Supplementary Material

for “Steinized Empirical Bayes Estimation for Heteroscedastic Data”

1 Additional discussion and results

1.1 Additional discussion

We discuss various issues associated with the use of SURE for selecting the tun-

ing parameters (7, 5) in 5575 and in 0y, g, and associated with maximum likelihood

estimation of (v, 3), as mentioned in Sections 3.1-3.2.

SURE tuning for 63 g+ To investigate SURE tuning, we simulated 1000 data

vectors Y of dimension 10 from (1), with 6 the zero vector and (dy,...,diy) =

Figure S1: A numerical example where nested optimization works properly for minimizing

SURE(&E ). On the top left is a plot of the 10 simulated observations; on the top right is

SURE{&EB(V)} as a function of 7; on the bottom left is SURE((SE:O’B) and on the bottom

right is SURE(&S’:1 5. 5), each as a function of 8. The estimates (9;x, é 7x) are found correctly

as (15.33, 3.32) by nested optimization, but incorrectly as (0, 0.43) by Nelder—Mead.
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Figure S2: A numerical example where nested optimization fails for minimizing
SURE(&E ﬂ). On the top left is a plot of the 10 simulated observations; on the top right is
SURE{&']?,B(W)} as a function of 7; on the bottom left is SURE((SE/B:Oﬂ) and on the bottom
right is SURE((S}?:H’ 5), each as a function of 3. The estimates (y;x;, Byx) are found incor-

rectly as (11.44, 0.39) by nested optimization, but correctly as (0, —0.58) by Nelder—-Mead.
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(40,20,10,1,...,1), where the last 7 variances are 1. For simplicity, suppose that
1 is used as the only covariate and hence both g and v are scalars in the second-level
model (2). Because the true values of 6, are all zero, model (2) can be regarded as
correctly specified, with the true values of (v, 8) being (0, 0).

We computed the estimates (9yx, fx) in two ways: either minimizing SURE{(SE B(v)}
over 7y by the one-dimensional optimization algorithm optimize() in R, or directly
minimizing SURE(dE 5) over (7, B) by the Nelder-Mead algorithm provided by optim()
in R. The two methods gave different values of 4;x, by 0.1 or more, for 19 out of
1000 data vectors, in which the minimum SURE values found by the the nested op-
timization method are smaller for 14 data vectors, but are larger for 5 data vectors,
than those from the Nelder-Mead method.

Figure S1 and S2 show two numerical examples where nested optimization correctly

finds or, respectively, fails to find (9;x, fyx) as a global minimizer of SURE(6F ;). For
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both examples, the profile function SURE{&E B(w)} is non-convex and admits both a
local minimum and a local maximum over (0, 00). Then the local minimizer and the
local maximizer are two solutions to equation (15).

Figure S1 also serves to illustrate that the SURE-based estimates (§x, B Jx) might
appear unnatural in showing how the second-level model (2) could be fitted to the
true values ¢;. For this example, the location estimate Bix = 3.32 is larger than 9
out of all 10 observations and overly pulled toward the single observation close to
10 with the largest variance 40, due to the fact that the observations are weighted
in proportion to the variances in (14) as discussed in Section 3.2. To compensate
for overestimation in fjx, the scale estimate A3x = 15.33 is then inflated to a large
extent. By comparison, the FayHerriot estimates (Ypg, fpn), found to be (0, 0.17)
in this example, seems more reasonable than (9x, B jx) in reflecting the fact that the
true values of 0; are all zero. This phenomenon is reminiscent of that in the baseball

example in Section 5 when 1 is used as the only covariate.

SURE tuning for 6.3. As mentioned in Section 3.1, it is computationally
challenging to globally minimize SURE(d) - ) as a function of (X,~, 5). To illustrate
this issue, we computed ming<)<2 SURE(d),,3) = SURE{d5, 4, - 5} as a function of
B for fixed v > 0 by the piecewise search method described in Section 3.1. Then we
tried to minimize this function over 5 € R for fixed v > 0, by the one-dimensional
optimization R algorithm optimize().

Figure S3 demonstrates the complexity of SURE(J) ) for a particular data vector.
The function SURE{d5, 4 . 5} is non-smooth and multi-modal in j for a range of
fixed v > 0. As expected, minimizing this function by optimize () often fails to find
a global minimum. Then the profile function plotted, mingeg SURE{(S;\(% 8, ﬁ}, with
the minimum over  computed by optimize () is incorrect. The approach of nested
optimization over A, 3, and then v does not work here.

Figure S3 also serves to illustrate a subtle issue in choosing (A,~, ) as a global
minimizer of SURE(d) 5 ), if correctly identified. For this example, the Fay-Herriot
estimates are (Ypy, Bpn) = (0, 0.18), in agreement with the fact that the true values
of §; are all zero. However, SURE(6,  5) seems to achieve a global minimum at some

B between 0 and 2 and ~ greater than 20, even possibly v = oco. In contrast with



Figure S3: A numerical example illustrating the complexity of SURE(dy 4,8). On the top
left is a plot of the 10 simulated observations; on the top middle is mingeg SURE{d S8), 6}
as a function of v, where the minimum over 3 is computed by the R function optimize ()
and may be a local or global minimum; the remaining four plots are SURE{¢ A1B), B} as
a function of g for v = 0, 1.5, 10, and 20 respectively, with a horizontal line placed at the

local or global minimum over 8 found by optimize().
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the Bayes rule 5]73’ 5, an unusual feature of dy , g is that the variance parameter v does
not monotonically determine the magnitude of shrinkage, and 0, ., 3 remains a proper
shrinkage estimator, different from dy = Y, at the limit as v — oo. Therefore, the
values of (v, ) minimizing SURE(d) - ), similarly to (¥;x, Bx), might not reflect how
the second-level model (2) could be properly fitted to the true values 6;. Moreover,
such choices of (v, 8) for ), can be more difficult to interpret than (%,x, B 1x), due

to the nonstandard role of v in the estimator ¢y 5 g.

Maximum likelihood estimation of (v,3). To investigate possible irregular
behavior for score equation (13), we simulated 1000 data vectors Y of dimension
10 from (1) as before, except for 8 = (20,0,...,0) with the first element nonzero.

Moreover, suppose that 1 is used as the only covariate as before. The second-level



Figure S4: A numerical example illustrating non-monotonicity associated with equa-
tion (13) for maximum likelihood estimation of v. On the top left is a plot of the
10 simulated observations; on the top right is shown the profile log-likelihood of -,
—> = Y - B()¥2/(dj + ) + log(d; + 7)]/2; on the bottom left and right are shown
the difference and, respectively, the ratio between the two sides of (13).
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model (2) can be seen as misspecified for the true values of 6;.

We tried to solve (13) by the following iteration:

Y, — B — 4,
%HZZ{ @ _thyf /Zd—l—% t=0,1,...,

Jj=1

with the starting value 7y = 0 or 50. Comparison of the results obtained by this
procedure with the two starting values indicates that there are two or more solutions
to equation (13) for at least 9 out of 1000 data vectors.

Figure S4 shows the irregular behavior associated with equation (13) for a partic-
ular data vector. As mentioned in Section 3.2, neither the difference nor the ratio
between the two sides of (13) is monotonic in 4 > 0. The left-hand side of (13) is
strictly less than the right-hand side at v = 0. But there exist two solutions to (13),
corresponding to a local minimizer and a local maximizer of the profile log-likelihood

of v, which has a global maximum at v = 0.



Figure S5: Relative Bayes risks of three estimators dpp (0), d3x (), and dRes () similarly

as in Figure 4, but based on simulated observations with a negative AB effect.
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Figure S5 presents the additional simulation results mentioned at the end of Sec-

tion 6. The observations are simulated from the homoscedastic prior (2) or from the

heteroscedastic prior (24) similarly as in Figure 4, but the true value of f is set such

that 278 = 0.5 — 0.0002(AB;) — 0.1(pitcher;).



Figure S6: Relative Bayes risks of three estimators dpp (0), dyx (4), and dres () using
the covariates 1+ d (first column), 1 +d~' 4+ d~? (second column), 1+ d~! (third column),
and 1 (fourth column), based on n = 50, 100, 250, and 500 observations from model
(1) with 6; = d; and d; ~ unif(0.1,1) (first row), 1/d; ~ unif(0.1,1) (second row), and
1/d; ~ unif(0.1,10) (third row). For the third row, the relative Bayes risks of dpn (o) are

about 1.1, 1.4, and 1.7 respectively in the second to fourth plots.
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We conducted additional simulations in the following settings where Y; ~ N(;, d;),
but the individual means and variances are highly dependent: 6, = d;, and the indi-
vidual variances are randomly generated: (i) d; ~ unif(0.1, 1), (ii) 1/d; ~ unif(0.1, 1),

and 1/d; ~ unif(0.1,10). Setting (i) is taken directly from Xie et al. (2012), and the



other two settings (ii)—(iii) are introduced to allow greater variability in the variances
(di,...,d,). Note that 1/d; can be interpreted as being proportional to the sample
size, such as AB; in the baseball example, underlying the observation Y.

For application of the estimators dgp, d5x, and dres, the second-level model (2) is
used, with z; possibly depending on d;: (i) ; = (1,d;)", (i) z; = (1,d; ", d; )", (iii)
xj = (1,dj_1)T, and (iv) z; = 1. The first choice of z; leads to a correctly specified
model (2). The other three choices lead to a mean misspecification in (2), although
the variance can be seen as correctly specified with v = 0.

Figure S6 shows the relative Bayes risks of dpy, d;x, and dgres versus the naive
estimator, obtained from 10* repeated simulations with sample sizes from n = 50 to
500. In the first setting where d; ~ unif(0.1,1), all the three estimators perform
similarly to each other, except that djx yields smaller Bayes risks than dpg and
Ores When 1 is used as the only covariate. However, as the variances (di,...,d,)
become more variable in the second and third settings, the estimator dres performs
increasingly better than both dpy and d;x when the prior mean in (2) is misspecified.
This comparison demonstrates a potential advantage of dr.s over dpy and d;x, in the

case where the individual variances (dy,...,d,) are highly variable.



2 Technical details

Throughout, a summation over an empty index set is 0; the index j or k runs from 1

to n in all summations unless otherwise stated; and A = 2.

2.1 Proof of Lemma 1

Sort the indices such that dy > dy > --- > d,. If 1 < j <k <w, then a;(7)/ar(y) =
di/dj. v +1<j <k <n,then 1< a;(y)/ar(v) = (d;/de){(dx +7)/(dj +7)} <
difdg. 1 < j<wvandv+1<k<n,then a;(v)/ar(y) < d;/(dj +7)/ar(y) <

d;/dy by Corollary 3 in Tan (2014) and, moreover, ax(y)/a;(v) < ap+1(y)/a;(y) <

d;j/d,4+1 < d;/dy, because dyi1a,11(7) < dya,(y) by the definition of v and hence
av1(7)/a;(v) < (dvaw/dyi1)/a;(y) = dj/dysr. O

2.2 Proof of Theorem 1

By the independence of HpY and (I — Hp)Y, the unbiasedness of HpY for Hp#, and
the relationship that LyL3(I — Hp) = LyVoLI D' = I — Hp, we have

R(53.,.0) = tr [B { (53, — 0)}]
—ir (Ee [{Hd(y . 9)}@2}) + tr {E@ ([LQ {5>\7,8:0(7]2) - 77Z)2}]®2)}
=tr(HpDH}) + tr (Ep [{6,5-0(12) — 1/’2}®2])

leading directly to the desired equation. Throughout, y®? denotes yy* for a column
vector y. Moreover, result (10) can extended as follows on the Bayes risk of 63_; . Let
Iy = a(Va+7L)—Vs and g = maxj_y, . n—q{v;/(v;+7)}, with I5 the (n—¢q) x (n—q)
identity matrix and (vy,...,v,—,) the diagonal elements of V5. For a > ayp, consider

the estimator of 6,
Oy = XB + Lo 00, 5 o{L5(Y = XB)},

where 07 5_o(n2) is the Bayes rule with the observation vector 7, = L3 (Y — X 3) for
estimating ¢y = L3 (I — Hp)#, under the prior ¢, ~ N(0,T',). Similarly as above, the
pointwise risk of 05” is related to that of 65 ;_(12) by

R(635,m) = te{X (X "D X)7'X"} + R{G p—o(12), ¥}

a,y)
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Then for any prior 7 on 6 such that e = L3 (I — Hp)# ~ N(0,T,) with a > «, the

Bayes risk of §5_, ., satisfies
R(5314,7) < R(055, ™) + a7 (0] +vj +0f + vj),

where v} = v?/(v; +7) and the indices are sorted such that vf >v5 >--- >
2.3 Proof of Theorem 2
Recall that 675 = Y; — ai(Y; — 27 3). Then

Zd +Za*2{d + (0; — 27 8)*} —QZad

(32, a5d;)”
- z]: i > a5 {d; + (0; — 27*)?}

by minimization of the quadratic function Y. d; + A>3, ar*{d; + (0; — 278)*} —

20} ;ajd; in A. By inequality (4) and Jensen’s inequality, we have

{32, dia;(v7) — 2max; dja; (")}
225 a5(y {d; + (0; — 27 5%)%}

< Zdj _ {22, dja;(v") — 2max; dja;(v))?

R(0r—1.+ 5+, 6) <Zd —

;a5 {d; + (0; — 278)%}
because a;(v*) < aj for j = 1,...,n by Tan (2014, Corollary 3). Note that (max; d;a})/
(3°,dja;) < n~H(max; d3)/(min; d7) = o(1). For n sufficiently large, we have 3~ d;jaj—

2max;(d;ja;) > 0 and hence by the construction of a;(v*),

{Zjdjaj( *) — 2max; dja;(v*)}> (Z d;aj 2maxjd~a;)2
> a3 (v)(dj + %) T XA+ )

By the proof of Tan (2014, Theorem 3), we have

>, a?(v*)(d; +7)>1_4maxjdja;f‘
> a(di+) T 25 4

By simple manipulation, we have

max-d-a"f
—2 da)?>|1-4-=217 d;a?)*.
- (1= ) L

10


ztan
Typewritten Text
10


Combining the preceding four inequalities shows that
2
maX dja; (32, azd;)?
! Z Z dja] Zj ajz{dj +(0; — Z; B*)?}

"
Z dja] Zj a; {d; +(0; — %ﬁ*) }
By the Cauchy—Schwartz inequality (3_; dja;f?)(zj d;) > (32, d;ja})?, we have

ca*d)?
R(Br1 . 0) < (1 8 max; d, )Zd (2, 45dy)

n min; d2 jZ{dj + (0 — :L’;Fﬁ*)Q}’

which immediately leads to the desired inequalities. [J

2.4 Proof of Theorem 3

We provide a proof of Theorem 3, based on Lemmas 1-3. For d4 ) with a data-

independent choice of A, direct calculation yields

SURE(d4.,) Zd+z 2 _2d;)

J%ZJ

2azY? \eda; Acd;alY?
+Z{ Y2 -2 Cj;;;z""ll j]] }7
et >k OY; (X arYy)?

where J = {1 <j <n:3, afzj > Aca;} and ¢ = (3 dja;) — 2max;(d;a;).

Lemma 2. Write Q, = ), aj(07 + d;). Under Assumption (A1), the following

results hold for any constant v, > 0:

4K 102 (max; d;
sup P n_l sup E Ac CLJ(dj — E?) > UnQn/Q < 1 ( 23 . )(Z )
oek 0SASA | jes n2v2

4)\?(max; d d

sup P n! sup Aea;fie:| > Un@n/Q ( J J)(ZJ g)7
_ jVi€5 5
0eRn x| 5 7y

32 + 8K ) maxy(aidy)
sup P alY? < Q,/2 <( 2
pekn (zk: W< Qo ) - > aidy,

Proof of Lemma 2. Sort the indices such that a; > a3 > -+ > a,,. To show the

first inequality, we have, for all § € R",

P{n_1 sup 5
0<ASA | jes

e (lj(dj — 8?)

> vnQn/2}

11
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Zx_\caj(dj —&5)| > vnQn/Q}
=k

<Var(n*12j Acaje?) _ K222 a?d? _ AR N (max; d;) (3 dj)

<P {n_l m]?X

J 377
v2QE /4 TonPuiQi/4 T n*vy ’

by Kolmogorov’s maximal inequality, Assumption (Al), and ¢* < (Z] a;d;)? <
(32, a3d;) (3=, d;). To show the second inequality, we have, for all 6 € R,

Pn7! sup Z
0<A<

jeJ

Z S\C a]ﬂj&?j Z UnQn/2>
j=k

<valr(n_1 > Acajbie;) _ 4N2c? >, az03d; _ 422 (max; d;)(>_; dj)

_ J"J
S QA R o

e (lj@jgj

<P (nl max

To show the third inequality, we have, for all § € R",

P (Z @Yy < @n/2> <P ( > @Yy —Qul > Qn/2>
K k
<Var(2k arYy?) <8 Sonarbid, + 2K, Y, apds < (32 + 8K;) maxy,(aidy,)
S@n C @/ : o
by Chebyshev’s inequality, Assumption (A1), and var(}, aiY?) = var(2>", a20ker +
Soraier) < 2var(2)", azbrer) + 2var(d, ajer). O

Lemma 3. Write R,, = (maxy ax)/(ming a). Under Assumption (A1), the follow-

ing results hold for any constant v, > 0:

K. Y. d2
Z(dj — 5?) > Un} SL

JEd

I

sup P{n~t sup
AR 0<A<A

2 2
nv;

sup P [ n™! sup
R 0<A<A

Z@-E- .- <maX{(32+8K1)maxk(azdk)
2 )= Sodd

J¢J
2R3 (maxy, di) (D0, di) } '

242
nv;

Proof of Lemma 3. Sort the indices such that a; > ay > -+ > a,. The first

inequality can be shown similarly to the first inequality in Lemma 2. To show the

> vn>

12

second inequality, we have

P{n! sup Zejej
0<A<A

Jé¢J
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<P {Z alY;? < /_\c(ml?xak)} <P {Z alY;? < /_\anazdk} ;
k

k k
because if there exists some j € J then >, a2V? < Ac(maxgay). If Y, ai67 >
2AR, >, adk, then, from the preceding inequality, P(supy<y<yn | > ierbicil >
vn) < P(YS;a3Y7 < Qn/2) < (3248K,) maxy(ajdy)/ 3, aidy by the third inequality

)

by Kolmogorov’s inequality. If Y7, a26? < 2AR, >, aldy, then, from the preced-
ing inequality, P(supg<y<xn” |Z;¢J€ gjl =2 v) < 2AR (maxy, di.) (3) di) [ (n?07).

Combining the two cases gives the desired inequality. [

in Lemma 2. On the other hand, we have

k
P (n_l sup Z > vn) <P (n_lm]?x Zﬁjej
0<AA | 77 =
varQ;05e) 2 07d; o (max; dj)(5; a;07)

2,2 o 2,2 — 202 (mi 2
n? v n?v?2 n?vZ(min; a?)

0;€;

Lemma 4. Write Z,1 = n~"supgeres | 2o jes Acas(dy — €5Y5)/ 30, aiYEl, Zno =
~hsupp<y<s | ZJQJ( —¢;Yj)|, and Z, 3 = n~" supgy<x{Ac maxjes(dja;)/ 3, aZYiP}

Then the following results hold:

< —1Zd +/\1/2R1/2 —1Zd 1/2 —128 1/2

jeJ

Zna <n” Zd _,_)\1/23 Zd 1/2 flz(g?)l/g?
J

Jjg¢J

Zna <n”(maxd;).
J

Proof of Lemma 4. The third inequality follows because Y, aiY;? > Aca; for
j € J. The first inequality follows because

AC(ZjeJ ?Yf)l/Q(Zjer )2
Do Ry

1/2 1/2
(AC)”Q(Z )1/2 . )
< i/zj) AR\ D d; e
j j

min; (a;

Ac ajej ]

by the Cauchy-Schwartz inequality and the fact that if J # 0 then Y, aiY? >

Ac(miny ag). The second inequality follows because

9y 1/2 1/2
€j 2v,2
Sen<{T(2)] (Tam)
Jjg¢J jaJ

i¢J
13
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( 452)1/2 1/2 1/2 1/2
Z J N1/2 2
Sﬁjag {)\C(Hlj&XGj)} S A / Rn < Ej dj> ( Ej 6]') s

by the Cauchy—Schwartz inequality and the fact that if there exists some j ¢ J then

Yo arY? < Ae(maxy ay). O

Proof of Theorem 3. By direct calculation, we have

D AGans =0} =3 &+ > (V) = 25Y))
J J J¢d
N { N alY}? B 2>\c a;e;Y; }
el (XrarYi?)? > O Y5

and hence

G (V)] <n +2n7

> (d;—¢3)

J

> (4 —&Y))

J¢d

_y Ac maxje (djaj)

+2ont
k aiYkQ

+4n

Z )\CCLj(dj — 8]‘Y‘)
R a7

Jj€J

(i) Take v, = (12/13)n~(=4/2 and nv2 = (1,/13)?n*. By the triangle inequality,

P{ sup_[Ca(A)] > r2n—<1—4”>/2} <P {n‘l > (di =) > vn}

0<A<A )
> Un}

> vn} +P (Z alY;r < Qn/2>
k

+P {(M)n/?)_1 sup_| > Aea(d; — &)

0<A<A | jes

+ P {(nQn/Z)_l sup Z Acajbje;

0<A<A | ey

+P{n~t sup Z(dj—sg) >, p +P(n7t sup ZOjej > vy,
0<A<A i 0<A<A I3,
P n_l)\c max,es(d;a;) .-
>k 0y -

By Lemmas 1-2 and the third inequality in Lemma 4, supyeg. P{supg<y<3 |Cn(A)] >
o~ =4/2Y = O{n(nv?) 7t 4+ 0¥t + 0t (ne?) 7t} = O(ry 2).

(ii) Recall the definitions of Z,, 1, Zy 2, and Z,, 3 in Lemma 4. Then supy<y<5 [¢a(})|
< n MY (dj — €D + Zng + Zna + Zns. Note that EV2[{n~13 (d; — €3)}?] <
n’lKll/Q(Zj d)V? = Of{n=(""/2} and, by Lemma 4, Z,3 < n*(max;d;) = O{
n~(=M1. To complete the proof, we show below that F(Z,;) = O{n~(1=4/2} and
E(Z,9) = O{n=(=5m/2} ymiformly in 6 € R™.
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Sort the indices such that a; > ag > -+ > a,. Write B,; = {d> ,aiV? <
Q./2}. By Doob’s L?-maximal inequality, the first inequality in Lemma 3, and similar

calculation to the proof of Lemma 2, we have, for all § € R",

E(Zyy) = E(Zualpg ) + E(Zualp,,)
Z;\C@j( —&;Yj)
=k

{2(1 + KN (max; d;)(Y, d;) }”2
<
- n?/4

2
<E? {nmkx /(Qn/2>} + BY2(22 ) PY(B, 1)

+ {21+ AR}V (n7! Z d;)PY*(B,,)

<C, {n*(lfn)/2 + n"/2n’(1’3’7)/2} 7 (S1)

where C| is a constant (free of #). Therefore, supyepn E(Z,1) = O{n~(1=4/2} By
}2

If 3, a20? < 2AR, Y, a2dy, then, similarly as in the proof of Lemma 3, >, 07d; <
2AR3 (maxy di) (3", di.) and hence E(Z, ) < Cof{n~1=m/2 4 n=(=40/2} "where Cy is
a constant (free of #). Moreover, write B, o = {>_, aiY? < Ac(maxyag)}. By the

Doob’s inequality and the proof of Lemma 3, we have

k

E: —&,Yj)

E(Z,5) < EY? {n 1max

. {2(K1 S+ egdj)} (2

= TL2

second inequality in Lemma 4, we have

E(Zy2) = E(Zy2lp,,) < E1/2(22 )P1/2(Bn,2)
<{2(1 + AR?)}'*(n~ Zd )PY2(B (S3)

If 37, azf > 2AR,, -, agdy, then, by the proof of Lemma 3, P(B,2) < P(}.; alY}? <
Q,/2) and hence E(Z, ) < C3n'n~1=3/2 where Cj is a constant (free of ). Com-
bining the two cases shows that supycgs E(Z,2) = O{n=(1=/2} O

2.5 Proofs of Propositions 1-2

Proof of Proposition 1. For simplicity, we write ¥ for 4 and v* for 7, which should be

distinguished from 4 and +* in Proposition 2. Let 4 € (—min; d;, c0) be a solution
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such that n = Zj Y;Q/ (dj +%). Then 4 = max(0,7). By simple manipulation of
0= Zj sz/(dj +9) — Zj(dj + 9]2')/(653' + ), we have

(VP —d =67/ (d + )
T TS YA + ) )}

and hence

Y2 —d; — 62

-1 J J
n —_— .

(i) For any constant v,, > 0, we have, uniformly in 0 € ©,,

Y=< A= < (mjaxdj +77)

Y7 — (d; +63)

anj: dj+’7*

(max; d; + 7*)? . Y7
< _J
< 02 var{ n ; it
< (man dj + 7*)2 Z 89J2d] + 2K1d?
: D
(8M + 2K;)(max; d; + v*)?

2
nv;

P(|7 =~ = vn) SP{

/Un
~ min; d; +*

22
nsv;

<

by Chebyshev’s inequality. Note that v* = n=1 3" (d;+07){v*/(d;+~")} <n~' 370 (d;+
07) < (14 M)(max; d;) for § € ©,,. The preceding inequality shows that

. . C(max; d;)*
SupP(|7—7|2vn)§—< ; 2
0€6n nv2

, (S4)

for some constant C. Taking v,, = 7on~(1=2/2 gives the desired result.
(ii) By the proof of (i), we have, uniformly in 6 € ©,,,

@M+2KmeﬂQ+¢f.

By -~ < -

This leads directly to the desired result. [

Proof of Proposition 2. Throughout, we write /3, for B(y) in (11), and hence
3 =B = B(5). Let ¥ € (—min; dj,00) be a solution such that n — ¢ = > (Y —
2765)?/(d; + 7). Then 4 = max(0,%). We make use of the following identities

repeatedly. For v > —min; d;, direct calculation shows that

> (Y —2fB,)*/(d; +7) — (n—q)

J
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=Su1 (1) =) + Sn2(v V) (Y =)+ Tt — Tha (S5)

=S 1 (V) =) = Sn2(V, ) (v =)+ T — T (56)

where S, 1 (7*,7) and S, 2(7*,7) are defined as, respectively, S, 1(v,7*) and Sp2(7,7")
with v and v* exchanged, and

w _ (Y; — 27 B,)°
o7 = Z @+ +7)

. x( :Eﬁv IJ Tﬁv)

B (j— }Fﬁ)—j—(j—}rﬁ)
Tnl—z d]‘f"y* )

)
“_Z d+7 (Zd ) ;@T

(i) Take v, = Tpn~(1=20/2_ Tt suffices to show that

01 (man dj)2

sup P17 —77] 2 va) <
0Oy, nvy

7 (S7)

for some constant Cy. Taking v = v* 4 v,, in equation (S6) shows that T,,; — T}, 2 >
>0 (Y5 —x7B,)%/(dj +7) — (n — q) +vuSn1(7", 7). By the monotonicity of 3 .(Y; —
27 By)?/(d; + ) in v, we then have

Y: —273,)?
P(’VZV“rvn):P{Z%—(n—q)ZOand’?Zv*Jrvn}
j 7

dj +v*)(dj + )

SP{Tnl_Tn2ZM}'
’ ’ max; d; + vy

Y, — 2752
SP{Tn,l_Tn,ZEUTLZ< ( ’ ]67) and:YZ’Y*+Un}
J

Taking v = 7* — v, in (S5) shows that T,,, — T2 < >°.(Y; — 276,)?/(d;j +7) — (n —
q) = vnSn1(7,7*). By the definition of S, 1, we have Y~ (Y; — 27 3,)?/(d; +7) — (n —
0) = onSua (17°) < S5,(¥; — 238,)2/(d; ) — (0 — a) — v S,{(%; — 236,02/ (ds +
Y}/ (maxy di +77) = {1 = vn/ (maxg dp + )V H3, (Y — 278,)%/(dj +7) = (n—q)} —
(n — q)v,/(maxy di, + 7). Then, for all large n such that v, < max;d;/2,

Y, — 273,)?
P(iév*—vn)zp{z%—(n—q)SOandiS’V*—vn}
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<P

1 (Y — 27 By)? (n—q)vy 3
Tt — Ty < - A Lt U (A _ U and A <y —w,
1 ,2_2{% P (n—q) - ¥ <y

max; d; + vy
SP {Tn,l - Tn,2 S _—(n — Q)Un } .
max; d; + v*

Therefore, it suffices to show that

sup f){|7%J_'Th2’2i

(n— g } _ Co(max, d,)’
9cO,, o

Y
max; d; +v* + v, nv2

for some constant C5. By Chebyshev’s inequality, we have

(W RUEY

maxj dj +v* + vy
<2(maxjd + 7+ ,)?
- (n —q)*v2

{B(T3,) + E(T;5)} -
By the definition of ~*, we have, for § € ©,,,

7 < (n—a)7 S (s + 02 {7 /(d; + 7))

J

(=) Y+ ) < (1 —g/w) (L M)(maxd).  (S9)

J

IN

Moreover, direct calculation shows that

— dj + 2;(0; — 27 8")
Tha =
! Z dj +v*

)
J

and hence

I e s S N

J

because 35,6~ 8%V /(di+1°) = 55,7°/(ds+7")—q < n—q. Let & = Vi {a; (¥~
0;)/(dj +~*)} for j=1,...,n. Then T, » = >, & >, & and

E(T},) =Y E(&)EEGE) +2)  E{(§) }+ZE{5@ }

J#k J#k
<3 B(EGEGS) + Y E{(§14))
J#k J
’ oV ’
<3 ZEW{(&}@P}] = 3K, {Z Wd} < 3Kg?, (310)
J i

Combining the preceding results completes the proof.
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(ii) Taking v = 4 in equation (S5) shows that S, 1(7,v*)(¥
v =Th1 — Tho If ¥ <~* then
~ |Tn 1 — Tn 2|
Sna(¥:77)

Taking v = 7 in equation (S6) shows that S, 1(v*,3)(¥ —7*) + Sn2(v*,¥) (7 —7*)? =

) = Sn2(¥, 7)) (5 —

|Tn,1 - Tn,2|

< d; *
_(m]ax i+ %) p—

Tn,l — Tn,g. If v > ’7*, then

Tn _Tn ~ Tn _Tn
0 <5y < = Tnel o g 45y Tnt = Tnal
J

— ~ — )

Sn1(7*,7) n—q

and hence if further |T,,; — 75, 2| < (n — q)/2, then ¥ — v* < 2(max; d; + 7)1 —

Ty,2|/(n — q). Combining these results and using the bounds (S9)-(S10) on E(T}; ;)

and E(T7,), we have, for all § € ©,,

max; d; + 7*E|
n—q

max; d; +v* - .
SQ%EWUTM — Tool’) + EV2(15 = v P) P2 {| Ty — Toal > (n—q)/2}

<Cy(mind;)n~" 7202 4 O~ PEVA (|5 — 4,
J

Efy—+v7<2 Tng — Tool + E[|7 = V| 1{T0s—T0 s> (n—a)/2}]

where C3 and Cj are constants. Because v* = (min;d;)O(n") uniformly in 6 €
O, it suffices to show that E(5?) = (min;d;)?0O(n?") uniformly in § € ©,. In
fact, ¥ > —min; d; by definition and if 5 > 0, then 5 < (n —¢)~' 37, Y{7/(d; +
P} < (n—q) 7132, Y} /dj)(max; dj). For all 6 € ©,, direct calculation shows that
Tty YR dy <1+ MAnt Y0 (65 —dj)/d| +2n7 1 30 055/ d;| and hence E(3?) <
(min; d;)? +3(1 — q/n)*{(1 + M)*+ K1 /n+ 4M/n}(max; d;)? < Cs(min; d;)*n®" for
a constant Cf.
(iii) Similarly to the proof of (ii), we have, for all § € ©,,,
(max; d; +7*)?
(n —q)?

E|Ty = Tool* + EY?(|17 = v [ PYV?{|Toy — Taal > (n—q)/2}

Ef—~1*<4

ET,1 — Toaol* + E [|7 = V1?1701~ Toal>(n1—0)/2}]

<4(maxj dj +~*)?

- (n—gq)p?

<Cs(mind;)*n~12" + Con VPEV2 (|5 — 47|,
j

where Cg and C; are constants. Then it suffices to show that E(5%) = O(n*") uni-
formly in § € ©,,. This follows by similar calculation as above for E(5?), using the
fact that E(3_; Uj)* = o E(U}) + 32k E(U)EUR) < {2, E1/2(U;-*)}2, where

(Ui, ...,U,) are independent variables, each with mean 0. OJ
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2.6 Proofs of Theorem 4 and Corollary 1

We provide Lemma 5 on smoothness properties of {ai(7), ..., a,(7)}, determined from
(8)—(9), as «y varies. Moreover, we give Proposition 3, which combined with Theorem
4 yields Corollary 1. Finally, we provide a proof of Theorem 4. Throughout, we write

O for 0y p=0 and write 4 for 4y and v* for ;.

Lemma 5. Sort the indices such that dy > dy > -+ > d,,. (i) For any 7; > 0 and

k=1,...,n, the left and right derivatives

Lk(%) — lim ak(”ﬂ) - ak(’h)’ Uk(%) — lim Gk(’h) - ak(’h)

2t Yo — M Y241 Yo — M1

exist and are finite.
(ii) For any ~, > 0,

“Litw) _ . _ ~Lu(n)

0< < (mind 1,
Tan) T T ae(m) T ( J 2
OSM < ...SMS(mjnd]) !
ai(m1) an(71) J
(iii) For any 0 < 1 < 79,
] Sm(%) <. < an(71) <1+ 72.—71_
a1(72) an(72) min; d;
(iv) For any 0 < v < 79,
1< c(m) <1+ 72'—71‘
ch2) = iy 4

Proof of Lemma 5. For k = 3,....,n — 1, let mx(y) = Z;?:l{dz+1/(dk+1 +
V}/Ad3/(d; + )} Then ri(y) > k—2for 3 <k < v(y) =1 and rp(y) < k —2
for v(y) < k <n —1 by Tan (2014, Corollary 2). Moreover, () is non-increasing
in v for each k. To show (i)—(ii), consider the following three cases of ;.

Suppose that 74(y1) > k—2 for k = v(7y1) — 1 and hence for all 3 <k <w(y)—1.
By continuity of rx(7y) in v, there exists h > 0 such that for any v, € (y1 — h, 71 +
R (110, 50), v(32) = v(). Then ax(12)//ar(11) = {5700 (d; + 1) /2 {200 (d; +
12)/di} for 1 < k < v(y), and ax(ve)/ax(v1) = (di +71)/(di +72) for v(n) +1 <
k < n, which lead directly to the results (i)—(ii).

Suppose that ri(v) = k—2for k = v(v) — 1, but rp(y) > k=2 for k = v(y) —2

and hence for all 3 < k < v(v;) — 2. By continuity and monotonicity of r(7y) in 7,
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there exists hy > 0 such that for any v € (71 — hi,71) N [0,00), v(72) = v(7) and
hence the desired results follow similarly to the first case. It remains to deal with v, €
(71,71 +h2)N|0, 00) for small hy > 0 such that v(v,) = v(y1)—1. By direct calculation
using 7x(11) = k — 2 for k = v(y1) — 1, we have ap(1) = [d2, ) /{duin) + 71} /di
for 1 < k < v(y) and ag(y2) = w[d? (my/Advy + 113/ di for 1 < k < wv(n) — 1,
where w = {37007 (d; + ) /a2 /{7007 (d; + 72) /). Then a(v2)/ax(n) = w
for 1 <k <w(y)—1, and ar(y2)/ax(n) = (dx + 1)/ (dx, + 72) for v(y1) < k < n,
which lead directly to the results (i)—(ii).

Suppose that for some 3 < kg < v(71)—2, rp(n) = k—2for k = ko+1,...,v(y1)—1,
but ry(y1) > k —2 for k = ko and hence for all 3 < k < ky. Then dpoyo = -+ = dy(yy)
by Tan (2014, Corollary 2). The results (i)(ii) follow similarly to the second case,
which corresponds to ko = v(v;) — 2.

The result (iii) follows easily from (i)-(ii). Similarly, the result (iv) follows from
corresponding results on the left and right derivatives of ¢(7;). For example, for
Y2 € (m1,7 + h2) N [0,00) in the second case above, we have c¢(y1) = {v(y1) —
2}d3(%)/{dum>+71}+Z?:V (y1)+1 d?/(dj +71) and ¢(y2) = w{v(m) _S}di(yl)/{dv(%) +
1} 4 Yo B/ (ds + ), and hence {e(1) — ()} fe(n) < (32 — 1),/ (min, dy).
0

Proposition 3. If Assumptions (A1)~(A3) hold with 0 < 7 < 1/4, then supyce,
E{supgcy<o n ' [SURE(S) 5) — SURE(6) 4+ )|} = O{n~(0=4/2},

Proof of Proposition 3. The result follows from Proposition 1(ii) and the following
inequality: for any 0 < v < 79,
sup |SURE(dy,) — SURE(0x4,)]
0<A<A

<8(maxd)+2(2A+A2)(1+>\ sup Rnn) Y dj,

0<~v<y2 j

where A = (o —v1)/(min; d;) and R,,, = {maxy, ax(y)}/{ming ax(v)}. In fact, direct

calculation shows that

SURE((S,\ 71) — SURE(&,\ 72)
71 Y2

N Z Zkak ’71 Y2

JEIN ~

(72)Y
Z Zk ak 72)Y2

JEIN g
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+ Z {b’?(%)Yf — 205 (m)d; — 5/32'(72)5/32 + 20 (72)dj} : (S11)

jeJ}u"ﬂ U‘])\/Yz

where b3(7) = min{1,b;(7)} b(v) = Ac(v)a;(7)/{3 2, ak ()Y}, and Jy, = {j :
bj(y) < 1}. Notationally, the dependency of b;(y) on A is suppressed. Then (1 +
A)72 < bj(11)/bj(2) < (1+ A)? for j =1,...,n by Lemma 5(iii)—(iv). Moreover,

02 (71)Y? = 20 (1) d; — V5 (2) Y7 + 26(72)d]
<Jb5 (1) = B () (1) + B (02) 17 + 216 (n) = ¥ (72)14;

<206 (1) = b () [Y7 + 2|6 (m1) — b(72)d;. (512)
Combining the preceding results leads to

|ISURE(0),4,) — SURE(6x,)|
<S(maxd) +2(1+ A 1} Y {807 + B}
J
The desired result follows because . b(vi)d; < 35 d; and Y7, bi()Y}P < Ae(m)
{325 i)Y} {32, ak ()Y} < Ae(m)/Aming aj ()} < ARy, (35 ;). O

Proof of Theorem 4. Let G, = {7 : |y —~+* < (min;d;)/2}. Then sup, |ar(y)/
ap(v*) — 1| < 1/2 for v € G, by Lemma 5(iii). Moreover, supyce, P(7 € Gn) <
Cin~ =2 for some constant C) by (S4) in the proof of Proposition 1.

(i) It suffices to show that supgcy<seq, [G(X, )] = Op{n~=4/2} uniformly
in # € R". This follows similarly to Theorem 3(i), based on suitable extensions of
Lemmas 1-2.

Sort the indices such that dy > dy > -+ > d,,. Then a;(y) < -+ < ayy)(7) and
ay(y)+1(7) =+ = an(7). By splitting the set Jy, = {j : 35, af()Y? > Ac(v)a;(7)}
into two subsets in {1,...,v(7)} and {v(y) + 1,...,n} respectively, we have

sup | > Ac(y) a;(7)(d; —€5)

0<AKAyEG,

< sup {mgx DA as()(d; = )| +max |3 Ae(v) a;(7)(d; — <5) }
<(3) {n S el asr7) dy — <)+ | S Aelr) () ) }
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To seo the last step, let w; = {c(2)/e(y*) Has()/as ()} for j = 1,...,m. Ty <
and v € G, then 1 < w; < -+ < w, < (3/2)2

| 251 Ay a;(V)(dy—eD)| = | 5y Ae(v)a;(v*
M) a; () (dj=e3)] < 2(3/2)? maxicicr | 35, A
a;(7)(dj—€3)| = | 27y, Ae(v*)a; (v )w;(dj—e3)| <

(dj — €3)|, by the observation that

by Lemma 5(iii)—(iv), and hence
w;(dj—e3)| < (3/2)? maX1<l<k|Z] -
(v) a;(v")(dj—3) and | 327, Ac(7)
(3/2)® maxp<i<n | 325 Ae(v") a;(77)

\_/\_/

= Imax
1§l§k

ij

for any real numbers vy, ..., y, (Speckman 1985; Li 1985). Similarly, if v > +* and
v € G, then 1 > wy > -+ > w, > (1/2)% and hence | Y5 Ae(7) a;(v)(d; —
)] = | Y4 Ae(r) ay (v (d; — £2)] < masicisi | oy Ae(77) a5(77)(d; — £2)] and
| 220 Ae() a;(N)(dj=e3) = | 27 Ae(r*) a; (77 )w;(dj—3)| < maxpercn | S5 Ac(r)
a;(v)(d; — £7)] < 2maxpcicn [ 327 Ae(v*) a5 (v7)(d; — ).

Write @Q;, = >, a3(v*)(07 + d;). By the preceding analysis, we have

sup
0<w <---<wp <1

J=l

_ 9 ..
sup PSn' sup | Y Ae(y) a;(9)(d; — £3)| > 5 @ntn
0cRn 0SASAAEG |jeTy
k
<p {nnx S Relr )} (dy — <) 2 @;vnm}
j=1
+P {nl max | Y Ac(y")a;(v)(d; — €3)| 2 inn/2}
j=k
8K \%(max; d;
SEX g 4)(E, ) .
n? v
in parallel to the first inequality in Lemma 2. Similarly, we have
—1 9 *
sup P<n sup Z Ac(y) a;(y)0ie;| > =Qr vy,
HeR" 0<AAYEG, JE 2
822 (max; d )2, d)
< e (S14)
sup P mf Za 2 < 1@*
(32 + 8K;) maxy{az(v*)d.}
<sup P ai(y )2 <Qr/25 < , S15
0cRn {zk: k( ) k / Zkz az(')/*)dk ( )
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in parallel to the second and third inequalities in Lemma 2.
Write R, = {max; ax(y)}/{ming ar(y)} and write R,, = sup, g, Ry, which is
bounded from above by (maxy d)/(ming d) by Lemma 1. By similar arguments to

the preceding proof, we obtain the following extension of Lemma 3:

2K - d?
sup P{n~' sup Z (d; — 5?) > 2, p < 1225 = (S16)
9cRn 0<A<N,YEGR e n v,
sup P n™'  sup Z Oie;| > 2v,
HcR" 0<ALKAYEG, iETn
< max (32 + 8Ky ) maxg {a (7" )dx} 36AR3 (maxy di)(>", di) (S17)
- 225 (), ’ n?vy '

To show the inequality (S17), we have

Pln sup Z Oiei| > 2vy,

0<)\<)\ ~YEGnH jeJy -

Pl {Zak )Y <ARMZa§(7)dkH

vyeGy k
<P{Zak Y2<9)\R2ak k}

and hence this is no greater than P{>", ai(y*)Y;? < Q:/2} if >, ai(v*)07 > 18AR,
> az(v*)dg. On the other hand, we have

Pn sup Z Oie;| > 2vy,

0<)\<)\ YEGH G2 -

ZG £ >vn> + P (n 1max

- 2(max; d;){3; aj(v*)07}

n?vp{min; af(y)}

205]

]_

<P <n 1 max

)

and hence this is no greater than 36AR? (maxy di) (3", di)/(n%02) if 3, a(v*)67 <
18R, > ai(v*)dg. Combining the two cases gives the desired inequality.

Wite Zus = 1™t $pgcres e, A7) maxjes, - {dsa; (1)} 33, a2(3)Y2). Then Zug
< n~'(max; d;) by the proof of the third inequality in Lemma 4. Combining all the

preceding results completes the proof of (i).
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(ii) Write Z, = supgcy<x [Ca(A,¥)]. Applying Lemma 4 with a; = a;(7) shows
that E(Z2) < Con® for Cy a constant (free of §). Then by the Cauchy—Schwartz
inequality, E(Z,1ge) < EY2(Z2)PY2(GS) < (C1C2)Y*n~ 0472 for all § € ©,,. To
complete the proof, it suffices to show that E(Z,1q,) < E{supycr<iea, [Gn(X )|}
= O{n~U=5"/2} ymiformly in 6 € R™.

Write Znt = 1 suDpercs e | Syen . Ac)as(7)(d; —£5Y;)/ {5, a2(7) Y2} and
Zna = 0" SUPgar<i ey | > iz (di = €;Y5)]. Then supgcr<xyeq, 16 (X, 7)] < nt
|3°,(dj =€)+ Zny+ Zna+ Zns. Note that EV2[{n~' Y (d; —e3)}?] = O{n=(1"1/2}
and, by Lemma 4, Z,3 < n~!(max; d;) = O{n~(=M}. The desired result follows
because suppepn E(Zn1) = O{n==4/2} and supyegn F(Z,2) = O{n=1=57/2} by

similar arguments as in the proofs of (i) and Theorem 3(ii). O

2.7 Proofs of Theorem 5 and Corollary 2

In the following two lemmas, we provide an upper bound on SURE(d4,) and then
upper bounds on the differences between x5 and z;3*. Moreover, we give Propo-
sition 4, which combined with Theorem 5 yields Corollary 2. Finally, we provide a

proof of Theorem 5.

Lemma 6. If ¢ =3, d;a; — 2max;(d;a;) > 0, then

4>;d
RE(Ga0)| < S d; + —=29% < (144 d;.
[SURE(3.)| ZJ: e St R)Xj: )
Proof of Lemma 6. If J # (), then Y, aiY}? > Ac(maxjeyag) > Ac(min; a;). If
J¢# 0, then Y . Y7 < Ac/(minje e a;) < Ac/(min; a;) because (minje e a?) 3=, 5o Y7

jege Lj
< ey @3Y7 < Ac(minje e aj). Using these bounds shows that

2Y2 Aed;a?Y?
SURBI(312) < 3 +ZY2+Z{ i
e = (O axYi)?
<Zd Ac 4maX]daj <Zd +4Z da] max;(d; a])
min; aj min; a; min; a;

On the other hand, because A\c Y, ; dja;/ Y5, afY? <37, d;, we have

SURE(64.1) >Zd—22d Z;:Cdfyg_ Zd.
k @

jeJe
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The desired inequality then follows. [J

Lemma 7. Under Assumption (A5), the following results hold:

(V; = 278;) — (V; — a8 < 22 (Ds + D), j=1,....n,
> (VY — 25 B5)° — (Y — 2 5*)?|
225 a5 (y) (Y — 2 5+)?
<2(1 + 202 A5 4 oA 2 Ag + 20" 2 A5 + o(A2 + A2),

where 0 = {3, af(v")d;} /{32, af (v) (Y= 87)*}, Ag = K30 (miny, dy) /2 (miny, d,
+4)" 2|5 — 4| and Ay = K0 ming " {dy/ (di +7*) } (0" T,,2) Y2 with T, 5 defined

in the proof of Proposition 2.

Proof of Lemma 7. Direct calculation leading to (S5) also shows that

(Vi — 27 B5)" = (Y; — 2} By)°
=2(Y; — 2} By ) 2]V (XD DU (= )
+ (USDSA D X))V aya VI (XTDIADI UL ) (5 — )2 (S18)
and
(Y; — 27 By )" = (Y; — 27 8")
= —2(Y; — 2} ")V (XD e)

+ ("D X)WV V(X D), (S19)

where € = (e1,...,6,)", Dy = diag(dy +7,...,dn +7), V4 = X"DJ'X, and U, =
{z1(Y7 — 278,),..., 2, (Ys, — 2} 3,)}". By the Cauchy-Schwartz inequality, |xJT.V,Y_*1
(XTDLU)| < (2FVytay) PUTDLUNY ford = DUy and 2]V | < (a7 V)2
(u™V,'u)'/2 for u = X" DZle. By theory of linear regression, Dy —X V' X™ = D.. —
X(XTD,'X)™' X" is nonnegative definite. Finally, 2TV;'z; < 2T(X"D7'X) ',
min, {dy./(dy + )} < Ksn=20d; min, {dy/(dp + v*)} by Assumption (A5) and
U%FD;}D?U& < (n — q)(ming di, +v*)"*(ming dy, + %)~ by the definition of 4. Then
(x7V,2 ) (UF D3 D3 ?Us) < Ksdyn®(ming di )~ (ming, dy,+%) . Using these bounds
and the expressions (S18)—(S19) yields

(Y — ] B5)% = (V) — 2] By )|
<2|Y; — @} By (a5 Vi) V2 (UF DI DT2U3) 21 — |
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+ (2] Ve (U DA D205 (5 — v7)?
<2|Y; — 2] B |d) 2 A0 + d; A3, (S20)
and ) )
(Y = ajBy)" = (Y; —x; 67)7
<2|Y; — 2] B*(«} V. ) V2 { ("D X))V (XD e)
+ (V) {(e" DL X))V (XD e) )

<2|Y; — 21 5% |d) 2 Ay + d; AL (S21)

The second desired result follows because
S a2 (VY — 21 B5)? — (V) — 2l Bye )|
>, @ (v )Y — 2 pr)?

[ S0 — a1,

> a3 (y) (Y — a7 pr)?

1/2
< } 02Ny + 0A2

d
o S, a2(v9)|(Y; — 21 B,0)? — (Y; — 72|

225 a5 (v) (Y — xj5%)?

< 207 Ag + oA,

by the Cauchy-Schwartz inequality, Y a3(y*)[Y; — 8, djl-/2 < {322, (v)(Y; —
2B YYD (v and 3 a2 (7)Y —al B4y < {30, a2 (v*) (Vs —a] B7) 22
{32, a3 (v)d;}' 2.

The calculation leading to (S18)—(S19) also shows that

(Y —a;8;) — (Y; — a3 8%)
=}V (XD DU (7 — 7") — 2]V (XD e).
The first desired inequality follows by the bounds used to obtain (S20)—(S21). O

Proposition 4. If Assumptions (A1)—(A3) and (A5) hold with 0 <7 < 1/6. Then
SUPgeo, E{suppcr<o n_l\SURE((S,\mg&) — SURE(8) 4+ 5+)|} = O{n=0-6m/2}

Proof of Proposition 4. Let G,, = {7 : |y—7*| < (min; d;)/2}. Thensupyee, P(7 &
G,) < Cin~(=27 for a constant C} by (S4) in the proof of Proposition 1. Moreover,
let Q= >3 af(v){d; + (0; — 278%)%} and B, = {3, af(v*)(Y; — 278%)? > Q;/2}.
Then supgegn P(BS) < Cyn~ (173 for a constant Cy by the third inequality in Lemma
2. Finally, let Z,, = supgcy<x n‘1|SURE(6,W,5ﬁ) — SURE(0) 4+ g+)|. Then Z, < Csn”
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for a constant C'3 by Lemma 6. Combining these results, we have E(Z,15¢q, jup:) <
Csn™{P(§ € G,) + P(BS)} < C3(Cy + Co)n~ U= = of{n=1=6m/2} wuniformly in
0 € ©,, for 0 < n < 1/6. Therefore, it suffices to show that E(Z,1eq,nB,) =
O{n~(1=m/2} uniformly in 6 € O,,.
If the event B, occurs, then Y°. a3 (v*)(Y; —2}8*)* > 37, a3(v*)d; /2 and applying
Lemma 7 shows that for all # € ©,,
> GG (vI(Y; — 2585)? — (V; — 25 8°)?|
> @ (v)(Y; — 2 5*)?

where Ay = 23/2(14232 A3+ 2A2) /2 A5+ 23/2 A5+ 2( A2+ A2), Ay = K20 (miny, d)

<A, (S22)

|4 — ¥, and Az = Kn®"/?(n~'T},5)"/? for some constant Kg, depending on K5 and
M, by (S8) in the proof of Proposition 2.

Write b;(v*) = Ac(v")a; (v) /{224 ak (V) (Y — 28%)%} and b;(7) = Ac(¥)a;(5)/
{37, a2(3)(Yy — 23 85)?}, where the dependency on A is suppressed in the notation.
On the event B,, direct calculation using (522) and Lemma 5 (iii)—(iv) shows that

o Ac( Va;(1)] S a3 (3) (Ye — aF )2

b = KBy 3 S R (Ve — 2255 )?

)‘0(7*) a;(v")/ 2o ai(v) (Vi — 25 35)° .Zkak( )Yy — 7355)°

N@)a;(3)] S () Ve — 25?3 a2 (v) (Ve — 2 5°)?
Aer)ay(7)) S ad () (Vi — i 5,)°

Ne(3)a;(3)/ 2oy @2(3) (Ye — 21552

L Ze ()Y — E8)* - (Vi — 2187
{ S a2 (7) (Vi — 21 67)? }

<(14 A1+ A, (523)

for j =1,...,n, where Ay = |§ — 4*|/(min; d;).
By similar calculation to that leading to (S11), we have

SURE((S,\:Y 8; ) — SURE((S,\W*’B*)
(NG —xjB)* Abj (v )djas (v*) (Y — a B*)?
]E; Zk akz ( — z;35)? Z >k @ (V) (Vi — af 8%)?

> {0 - 418 = 2 () — Vi)Y — B + 2 (r)d; |

JEINZUT ) 4*

(S24)
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where b (y) = min{1,b;(7)}, Jaye = {7 :0;(7") <1}, and Jyy = {j: 0;(%) <1} By

similar calculation to that leading to (S12), we have

V5 — a5 85)2 = 205 (3)d; — V5 (7) (Y — 2} 57)° + 20 (") dy
<V (N = 27 B5)° = (Y =257
+165(7") = BB () + () HYG — 2785)* + 21b5(v7) — b5(9)1d;
VY =27 B3)* = (V; — 7 87)7]
+2[b5(v") = V(Y — 27 85)* + 2[b;(v7) — bi(9)]d; (525)

2
<1

On the event B, combining the preceding results (S22)—(525) yields

Z V5 (3)(Y; = a7 85)° = 20(3)d; — V5 (7)Y — & Bye) + 205(7")d, |
<MA +2 +Zd {1+ AL+ Ay) -1}
~min; a(y*) ! mmJ - !

< (XRW 3 dj) Ayt {2(1 + ARy) Zd]} {A+A)(1+Ay) -1},

J J

and hence
nZy, §8(mjax d;) + <5\R7*n Z dj) Ay
J

+ {2(1 + AR,) Zdj} {(14+2)*(1+Ay) — 1}

J
If ¥ € Gy, then A; < 1/2 and hence (1 +A)*(1+Ay) —1 < {1+ (5/2)A1}(1 +
Ay) —1 < (5/2)A1 + (9/4)A4. To complete the proof, it suffices to show that
suppee, E(Adlisec,y) = O{n~U="/2} with 4 in A, replaced by ¥ in the proof
of Proposition 2.
First, supgee, E(Az) = O{n~074/2} "because E|§ — v*| < Cy(min; d;)n~ 121/
uniformly in 6§ € ©,, for a constant Cy by the proof of Proposition 2(ii). Similarly to

the proof of Proposition 2(iii), we have, for all § € ©,,

E(17 =7 Pliecny)
max; d; + 7*)?
(n—q)?
<Ciomind; =02 4 Ciomin o™

<4(

E|Th1 — To)* + (mjin d;/2)* P{|Tny — Th2| > (n—q)/2}
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where C5 and Cg are constants. Then supyeg E(A3lgeq,)) = O{n (171} =
ofn= U472} for 0 < 1 < 1/6. Recall that T,o = >, & >, & in the proof of
Proposition 2(i). By similar calculation leading to (S10), E(T,2) = >_; E(£j§;) < ¢
for all # € R™. Then supgegs E(A3) = O{n=0=30/2} = O{n=0=1/2} for 0 < n <
1/6. By inequality (S10), suppeps E(A2) = O{n=0=30} = o{n=(1=4/2} and hence
SUPgepn B(DoA3lse6,y) = o{n=074/2} for 0 < n < 1/6. Combining these results
completes the proof. [

Proof of Theorem 5. Let G, = {v : |y — 7" < (min;d;)/2 & |y — ¥ <
(min; d;)n~"/(16K+/*)}. Then SUppeo, P(¥ € G,) < Cin==4) for a constant C4
by (S7) in the proof of Proposition 2. Moreover, let @y, = > aj(v*){d; + (0; —
2¥4%)?} and D, = {(n"'T,2)"* < n=/2/(16Ks)}, where Kg is a constant deter-
mined such that (S22) holds on the event {3~ a3(v*)(Y; — 2} 8%)* > Q;/2}. Then
supgpepn P(D5) < Con~(1=3 for a constant Cy by Chebyshev’s inequality and the fact
that E(T,,2) < ¢ from the proof of Proposition 4.

(i) It suffices to show that for any 7 > 0, supgcgn P[Dp N {¥ € G} N {supg<i<x
16 (N, A, B3)| > mon~(=4/23) < 7y for all large enough 75 and n.

Take v, = on~ =472 If 4 € G,,, then supy |ax(¥)/ax(7*) — 1| < 1/2 by Lemma
5(iii). By the proof of (S13), we have

9
sup P{AE€G, &n™' sup Z Ae(§) aj()(dj — €3)| > =Qkv,
geR" 0<ALA 2

8K (max; ;) (3, dy)

J€JIN 5,85

, (526)

n?v2
in parallel to the first inequality in Lemma 2.

If D,N{¥ € G,} occurs, then Ay < 1/16 and Az < 1/16, where Ay and Ag are
defined after (522). If further Y, ai(v*)(Yr — 215%)* > Q3 /2, then (S22) holds with
As < 12 and hence Sy al(r")(Yi — o1B:)? > X5, a2(7) (Vi — 1872 > Qu/A.
Therefore, if D,, N {§ € G,} occurs, then >, az(v*) (Vi — 27355)* < Q/4 implies
S ar(v*) (Y — 25 8%)? < Q} /2. By this relationship and the proof of (S15), we have

sup P
gcR™

Du {7 € G} {Zaimm - ay)? < %QZH
k
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< sup P 1D, N {7 € Gu} N {Z ap () (Vi — 23 85)* < EQZH
€Rn k

. . (32 + 8K1) maxg{a2(v*)dy}
<;;R3P{Zak (¥ — 2172 < @n/z} < ST (o)

in parallel to the third inequality in Lemma 2.

To extend the second inequality in Lemma 2, we have

PeyeGul&n ™ sup | > Ae(§)a;(§)(0; — 2] By)e;| = S Qivn
0<AL<A €555,

A — ~ N * 9 *
<P{AeG &n™ sup | Y Ae(3)a;(7)(0; — 2] B)e;| > 5@t

0<A<LA €338,
+ Pt sup | Y Ae(9) a;(3)ea (BT — By)| = 9Qva ¢ - (528)
0<A<LA €T3 5.

The first term on the right-hand side is, uniformly in § € R™, no greater than
8\ (max; d;)(35; d;)/(n? v3), similarly to (S14). The second term is, uniformly in
0 € R", O{ry 2 + n~(1=M}. In fact, by Proposition 4 and the Cauchy-Schwartz in-

equality, the second term is, for all 8 € R", no greater than

{ ZAC

{ Z)\c 1/2]5J](A2+A3) >2Q" vn}

<P{(B0+ A) > 0,/ @K} + P { ) s ] 2 2K }

<P {(Az + AS) > Un/(21/2K2>}

{5 e ]

By (S7) and Chebyshev’s inequality, the first term on the right-hand side of the

+P

last inequality is no greater than P{|3 — ~v*| > (miny dp)n ", /(232K 2 Ky)} +
P{(nT,,9)Y? > n=3/20, /(232K K5)} = O{n*(nv?) + n®*(nv?)} = O(r;?). By
Chebyshev’s inequality and the fact that n=2c*(v*){3_; a3 (v")d;} (32, dj) < K2Q:?,
the second term is no greater than Pln=2c*(y*){3; a3 (v*)d; {2 (€5 —d3)} > K3Q;7] <
PIS, (2~ @) > X} < K5, 2)/(5, ;) = 0070},
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Write R, = {max; ax(7y)}/{ming ax(y)} and R, = sup,cq, Rn,. By the proofs
of (S16)—(S17), we have

2K, Y. d?

sup P{n~! sup Z (dj —3)] > 20, p < %, (S29)

bk 0 JEINA.B5 "

sup P |D,N{A € G, }n{n"" sup Z (0; — 23 8%)gj| = 2v,

HeR" N

TEINA.85

< i (32 + 8Ky) maxy {aZ(v*)dx} T2AR3(maxy, dy) (>, dy.) (530)
- >k 0k (v ) ’ n*vy '

To show the inequality (S30), we have

P |D,N{y€G,}N{n"" sup Z (0; — 2 8%)gj| > 2vy,
0SAA | i T
JEIN5.85

<P |D,N{3€Gu}N {Zai(?)(Yk —a}B;)° < XRn,ﬁZaMdkH
k

k

<P |D,N{y€G.}n {Zaiw*m — 2}B5)° < 9AR, Zai(v*)dk}] .

If Y, a2(7") (0 — 21 B8%)? > 36AR,, Y., a2(y*)dk, then this is no greater than P[D,, N
{7 € G} N {0 ai (V) (Ve — x85)? < Qn /4 < P{3, ax(v) (Vi — 287)* < @ /2}
by the proof of (527). On the other hand, we have

P{n! sup Z (0; —x;8%)e;| > 2vy,
0<A<A

ng)\ﬁ,ﬁ:y
k n
<P (nl max Zl(ej —x;f)e;| = Un> +P <n1 max Zk(e —x;f%)e;| = Un)
J =

2(max; d;){}-; af(y")(0; — 275°)*}

n?vi{min; a3 (v*)} ’

If >, a2(v*) (0 — x18%)% < 36AR, >, a(v*)dx, then this is no greater than 72AR3
(maxy di,)(D°, di)/(n*v2). Combining the two cases gives the desired inequality.

To extend the second inequality in Lemma 3, we have

P|D,n{¥eG.}yn<n"t sup Z (0; — 7 B5)e;| > 6uy,

0SASX |jg i s,
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<P |D,N{H#eG,}n{n"" sup Z (0; — 2 8%)gj| > 2vy

0SASA g dn 5,65

+P{n"t sup Z (z; 8" — 2 By)gj| > 4v, o (S31)

0SASM i 4.8,

The first term on the right-hand side is bounded by (S30). The second term is,
uniformly in § € R, O{r, >+n~(1=}. In fact, by Lemma 7 and the Cauchy-Schwartz

inequality, the second term is, for all # € R™, no greater than

{ Zm (8" 5v|>4vn}
SP{H_IZdJI-/2|€j|<A2 +A3) Z 2Un}

SP{(AQ 4+ Ag) Z 21/2Un/K2} + P (n—l Zd]l/2’5]| Z 21/2K2>

<P{(Ay+ A3) > 20, /Ky } + P {n2 (Z dj> (Z g§> > 2K§} :

The first term on the right-hand side of the last inequality is O(7;?), as shown
when handling the last term in (S28). By Chebyshev’s inequality and the fact that
n~'3" d; < Ko, the second term is no greater than P{}_.(¢§ —d;) > >°,d;} <
i3, @)/(5, ;) = Ofn0-0}.

Waite Z,s = n™ suppre Ae(3) maxes, ., {d505(3)} /{50, a23) (Ve — o162}
Then Z, 3 < n~*(max; d;) by the proof of the third inequality in Lemma 4. Combining
the preceding results (S26)—(S31) completes the proof of (i).

(ii) Write Z,, = supg<y<x [¢n(A, 7, By)|. Applying Lemma 4 with a; = a;(¥) and
Y; replaced by Y; — 2] 35 shows that E(Z}) < Csn® for a constant C5. By the
Cauchy-Schwartz inequality, E(Z,1pcigagc,y) < EVAH(Z2)PYV2(DEU{Y ¢ G,}) <
(Cy + 02)1/26’;/271_(1_6”)/2 for all & € ©,,. To complete the proof, it suffices to show
that E(Z,1p,nzec,y) = O{n=0=""/2} uniformly in 6 € R™.

Write Zy1 = 7t supocacs | 2 e, 5.5, AT (W =2 (Yi=7 85) AR, ai(7) (Yi—
2y B85)%} and Z,0 = n”! SUPg<a<i | ngh,w@ {d; —;(Y; — 27B5)}. Then supycy<x
16X, B3)| < n 7MY i(dy — e+ Zna + Zna + Zns. Note that EV2[{n' " (d; —

e2)}?] = O{n=0="/2} and, by Lemma 4, Z, 3 is bounded from above by O{n~(!""},
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Following the proof of Theorem 3(ii), we show that E(Z,11p,n{sec,y) = O{n=1=57/2}
and E(Z,21p,n5ec,y) = O{n~1=51/2} uniformly in 6 € R™.

Write B,1 = {3, ai(9) (Y — 2} 5;)* < Q7 /16}. Similarly to inequalities (S1) and
(528), we have, for all § € R",

E(Zulpantican) = E(Znile; opuntieon) + E(Znal,onantican)
B 2
<EY | 1geay sup |n7' D Ae(A)a;(9){d; — &;(V; — 27 5%)}/(Q;/16)

0AX | jediap

+Eq lgea,y sup_|n™t Y Ae(d) a;()esa; (B — 55)/(Q;/16)

0<A<A

JEINA.85

+ BV2(Z2,)PV*(B,i N D N {4 € Gu}).

By the proofs of (S26)-(S27), the first and third terms are, respectively, O{n~(1-7/2}
and O{n~(1=5"/2} ' By the Cauchy-Schwartz inequality, the second term is no greater
than (3/2)° [l pec,yn= 55, 30 a5(07) e (6" — 55)] /(@4/16)] < 2(3/2° B2
[Lisecny (DotDs)2 ] BV2[n 2N ({2 a5 (v)di} (32, €7)/ (@3 /16)%] = O{n~ (4172},
because (1) < {3, a(v)d;} (5, d;), and supgeo, B(A31ie,y) = Ofn~0-1)
and suppege E(A2) = O{n=(1=*M} by the proof of Proposition 4. Combining the

three cases shows that supgepn £(Zn,11p,n{5ecn}) = O{n~(-m/21,

Similarly to inequalities (S2) and (S31), we have

E(Zn,Q 1Dnm{&eGn})
2

<EY?| sup |n7? Z {dj —&;(Y; —x;8%)}

<A< i€ Imss
—1 T Q% T
+ E < lisea,) sup |n g (xjﬁ —:E]ﬂ@)ej
0SASA JEIN5.84

2{K1 Zj dg2‘ + Zj(ej - xrfﬁ*)zdj}

n2

1/2
<

+2E {l{mn}n‘l S d e (20 + A3>} .

J

By the Cauchy-Schwartz inequality, the second term on the right-hand side of the last
inequality is no greater than 2E"2[15eq,) (Ag + Ag)?]EV2{n2(3. d;) (32,6} =
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O{n=U=M/23 Tf 3 a2 (v*) (0 — 218%)? < 36AR, Y, a2(v*)dy, then, similarly as in
the proof of Lemma 3, the first term is no greater than Cy{n=(="/2 4 p~=(=4m/2}
where Cj is a constant (free of #). Moreover, write B, o = {>_, ai(5)(Yy — 2155)* <

AR5 >, a2(%)dy}. Similarly to inequality (S3), we have

E(Zn,lenm{ﬁeGn}) == E(Zn,Qan,ngnm{&eGn})
gEl/Q(ZiQ)Pl/Q(Bn,Q ND,N{¥ € G.}).

If > a2 (v) (0 — 27 5%)% > 36AR, Y., a2(7*)dk, then, by the proof of (S30), P(B,2N
Dnn{d € Gu}) < P ai(v")(Ye—ai87)* < Q1 /2} and hence E(Z,21p,n(5ec,}) <

Csn~ (=572 where C5 is a constant (free of #). Combining the two cases shows that

SUPgern £(Zn2lp,n{zec,)) = O{n-0-5/2y O
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