important contribution of our research, worth
re-emphasizing, is our ability to consistently estimate the mixture distribution.
Although Gaussian sieve approaches traditionally focus on density estimation, in
the analysis of finite normal mixtures it is often the mixing distribution that is
the primary focus of inference, and thus it is important to be able to recover this
value consistently. See Lindsay (1995) and McLachlan and Peel (2000, Chapter
1) for more motivation and discussion of this point.

1.1. Hierarchical description of the model

The finite normal mixture arises from data X = (X1, . . . ,Xn), where the Xi

are conditionally independent normal random variables, with a random mean and
a random variance sampled from a finite mixture distribution Q0. More precisely,
the Xi are i.i.d. from the distribution P0 with the finite normal mixture density

f0(x) =
∫
φ(x|µ(y), τ(y)) dQ0(y) =

d∑
k=1

pk,0 φ(x|µk,0, τk,0), (1)

where φ(·|µ, τ) represents a normal density with a mean of µ and a variance
of τ > 0, and where we write Y = (µ(Y ), τ(Y )) for the two-dimensional mean
and variance, where µ(·) extracts the first coordinate of Y (the mean) and τ(·)
extracts the second coordinate (the variance).

Inference for the finite normal mixture is complicated due to the assumption
that the underlying mixture distribution Q0 is completely unspecified except for
the assumption that it is a finite distribution, expressible as

Q0(·) =
d∑

k=1

pk,0 δZk,0
(·),

where δZk,0
(·) denotes a discrete measure concentrated at Zk,0 = (µk,0, τk,0), and

τk,0 > 0 are positive variances, µk,0 are mean values, while pk,0 > 0 are positive
fixed weights satisfying

∑d
k=1 pk,0 = 1. Except for the discrete distributional

assumption, Q0 is left unspecified, and thus in particular, not only is the number
of support points d < ∞ assumed to be unknown, but so are the atoms of
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the distribution {(µk,0, τk,0) : k = 1, . . . , d} and the weights pk,0. It is worth
emphasizing here that the assumption that d < ∞ is unknown is very much
different than the case that d < ∞ is unknown but bounded by some fixed
finite number d0 < ∞. The latter case has been studied by Chen (1995) from a
frequentist perspective for finite mixture models, where it has been shown that
the mixing distribution can be estimated at an optimal Op(n−1/4) rate. Recently,
in studying the same problem, Ishwaran, James and Sun (2001) devise a Bayesian
approach based on the use of a Dirichlet prior and show among other things that
the posterior is

√
n-consistent for the density and moreover achieves the n−1/4

optimal rate for Q0. However, such results rest heavily on the assumption that
d < d0 and thus apply to mixture problems where such bounds can be naturally
deduced from the context of the data. This is very much different than our
problem where no such bound d0 is assumed known.

In hierarchical format, the model derived from (1) can also be expressed as

(Xi|Yi)
ind∼ N(µ(Yi), τ(Yi)), i = 1, . . . , n

(Yi|Q0)
iid∼ Q0(·), (2)

where the Yi are hidden variables sampled from the unknown mixing distribution
Q0. As mentioned earlier, a Bayesian method for studying this model that is
growing in popularity makes use of a finite dimensional Dirichlet prior. In this
approach, one introduces latent variables K = (K1, . . . ,Kn) which indicate the
group membership for the hidden variables. Specifically, (2) is recast as

(Xi|Ki, µ, τ ) ind∼ N(µKi
, τKi), i = 1, . . . , n,

(Ki|p) iid∼ Multinomial({1, . . . , N},p)

(µk, τk)
iid∼ H, k = 1, . . . , N, (3)

whereN is an integer (the dimension) converging to ∞ as a function of n, and µ =
(µ1, . . . ,µN ), τ = (τ1, . . . , τN ), K and p = (p1, . . . , pN ) are Bayesian parameters
that are to be estimated from the posterior, and where

p ∼ Dirichlet(α1, . . . , αN ) (4)

has a finite dimensional Dirichlet prior. Observe that Ki ∈ {1, . . . , N} are multi-
nomial values such that P{Ki = k|p} = pk for k = 1, . . . , N . Each of these Ki

values record which mean and variance (µKi
, τKi) ∈ {(µk, τk) : k = 1, . . . , N} are

associated with each Xi, and thus provide a clever method for modeling (2) (see
McLachlan and Peel (2000, Chapter 4) for more discussion and related references
for this latent variable technique).
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1.2. Outline of paper

In practice, the prior H for (µk, τk) used in (3) is usually chosen to take
advantage of conjugacy in order to simplify computations, with the eventual
selection playing a limited role in the behavior of the posterior for a large sample
size n. However, the choice for the Dirichlet parameters used in (4) needs to be
selected with great care. As Theorem 3 of Section 3 will show, the prior induced
by (4) is a random probability measure whose limit is either (a) the parametric
prior H, (b) the Ferguson (1973, 1974) Dirichlet process, or (c) a simple zero-
one process. In particular, the widely used uniform Dirichlet prior with random
weights

p ∼ Dirichlet(1, . . . , 1), (5)

is an example of a random measure (a) whose limit is the parametric prior H.
With a prior that acts parametrically in the limit, it may not seem too

surprising that the resulting posterior will be inconsistent. In fact, there appears
to be a very delicate line for how large the dimension N of the prior (and hence
the sieve) can be relative to n before consistency breaks down. In Section 4,
Theorem 5, we show that the uniform Dirichlet prior is inconsistent if n/N → 0
(also see Theorem 4). Thus, if N is larger than n, we end up with an inconsistent
posterior. However, it seems natural to expect the posterior to eventually become
consistent if the value of N is made relatively small compared to n. Indeed Ghosal
and van der Vaart (2001, Section 7), in studying mixtures of normal densities with
the Dirichlet process prior, observed that the resulting posterior was consistent
even if the Dirichlet mass parameter was allowed to vary with the sample size; a
sufficient condition being that it remained no larger than O(log n). We suspect
that this same phenomenon occurs here, and that the uniform Dirichlet prior is
consistent for values of N that are exponentially smaller than n. However, at
some point N will become too large relative to n, signifying the critical lower
bound at which consistency breaks down.

Although we have not been able to determine the exact lower bound, we sus-
pect that its value is unlikely to be easy to use in practical application. Moreover,
we argue that work along this line is unnecessary since a very simple method ex-
ists to correct this problem. Section 5 will show that a consistent posterior can
be easily obtained by changing the Dirichlet parameters used in the prior for p.
By using the prior

p ∼ Dirichlet(α/N, . . . , α/N), (6)

we end up with a random probability measure whose limit is the Ferguson Dirich-
let process (see Theorem 3) and a posterior that is L1 consistent for the density
if logN/n → 0 (Theorem 6) and, under some additional conditions, which is
weakly consistent for the mixing distribution (Theorem 7). Hence, consistency
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holds over a broad range of values for N , thus resolving the problems seen with
(5). See Section 5 for more discussion as well as comparisons to other methods.

In Section 6 we demonstrate that the posterior mixing distribution corre-
sponding to the prior (6) can be sampled using a simple Gibbs sampling algo-
rithm, the blocked Gibbs sampler (Ishwaran and Zarepour (2000) and Ishwaran
and James (2001)). The paper begins in Section 2 by describing the relationship
between sieves and the use of Dirichlet priors.

2. Dirichlet Priors and Sieves

Unfortunately, the convenience in modeling the finite mixture problem in
terms of random variables as in (3) has had the effect of encouraging the notion
that the model can be expressed as a parametric problem. The tendency in the
literature has been to conceptualize the parameter space for the normal mixture
model as the parameter space corresponding to the finite dimensional parameters
(µ, τ ,K,p), and this seems to have had the adverse effect of hiding the fact
that the number of support points d < ∞ is unknown, and that the model is
nonparametric.

A better way to conceptualize the model is to recast it in terms of a random
probability measure. In particular, by recognizing that Yi = ZKi , where the
classification variables Ki can be expressed as

(Ki|p) iid∼
N∑

k=1

pk δk(·), (7)

it follows that (3) can be rewritten as

(Xi|Yi)
ind∼ N(µ(Yi), τ(Yi)), i = 1, . . . , n

(Yi|Q) iid∼ Q

Q ∼ PN , (8)

where PN (·) =
∑N

k=1 pk δZk
(·) is a random probability measure and Zk = (µk, τk)

are i.i.d. with distribution H on � × �+ assumed to be independent of p. We
assume throughout unless otherwise stated that H is a nonatomic distribution.

Conceptually, the hierarchical model (8) is more easily identified with the
original mixture model (2), as it clearly identifies the random probability measure
PN as a mechanism for modeling the mixture distribution Q0. Moreover, by
rewriting the model in terms of PN , it reminds us that the parameter space for
the normal mixture model is the space of finite distributions on �×�+, denoted
by QF =

⋃∞
k=1 Qk, where Qk is the space of distributions on �×�+ with exactly

k atoms.
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Note that the random probability measure PN is a prior over QN , which we
now can identify as the parameter space for (8). Consequently, if N is allowed
to grow with the sample size n, so does our prior space QN . Thus, we can think
of {QN} as the sieve over which our Bayesian nonparametric approach operates.

2.1. Finite normal mixtures are identified

We note there is another important reason for interpreting our parameter
space nonparametrically as a space of discrete distributions QN , rather than
thinking of it as a parametric space corresponding to (µ, τ ,K,p). The latter
approach leads to an unidentified model because of the indeterminacy in the
coordinates of the parameters. This unnecessarily complicates matters since it
forces the use of constraints to ensure model identification; such as the common
practice of requiring the means to be ordered: µ1 ≤ · · · ≤ µN . From a compu-
tational perspective this is also problematic since a constrained parameter space
is more difficult to work with. For example, Gibbs sampling based approaches
suffer convergence problems in this setting (Celeux, Hurn and Robert (2000)).

However, the approach using (8) produces a fully identified model without
any additional constraints and resolves the computational problems of working
with a constrained space (see Section 6). This identification result is due to
Teicher (1963, Proposition 1) which we have slightly generalized in the following
theorem:

Theorem 1. [Teicher (1963)] Suppose that∫
φ(x|µ(y), τ(y)) dQ0(y) =

∫
φ(x|µ(y), τ(y)) dQ∗(y), for almost all x, (9)

where Q∗(·) =
∑d∗

k=1 p
∗
k δ(µ∗

k
,τ∗

k
)(·) is an element of QF

⋃Q∞, the space of dis-
crete distributions on � × �+. That is, suppose that

∑d
k=1 pk,0 φ(x|µk,0, τk,0) =∑d∗

k=1 p
∗
k φ(x|µ∗k, τ∗k ) for almost all x, where d∗ ≤ ∞. Then the identity expressed

by (9) implies that Q0 = Q∗.

Proof of Theorem 1. Teicher (1963) established the result for Q∗ ∈ QF , i.e.,
for the case when Q∗ is a finite distribution with d∗ < ∞. However, a close
inspection of the proof shows that it can be extended to the case when d∗ = ∞.

In general, the normal mixture model can be made identified by various
constraints to the mixing distribution. The following theorem presents an ex-
ponential moment condition sufficient for identification of Q0. It will play an
important role in Section 5 when we establish posterior consistency for Q0. See
the Appendix for its proof.

Theorem 2. Write Q∗ for the set of distributions Q over �× �+ satisfying∫
�×�+

exp
(

µ2

2(τ∗ − τ)

)
Q(dµ, dτ) <∞,
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where τ∗ = min{τ1,0, . . . , τd,0}. If Q ∈ Q∗ is such that

d∑
k=1

pk,0 φ(x|µk,0, τk,0) =
∫
φ(x|µ, τ)Q(dµ, dτ) for almost all x, (10)

then Q = Q0.

3. Limits for Dirichlet Priors

Good posterior behavior in the mixture model is directly related to our
choice of the prior PN , which is directly related to the choice of parameters in
the prior for p. As Theorem 3 below will show, a careful selection for the Dirichlet
parameters in (4) is crucial in ensuring a prior rich enough to properly model
Q0.

In what transpires, we write

PN (·) =
N∑

k=1

pk,N δZk
(·) (11)

whereZk are i.i.d. variables independent of (p1,N , . . . , pN,N ) ∼ Dirichlet(α1,N , . . . ,

αN,N ), where αk,N > 0. In order to facilitate proofs of the limits of PN , and
for the purposes of an explicit construction needed for almost sure convergence
(see 1(a) of Theorem 3 and also Remark 1 below), we use the well known rep-
resentation of the Dirichlet distribution in terms of gamma random variables to
constructively define our random weights in (11). In particular, we assume that

(p1,N , . . . , pN,N ) =

(
G1,N∑N

k=1Gk,N

, . . . ,
GN,N∑N
k=1Gk,N

)
(12)

where Gk,N are independent Gamma(αk,N ) random variables.
In the following theorem we use the mode of convergence indicated by “⇒” to

represent convergence of a random probability measure with respect to the weak
topology. In particular, if g is a non-negative continuous function with compact
support, we write PN

a.s⇒ P if PN (g) a.s→ P(g) for each such g. Furthermore, we
write, PN

d⇒ P if PN (g) d→ P(g) for each such g, while PN
p⇒ P if PN (g)

p→ P(g)
for each such g. See Resnick (1987, Chapter 3.5) for related discussion on vague
convergence. See also Billingsley (1968, Chapter 4) for a general discussion of
convergence over abstract spaces.

Theorem 3. Suppose that PN is the random probability measure defined by (11)
and (12), where Zk are i.i.d. H (here H is not necessarily nonatomic).
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1(a). If αk,N = λk, where
∑∞

k=1 λ
2
k/k

2 < ∞ and
∑N

k=1 λk/N → λ0 > 0, then
PN

a.s⇒ H.
1(b). If αk,N = λN , where NλN → ∞, then PN

p⇒ H.
2(a). If αk,N = α/N , for some α > 0, then for each real-valued measurable

function g which is integrable with respect to H, we have PN (g) d→ P∞(g),
where P∞ = DP(αH) is the Ferguson (1973, 1974) Dirichlet process with
finite measure αH.

2(b). If
∑N

k=1 αk,N →α>0 and max(α1,N , . . . , αN,N ) → 0, then PN
d⇒ DP(αH).

3. If αk,N =λN , where NλN →0, then PN
d⇒δZ where Z has distribution H.

The proof of the theorem is given in the Appendix. Note that the uniform
Dirichlet prior (5) corresponds to case 1(a) by setting λk = 1, and our gamma
construction at (12) shows that

PN (·) =
N∑

k=1

Ek∑N
k=1Ek

δZk
(·) a.s⇒ H(·), (13)

where Ek are i.i.d. exp(1) random variables. Note also that, from 2(a) and 2(b),
if we select αk,N = α/N we avoid a parametric limit and instead obtain a prior
PN rich enough that it can approximate the Dirichlet process. In particular, for
the choice of Dirichlet parameters in (6), we have from 2(b) that

PN (·) =
N∑

k=1

Gk,N∑N
k=1Gk,N

δZk
(·) d⇒ DP(αH)(·), (14)

where Gk,N are independent Gamma(α/N) random variables. Notice that the
convergence result established in 2(a) is stronger than the result in 2(b), since it
tells us that the measure on the left-hand side of (14) can approximate integrable
functionals of the Dirichlet process. For related discussion, see Kingman (1975),
Muliere and Secchi (1995), Pitman (1996), Ishwaran and Zarepour (2000, 2002),
Neal (2000), Ishwaran and James (2001) and Green and Richardson (2001), who
have discussed the use of PN in different contexts.

Remark 1. In 1(a) the Dirichlet weights are defined bypk,N =pk =Gk/(
∑N

k=1Gk)
with Gk independent Gamma(λk) random variables. Thus, the sequence of mea-
sures PN can be defined to live on the same space, which is needed for proper
interpretation of our almost sure convergence result.

4. Inconsistency with Uniform Dirichlet Priors

At a superficial level, the selection of a uniform Dirichlet prior (5) for p is
appealing because it represents a flat prior. Unfortunately, as Theorem 3 in the
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previous section shows, the random probability measure PN associated with this
prior (see (13)) converges almost surely to H as N → ∞, and thus the limit
for the prior PN in the model (8) is the parametric prior H for the mean and
variance.

The same behavior also means that the limit of the marginal density for X
from (8),

mN (X) =
∫ (

n∏
i=1

∫
φ(Xi|µ(Yi), τ(Yi)) dQ(Yi)

)
PN (dQ), (15)

is the marginal density based on the prior H

m∗
∞(X) =

n∏
i=1

∫
φ(Xi|µ, τ) dH(µ, τ). (16)

In particular, the limit of (8), in distribution, is the parametric hierarchical model

(Xi|µi, τi)
ind∼ N(µi, τi), i = 1, . . . , n

(µi, τi)
iid∼ H. (17)

See Theorem 4, Section 4.2, for a more precise statement. From this, it is not hard
to conjecture that a uniform Dirichlet prior produces an inconsistent posterior,
as we prove in Theorem 5 of Section 4.3.

4.1. Bose-Einstein distribution

The distribution for the number of distinct Yi values in (8), under a uni-
form Dirichlet prior for p, can be described explicitly by exploiting a connection
between the distribution of classification variables Ki (as in (7)) and the Bose-
Einstein distribution. With a uniform Dirichlet prior, the clustering behavior
of Ki is equivalent to the clustering behavior observed when n indistinguishable
balls are placed randomly into N distinct urns. This characterization will show
that the prior encourages too many distinct Yi values which will enable us to
describe the inconsistent behavior of the posterior. The proof for the following
lemma is given in the Appendix.

Lemma 1. Let Dn be the number of distinct values in the sample K1, . . . ,Kn,
where (Ki|p) are i.i.d. from

∑N
k=1 pk δk(·) for p ∼ Dirichlet(1, . . . , 1). Then,

P{Dn = k} =
(N

k

)(n−1
k−1

)(N+n−1
N−1

)−1
, k = 1, . . . ,min(n,N).

4.2. Relative entropy bounds

An immediate application of Lemma 1 identifies the limiting distribution of
the marginal density under a uniform prior. LetD(Q1‖Q2) =

∫
log(dQ1/dQ2) dQ1
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denote the relative entropy (Kullback-Leibler information) between two proba-
bility measures Q1 and Q2.

Theorem 4. Suppose that PN is the random probability measure in (13). If
N ≥ n,

D(M∗
∞‖MN ) ≤ − log

(
N !(N − 1)!

(N − n)!(N + n− 1)!

)
, (18)

where MN and M∗∞ are the laws for mN and m∗∞ defined by (15) and (16),
respectively. In particular, if (n− 1)2/N → 0,

∫
|mN (X) −m∗

∞(X)| dX → 0.

Under a uniform prior the limit in total variation distance of our nonparamet-
ric model (8), as N → ∞, is the parametric model (17). This limiting parametric
behavior persists as the sample size n increases, as long as (n− 1)2/N → 0.

Proof of Theorem 4. Let P = {Cj : j = 1, . . . , N(P)} be a partition of the set
{1, . . . , n}, where Cj is the jth cell of the partition, ej is the number of elements
in a cell Cj, and N(P) is the number of cells in the partition. Let πU denote the
uniform Dirichlet distribution (5), and write HN for the product distribution of
Z = (Z1, . . . , ZN ). Integrating over the random measure P in (15), and keeping
Z fixed until the end, we have

mN (X)=
∫ ∫ ∫ n∏

i=1

φ(Xi|µ(Yi), τ(Yi))
n∏

i=1

(
N∑

k=1

pk δZk
(dYi)

)
dπU (p) dHN (Z)

=
∫ 
∑

P

∑
{l1 �=···�=lm}

E(pe1
l1
· · · pem

lm
)
m=N(P)∏

j=1

∏
i∈Cj

φ(Xi|µ(Zlj ), τ(Zlj ))


dHN (Z)

=
∑
P

f(P)
N(P)∏
j=1

∫ ∏
i∈Cj

φ(Xi|µ, τ) dH(µ, τ),

where f(P) is the probability that the classification variables K1, . . . ,Kn in
Lemma 1 are made up of N(P) unique values, with Ki all having the same
values for i ∈ Cj.

Therefore,

D(M∗
∞‖MN ) =

∫
log


 ∏n

i=1

∫
φ(Xi|µ, τ) dH(µ, τ)∑

P f(P)
∏N(P)

j=1

∫ ∏
i∈Cj

φ(Xi|µ, τ) dH(µ, τ)


 dM∗

∞(X).
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Increase the value of the relative entropy by restricting the sum in the denomi-
nator to the partition Pn where N(Pn) = n. This gives the upper bound

∫
log


 ∏n

i=1

∫
φ(Xi|µ, τ) dH(µ, τ)∏N(Pn)

j=1

∫ ∏
i∈Cj

φ(Xi|µ, τ) dH(µ, τ)


 dM∗

∞(X) − log (f(Pn)) .

The first term is zero because N(Pn) = n, while the second term is minus the
log of the probability that each Ki value is distinct. Thus, by applying Lemma 1
to the second term (with k = n) we arrive at the inequality (18).

We have

− log
(

N !(N − 1)!
(N − n)!(N + n− 1)!

)
=

N∑
j=N−n+1

log
(

1 +
n− 1
j

)
≤ (n− 1)

N∑
j=N−n+1

1
j
,

which is order (n−1)2/N . If this is order o(1), then using Kemperman’s inequality
to bound the total variation distance squared by the relative entropy (Kemper-
man (1969, Theorem 6.1)), deduce that MN converges to M∗∞ in L1 distance.

4.3. Limiting posterior behavior

The posterior behavior of the random measure PN can be studied by looking
at the limit of its functionals. The following theorem shows that the posterior
under a uniform prior is inconsistent for the unknown mixing distribution Q0 if
n/N → 0.

Theorem 5. Suppose that PN is the random probability measure in (13). If
n/N → 0,

∫
Q(A)PN (dQ|X) → H(A) almost surely P∞

0 for each Borel measur-
able set A ∈ � × �+, where PN (·|X) is the posterior of (8).

Proof. The measure PN is a Dirichlet process for a fixed value of Z. In particular,
L(PN |Z) = DP(NHN (Z, ·)), where HN (Z, ·) =

∑N
k=1 δZk

(·)/N is the empirical
measure based on Z. Thus, by conditioning on Z, we can use Theorem 1 from
Lo (1984). Therefore, with probability one,∫

Q(A)PN (dQ|X) =
∫ (∫

Q(A)PNHN +
∑n

i=1
δYi

(dQ|Y,Z)
)
dπ(Y,Z|X), (19)

where Y = (Y1, . . . , Yn), L(PNHN+
∑n

i=1
δYi

|Y,Z) = DP(NHN +
∑n

i=1 δYi), and

dπ(Y,Z|X)=

∏n
i=1φ(Xi|µ(Yi), τ(Yi))

∫(∏n
i=1Q(dYi)PNHN

(dQ)
)
dHN (Z)∑

P f(P)
∏N(P)

j=1

∫ ∏
i∈Cj

φ(Xi|µ, τ) dH(µ, τ)
. (20)

The inner-integral on the right-hand side of (19) is∫
Q(A)PNHN +

∑n

i=1
δYi

(dQ|Y,Z) =
N

N + n
HN (Z, A) +

1
N + n

n∑
i=1

{Yi ∈ A}.
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Thus,

∫
Q(A)PN (dQ|X)=

N

N+n
E
( 1
N

N∑
k=1

I{Zk ∈ A}|X
)
+

1
N+n

E

(
n∑

i=1

I{Yi ∈ A}|X
)

=
N

N + n
P

(
{Z1 ∈ A}|X

)
+ o(1), (21)

where the second term is order o(1) by the assumption that n/N → 0, expecta-
tions taken with respect to (20).

Let Bn,1 = I{Yi �= Z1 : i = 1, . . . , n}. Then, P

(
{Z1 ∈ A}|X

)
= P

(
{Z1 ∈

A} ∩ Bn,1|X
)

+ P

(
{Z1 ∈ A} ∩ Bc

n,1|X
)
. Integrating (20) over {Z1 ∈ A} ∩ Bn,1,

deduce that the first term on the previous right-hand side equals

P{Z1 ∈ A}
(∑

P f
∗(P)

∏N(P)
j=1

∫ ∏
i∈Cj

φ(Xi|µ, τ) dH(µ, τ)
)

∑
P f(P)

∏N(P)
j=1

∫ ∏
i∈Cj

φ(Xi|µ, τ) dH(µ, τ)
, (22)

where f∗(P) is defined similarly to f(P), but where each of the classification
variables K1, . . . ,Kn must be different from the value 1. For each partition P

f∗(P)
f(P)

=
(N − 1)!/(N − 1 −N(P))!

N !/(N −N(P))!
=
N −N(P)

N
,

which is bounded between 1 − n/N and 1 (we can assume that N ≥ n). Thus,
deduce that (22) converges to H(A). Setting A = � × �+ now shows that
P(Bc

n,1|X) → 0, and hence that (21) converges to H(A) for each A.

5. Consistency with Dirichlet (α/N, . . . , α/N) Priors

A consistent posterior can be obtained by working with the Dirichlet prior
for p defined by (6). As discussed in Section 3, Theorem 3, this prior induces
a random probability measure PN which strongly approximates the Dirichlet
process (see (14)). With such a rich prior it is not surprising that it will induce
a random density that is information dense at the true density f0.

Lemma 2. Let F be the set of all densities on � with respect to Lebesgue
measure. Let ΠN be the induced probability measure over F of the random density
PN (φ(x|·)) =

∑N
k=1 pkφ(x|µ(Zk), τ(Zk)), for weights p defined by (6) and for Zk

which are i.i.d. from H, where H has a density that is positive over a rectangle
containing the support for Q0. Then, for each ε > 0, lim infN→∞ ΠN{f ∈ F :
D(f0‖f) < ε} > 0.

By Lemma 2, the prior ΠN for the random density induced by (14) puts
positive mass on each Kullback-Leibler neighborhood of f0 (for a proof see the
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Appendix). From this, it is fairly straightforward to establish consistency for
f0 by Proposition 2 of Barron (1988). This same method of proof was used by
Roeder and Wasserman (1997). For a proof of the following theorem, see the
Appendix.

Theorem 6. Let Π∗
n be the posterior for (8) for the prior defined in Lemma 2,

where we assume further that H has a density that is positive over a rectangle
containing the support for Q0 such that for each ε > 0, H{τ−1/2 ≥ nε} ≤
exp(−rn) for some r = r(ε) > 0. If N → ∞ such that logN/n → 0, then
Π∗

n{f ∈ F :
∫ |f(x) − f0(x)| dx < ε} → 1 almost surely P∞

0 for each ε > 0.

The conditions for Theorem 6 are easy to satisfy in practice. For example,
the left-tail condition for the variance is satisfied if H is selected so that τ−1/2

(the inverse standard deviation) has a gamma distribution. Moreover, one could
always choose N = n for small sample sizes or N =

√
n for large n to satisfy the

constraint on N , although of course other automatic methods for selecting N are
possible.

Remark 2. Ghosal, Ghosh and Ramamoorthi (1999) note that the Dirichlet
process can also be used to consistently estimate the density in a weak sense
for mixtures of normals (mixing over the mean and variance as here), in which
the true mixing distribution is assumed to have a compact support (see their
Remark 1, p.148). In personal correspondence with R.V. Ramamoorthi it was
conjectured that this result could be strengthened to L1 consistency for f0 under
conditions similar to those in Theorem 6. These results are perhaps the closest
analogue to Theorem 6 that we are aware of. There is also the work of Genovese
and Wasserman (2000) and Ghosal and van der Vaart (2001) which is relevant.
Both look at the same scenario as Ghosal, Ghosh and Ramamoorthi (1999), al-
though they consider the more difficult problem of deriving rates of estimation for
the density. This naturally requires more stringent assumptions, making direct
comparisons of results somewhat difficult. Briefly though, Genovese and Wasser-
man (2000, Section 4.1) show that the use of a Gaussian sieve of dimension of
order (n log n)2/3 yields a rate of estimation for the density arbitrarily close to
(log n/n)1/6 when the unknown mixing distribution is assumed to have a com-
pact support. In studying the same problem, Ghosal and van der Vaart (2001,
Theorem 5.2) show that the use of a Dirichlet process prior yields the better rate
of (log n)ε/

√
n for some ε > 0, a near parametric rate, although they assume that

the variance is constrained to lie in a fixed compact set.

5.1. Consistency for the mixing distribution

So far our discussion of consistency has centered around the problem of
estimation for the density f0. However, as emphasized in the introduction, it is
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often the unknown mixing distribution Q0 that is the primary focus of analysis
in finite normal mixture problems.

To understand some of the difficulties in establishing consistency for Q0, one
should recognize that L1 consistency for f0, as proven for example in Theorem 6,
does not automatically imply consistency for the mixing distribution. The prob-
lem is that, although finite normal mixtures are identified (see Theorem 1), the
closure of the space is not identified. To convert Theorem 6 into a result for Q0 we
need a stronger form of identification. Theorem 2 gives us such a tool. By requir-
ing that our space of mixing distributions satisfy a uniform moment condition,
we can use Theorem 6 to establish consistency for the mixing distribution.

Theorem 7. Suppose the conditions of Theorem 6 hold. Furthermore, suppose
the distribution H is permitted to depend upon n so that, for some constant
C > 0,

Hn

{
µ2

2(τ∗ − τ)
> C

}
≤ exp(−nr) (23)

for r = r(C) > 0, where τ∗ is defined in Theorem 2. Then, Π∗
n(N (Q0)) → 1

almost surely P∞
0 for each weak open neighborhood N (Q0) containing Q0.

Observe that Theorem 7 holds trivially if logN/n → 0 and if H has a posi-
tive density with a compact support which contains the support of Q0. However,
condition (23) also allows for different scenarios. By allowing H to depend upon
n, consistency for Q0 can also be guaranteed if the tails for Hn decrease expo-
nentially with n (notice that for τ it is the values for τ < τ∗ that we have to be
careful with in Hn). For a proof of the theorem see the Appendix.

6. Gibbs Sampling

By conceptualizing the space for the finite normal mixture model as the space
of finite distributions QF , we have shown that our model is identified (Theorem
1), and, with the use of the weak limit Dirichlet process measure (14), we have
outlined a Bayesian sieve approach for consistent density estimation (Theorem 6)
and consistent estimation of the mixing distribution (Theorem 7). To complete
the story, we outline a method for drawing values directly from the posterior
of Q0 using a simple Gibbs sampling method called the blocked Gibbs sampler
(Ishwaran and Zarepour (2000) and Ishwaran and James (2001)). The key to
its success here implicitly lies in our use of a finite dimensional Dirichlet prior,
which ensures that our model is made up of a finite number of variables, thus
allowing us to draw values directly from the posterior of Q0 using a few simple
multivariate conditional draws.
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The blocked Gibbs sampler works by drawing values from the conditional
distribution of (K,µ, τ ,p|X), which by (3) and (7) has a density proportional to

n∏
i=1

φ(Xi|µKi
, τKi)

n∏
i=1

(
N∑

k=1

pk δk(dKi)

)
dπN (p) dHN (µ, τ ),

where πN is the Dirichlet distribution (6). The method works by iteratively draw
values from the conditional distributions (K|p,µ, τ ,X), (µ|τ ,K,X), (τ |µ,K,X)
and (p|K). Each cycle of the Gibbs sampler produces a draw (K∗,µ∗, τ ∗,p∗)
from the posterior of (K,µ, τ ,p|X) and a draw P∗

N (·) =
∑N

k=1 p
∗
k δ(µ∗

k
,τ∗

k
)(·), from

the posterior of PN , and thus can be used to directly estimate Q0.
Each of the full conditional distributions can be drawn exactly, including the

draw from µ and τ , if H is a conjugate prior. For example, the conditional for
p is simply an updated Dirichlet distribution with parameters αk = α/N + nk,
where nk is the number of Ki’s which equal k. In practice the value for α can be
set to some fixed number, often the choice α = 1 works well. Alternatively, one
can include α as a parameter in the model and update it as part of the Gibbs
procedure. See Ishwaran and Zarepour (2000) for more details.

7. Appendix: Proofs

Proof of Theorem 2. The proof is inspired by Theorem 6 in Teicher (1960).
Without loss of generality assume that τ1,0 ≥ · · · ≥ τd,0. The equality in distri-
bution (10) implies equality of moment generating functions. Thus,

d∑
k=1

pk,0

∫
�

exp(tx)φ(x|µk,0, τk,0) dx =
∫ (∫

�
exp(tx)φ(x|µ, τ) dx

)
Q(dµ, dτ)

for each t. Hence,

p1,0 +
d∑

k=2

pk,0 exp
[
t(µk,0 − µ1,0) +

1
2
t2(τk,0 − τ1,0)

]

=
∫

exp
[
t(µ− µ1,0) +

1
2
t2(τ − τ1,0)

]
Q(dµ, dτ). (24)

We can assume without loss of generality that µk,0 < µ1,0 whenever τk,0 =
τ1,0. Thus, the limit of the left-hand side is p1,0 as t → +∞. The limit on the
right-hand side will be +∞ or 0 unless Q{τ > τ1,0} = Q{µ �= µ1,0, τ = τ1,0} = 0
(use Fatou’s Lemma and the Monotone Convergence Theorem). This argument
shows that we can restrict attention to the sets Y1 = {µ = µ1,0, τ = τ1,0} and
Y2 = {τ < τ1,0}. Hence, we can rewrite the right-hand side of (24) as

Q(Y1)+
∫
Y2

exp


−tµ1,0−

1
2
(τ1,0−τ)

[
t− µ

(τ1,0 − τ)

]2

ψ(µ, τ)Q(dµ, dτ), (25)
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where ψ(µ, τ) = exp(µ2/[2(τ1,0 − τ)]). The moment condition for Q implies that
ψ is Q-integrable. Thus, letting t → +∞, deduce by the Dominated Convergence
Theorem that the integral in (25) is zero, so Q(Y1) = p1,0.

Now subtract p1,0 exp(tµ1,0+t2τ1,0/2) on the left and right-hand sides of (24).
Repeat the above argument a finite number of times to obtain Q = Q0.

Proof of Theorem 3. To prove 1(a), we show that, for each positive continuous
function g with compact support, PN (g) a.s→ E(g(Z)) where Z has the distribution
H. Let SN = PN (g) =

∑N
k=1 pk,N g(Zk). Recall from Remark 1 that we can

write pk,N as Gk/G, where Gk are independent Gamma(λk) random variables
and G =

∑N
k=1Gk. Now letting ξk = g(Zk), write SN as∑N

k=1[Gkξk − λkE(g(Z))]/N + E(g(Z))
∑N

k=1 λk/N∑N
k=1(Gk − λk)/N +

∑N
k=1 λk/N

.

To prove our result, we apply the Khintchine-Kolmogorov Convergence Theo-
rem (Chow and Teicher (1978, Chapter 5.1)) to the above numerator and de-
nominator separately to show SN

a.s→ E(g(Z)). For the numerator, the first sum
converges to zero a.s if its second moment converges to zero. From the inequality

N∑
k=1

Var (Gkξk)/N2 ≤ E(g(Z)2)
N∑

k=1

(λk + λ2
k)/N

2,

it suffices to show that the above right-hand side converges to zero. Note that∑∞
k=1 λk/k

2 ≤ ∑∞
k=1(λ

2
k +1)/k2 <∞. Thus, by Kronecker’s Lemma, the bound-

edness of g, and our assumptions regarding λk, deduce that the above right-hand
side converges to zero and that the numerator converges a.s to E(g(Z))λ0. A
similar argument shows that the denominator converges a.s to λ0, and therefore
SN

a.s→ E(g(Z)).
To prove 1(b), we show that SN = PN (g) =

∑N
k=1 pk,N g(Zk)

p→ E(g(Z)),
for pk,N defined by αk,N = λN . Rewrite SN as

N∑
k=1

Gk,N

GN
ξk =

1
NλN

N∑
k=1

Gk,N ξk +
N∑

k=1

Gk,N

GN
ξk

(
1 − GN

NλN

)
, (26)

where Gk,N are independent Gamma(λN ) variables, ξk = g(Zk) and GN =∑N
k=1Gk,N .

Call SN,1 the first term on the right-hand side of (26). Then, from the
assumption that NλN → ∞ and using the fact that ξk < c for some finite c,
deduce that

V (SN,1) ≤ c2

(NλN )2

N∑
k=1

E(G2
k,n) =

c2(1 + λN )
NλN

= o(1).
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We have E(SN,1) = E(g(Z)), thus from Chebyshev’s inequality SN,1
p→ E(g(Z)).

Meanwhile, the second term on the right-hand side of (26) can be bounded in
absolute value by c × |1 − GN/(NλN )|. A similar application of Chebyshev’s
inequality shows that this term converges in probability to zero, and consequently
that SN

p→ E(g(Z)).
For 2(a) see Ishwaran and Zarepour (2002), while 2(b) can be proven from the

results in Kingman (1975, Section 6) or Kingman (1993, Section 9.3) pertaining to
the Poisson-Dirichlet distribution. To complete the proof of the theorem we need
part 3, which will follow if we can show that PN (A) d→ Bernoulli(H(A)), for each
measurable set A. First notice that (PN (A) | KN ) ∼ Beta(λNKN , λN (N −KN )),
where KN = #{k : Zk ∈ A}, # is the cardinality of a set. Therefore, integrating
over KN , the characteristic function for PN (A) is

ψN (t) = E exp (itPN (A)) = 1 +
∞∑

j=1

(it)j

j!
E (Cj,N) ,

where

Cj,N =
(KNλN )(j)

(NλN )(j)
=

KN

N
× (KNλN + 1)(j−1)

(NλN + 1)(j−1)
,

and where a(0) = 1 and a(r) = a(a+ 1) · · · (a+ r − 1) for any real number a and
integer r > 0.

By the Strong Law of Large Numbers, Cj,N
a.s→ H(A) for each j because

NλN → 0. Each Cj,N is bounded by one so, by the Dominated Convergence
Theorem, E (Cj,N) → H(A). One more application of the Dominated Conver-
gence Theorem yields ψN (t) → 1+H(A)

∑∞
j=1 (it)j/j! = 1+H(A) (exp(it) − 1) ,

which is the characteristic function for a Bernoulli(H(A)) distribution.

Proof of Lemma 1. Let nk = #{i : Ki = k}, for k = 1, . . . , N . Observe that
n1 + · · · + nN = n. The joint density for (n1, . . . , nN ) is

f(n1, . . . , nN ) =
n!

n1! · · · nN !
E(pn1

1 · · · pnN
N )

=
n!

n1! · · · nN !
Γ(N)

∏N
k=1 Γ(1 + nk)

Γ(N + n)
=

(
N + n− 1
N − 1

)−1

,

where Γ(·) is the gamma function. This calculation yields the Bose-Einstein
distribution, which is the distribution arising from placing n indistinguishable
balls randomly into N distinct urns. In particular, the above probability can
also be interpreted as the probability that urns 1, . . . , N contain n1, . . . , nN balls
respectively (all configurations are equally likely). From this analogy, it follows
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that Dn equals the number of non-empty urns. Therefore,

P{Dn = k} =

(
N

k

)(
n− 1
k − 1

)(
N + n− 1
N − 1

)−1

,

where the first term equals the number of ways of selecting k urns, and the second
term equals the number of ways of placing n balls into these k urns so that they
are all non-empty.

Proof of Lemma 2. For any f(·) =
∑N

k=1 pkφ(·|µk, τk),

D(f0‖f) ≤
∫
f0(x) log

(∑d
k=1 pk,0φ(x|µk,0, τk,0)∑d

k=1 pkφ(x|µk, τk)

)
dx. (27)

By continuity, the right-hand side can be made smaller than ε > 0 if |pk −pk,0| ≤
η0, |Zk−Zk,0| ≤ η0, k = 1, . . . , d, for some η0 = η0(ε) > 0, where Zk,0 = (µk,0, τk,0)
and Zk = (µk, τk).

Alternatively, the right-hand side of (27) is smaller than ε > 0 if

|Gk − pk,0| ≤ η, |Zk − Zk,0| ≤ η, k = 1, . . . , d, (28)

N∑
k=d+1

Gk ≤ η (29)

for some small η = η(ε) > 0, where pk = Gk/G and G =
∑N

k=1Gk for Gk > 0.
This follows from the inequality

pk,0 − η

1 + η(d + 1)
≤ pk =

Gk∑N
k=1Gk

≤ pk,0 + η

1 − ηd
, k = 1, . . . , d.

If p has the Dirichlet distribution (6), then pk = Gk/G where Gk are
i.i.d. Gamma(α/N) random variables. Therefore, (28) and (29) will be satis-
fied with probability

P{
N∑

k=d+1

Gk ≤ η}
d∏

k=1

P{|Zk − Zk,0| ≤ η}
d∏

k=1

P{|Gk − pk,0| ≤ η}.

The first probability remains bounded away from zero, by noting that
∑N

k=d+1Gk

converges in distribution to a Gamma(α) random variable, while the second term
is positive by our assumption of a positive density for H over the support of Q0.
It is easy to verify that the third term is O(N−d). For a small enough η, there are
N !/((N − d)!d!), or O(Nd), mutually exclusive ways of choosing the coordinates
of p and Z to satisfy (28) and (29) (for a small enough η, when (29) holds, each
Gd+1, . . . , GN is smaller than any G1, . . . , Gd). Because all of these sets have the
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same probability, deduce that the right-hand side of (27) is smaller than ε > 0
with a probability that remains bounded away from zero.

Proof of Theorem 6. Lemma 2 establishes that ΠN is information dense at f0.
This is condition (A) of Proposition 2 in Barron (1988), and our theorem will be
proved if we can verify condition (B) of the proposition: for each ε > 0,

ΠN

{
f ∈ F :

∫
|f(x) − fTN (x)| dx > ε

}
≤ exp(−r1n) (30)

for some constant r1 = r1(ε) > 0, where for each f ∈ F , the density fTn is a “the-
oretical histogram” with bins {. . . , (−1/n, 0], (0, 1/n], . . .} and heights defined by
fTN (x) = n

∫ j/n
(j−1)/n f(u) du for each x, where j ≡ j(x) is the integer satisfying

(j − 1)/n < x ≤ j/n.
For any f(·) =

∑N
k=1 pkφ(·|µk, τk),

∫
|f(x)−fTN (x)| dx≤

N∑
k=1

pk

∫
|φ(x|µk, τk) − φTn(x|µk, τk)| dx

=
N∑

k=1

pk

∞∑
j=−∞

∫ j/n

(j−1)/n

∣∣∣φ(x|µk, τk)−n
∫ j/n

(j−1)/n
φ(u|µk, τk) du

∣∣∣ dx.
By the Mean Value Theorem, there exists a uj , (j − 1)/n < uj < j/n, so that
for each (j − 1)/n < x ≤ j/n,

∣∣∣φ(x|µk, τk) − n

∫ j/n

(j−1)/n
φ(u|µk, τk) du

∣∣∣ =
∣∣∣φ(x|µk, τk) − φ(uj |µk, τk)

∣∣∣
=
∣∣∣∫ x

uj

φ′(u|µk, τk) du
∣∣∣ ≤ ∫ j/n

(j−1)/n
|φ′(u|µk, τk)| du.

(This inequality is due to Roeder and Wasserman (1997, p.901)). Therefore,

∫
|f(x) − fTN (x)| dx ≤

N∑
k=1

pk

n

∫
|φ′(u|µk, τk)| du =

√
2
π

N∑
k=1

pkτ
−1/2
k

n
.

By using the previous inequality, we can bound the left-hand side of (30) with

PN

{ N∑
k=1

pkτ
−1/2
k ≥ nε

}
≤HN{τ−1/2

k ≥ nε, for some k = 1, . . . , N}

≤N ×H{τ−1/2
1 ≥ nε},

which is bounded by N exp(−rn) by our assumption on the tail behavior of τ .
Now use the constraint on the size of N to verify (30).
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Proof of Theorem 7. Let fQ(x) =
∫
φ(x|µ, τ) dQ(µ, τ) denote the normal

mixture density for a distribution Q over � × �+. Define F∗ = {fQ ∈ F :∫
ψ(µ, τ) dQ(µ, τ) ≤ exp(C)}, where ψ(µ, τ) = exp

(
µ2/[2(τ∗ − τ)]

)
. Notice that

F∗ is identified by Theorem 2. We have,

ΠN (Fc
∗) = PN{

N∑
k=1

pkψ(Zk) > exp(C)} ≤ N ×Hn{ψ(Zk) > exp(C)}.

Deduce by (23) that ΠN (Fc∗) is exponentially small. Therefore we can replace the
set F in Theorem 6 by F∗ (for example see Proposition 1 of Barron (1988) where
Fc∗ acts as the set Bn). Consequently, for each ε > 0, the posterior concentrates
almost surely on the set of densities {f ∈ F∗ :

∫ |f(x) − f0(x)|dx < ε}. As F∗
is identified, this implies that the posterior concentrates almost surely on each
weak neighborhood of Q0. If this were not the case, then we could find a sequence
fQn ∈ F∗ with limit fQ where Q �= Q0 but fQ = f0. However, by the moment
constraint for F∗ we have

∫
ψ(µ, τ) dQ(µ, τ) ≤ exp(C). This contradicts the

identification implied by Theorem 2, which holds for distributions over � × �+

and (by inspection of its proof) for distributions over the closure as well.

Acknowledgements

The authors are greatly indebted to Lancelot F. James and Albert Y. Lo
for helpful discussion and advice on earlier drafts of this work. The authors also
thank the reviewers of the paper, including the editor Yi-Ching Yao, for their
many constructive comments.

References

Barron, A. R. (1988). The exponential convergence of posterior probabilities with implications

for Bayes estimators of density functions. Technical Report 7, Department of Statistics,

University of Illinois, Champaign, IL

Billinglsey, P. (1968). Convergence of Probability Measures. Wiley, New York.

Celeux, G., Hurn, M and Robert, C. P. (2000). Computational and inferential difficulties with

mixture posterior distributions. J. Amer. Assoc. 95, 957-970.

Chen, J. (1995). Optimal rate of convergence for finite mixture models. Ann. Statist. 23,

221-233.

Chib, S. (1995). Marginal likelihood from the Gibbs output. J. Amer. Statist. Assoc. 90,

1313-1321.

Chow, Y. S. and Teicher, H. (1978). Probability Theory: Independence, Interchangeability,

Martingales. Springer-Verlag, New York.

Diebolt, J. and Robert, C. P. (1994). Estimation of finite mixture distributions through Bayesian

sampling. J. Roy. Statist. Soc. Ser. B 56, 363-375.

Escobar, M. D. (1988). Estimating the means of several normal populations by nonparametric

estimation of the distribution of the means. Unpublished Ph.D. thesis, Department of

Statistics, Yale University.



962 HEMANT ISHWARAN AND MAHMOUD ZAREPOUR

Escobar, M. D. (1994). Estimating normal means with a Dirichlet process prior. J. Amer.

Statist. Assoc. 89, 268-277.

Escobar, M. D. and West, M. (1995). Bayesian density estimation and inference using mixtures.

J. Amer. Statist. Assoc. 90, 577-588.

Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems. Ann. Statist. 1,

209-230.

Ferguson, T. S. (1974). Prior distributions on spaces of probability measures. Ann. Statist. 2,

615-629.

Ferguson, T. S. (1983). Bayesian density estimation by mixtures of normal distributions. In

Recent Advances in Statistics (Edited by M. H. Rizvi, J. Rustagi and D. Siegmund), 287-

302. Academic Press, New York.

Geman, S. and Hwang, C. R. (1982). Nonparametric maximum likelihood estimation by the

method of sieves. Ann. Statist. 10, 401-414.

Genovese, C. R. and Wasserman, L. (2000). Rates of convergence for the Gaussian mixture

sieve. Ann. Statist. 028, 1105-1127.

Ghosal, S., Ghosh, J. K. and Ramamoorthi, R. V. (1999). Posterior consistency of Dirichlet

mixtures in density estimation. Ann. Statist. 27, 143-158.

Ghosal, S. and van der Vaart, A. W. (2001). Entropies and rates of convergence for maximum

likelihood and Bayes estimation for mixtures of normal densities. Ann. Statist. 29, 1233-

1263.

Green, P., and Richardson, S. (2001). Modelling heterogeneity with and without the Dirichlet

process. Scand. J. Statist. 28, 355-377.

Grenader, U. (1981). Abstract Inference. Wiley, New-York.

Ishwaran, H. and James, L. F. (2001). Gibbs sampling methods for stick-breaking priors. J.

Amer. Statist. Assoc. 96, 161-173.

Ishwaran H., James, L. F. and Sun, J. (2001). Bayesian model selection in finite mixtures by

marginal density decompositions. J. Amer. Statist. Assoc. 96, 1316-1332.

Ishwaran, H. and Zarepour, M. (2000). Markov chain Monte Carlo in approximate Dirichlet

and beta two-parameter process hierarchical models. Biometrika 87, 371-390.

Ishwaran, H. and Zarepour, M. (2002). Exact and approximate sum-representations for the

Dirichlet process. Canad. J. Statist. 30, 1-15.

Kemperman, J. H. B. (1969). On the optimum rate of transmitting information. Ann. Math.

Statist. 40, 2156-2177.

Kingman, J. F. C. (1975). Random discrete distributions. J. Roy. Statist. Soc. Ser. B 37,

1-22.

Kingman, J. F. C. (1993). Poisson Processes. Oxford University Press, Oxford.

Kuo, L. (1986). Computations of mixtures of Dirichlet processes. SIAM J. Sci. Statist. Comput.

7, 60-71.

Lindsay, B. G. (1995). Mixture Models: Theory, Geometry and Applications. NSF-CBMS

Regional Conference Series in Probability and Statistics, Volume 5. IMS, California.

Lo, A. Y. (1984). On a class of Bayesian nonparametric estimates: I. Density estimates. Ann.

Statist. 12, 351-357.

MacEachern, S. N. (1994). Estimating normal means with a conjugate style Dirichlet process

prior. Comm. Statist. Simulation Comput. 23, 727-741.

McLachlan, G. and Peel, D. (2000). Finite Mixture Models. Wiley, New-York.

Muliere P. and Secchi, P. (1995). A note on a proper Bayesian bootstrap. Technical report

No. 18, Dipartimento di Economia Politica e Metodi Quantitativi, Università degli Sudi
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