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Abstract: In the context of principal components analysis (PCA), the bootstrap

is commonly applied to solve a variety of inference problems, such as construct-

ing confidence intervals for the eigenvalues of the population covariance matrix Σ.

However, when the data are high-dimensional, there are relatively few theoretical

guarantees that quantify the performance of the bootstrap. Our aim in this paper is

to analyze how well the bootstrap can approximate the joint distribution of the lead-

ing eigenvalues of the sample covariance matrix Σ̂, and we establish non-asymptotic

rates of approximation with respect to the multivariate Kolmogorov metric. Un-

der certain assumptions, we show that the bootstrap can achieve a dimension-free

rate of r(Σ)/
√
n up to logarithmic factors, where r(Σ) is the effective rank of Σ,

and n is the sample size. From a methodological standpoint, we show that apply-

ing a transformation to the eigenvalues of Σ̂ before bootstrapping is an important

consideration in high-dimensional settings.

Key words and phrases: Bootstrap, covariance matrices, high-dimensional statistics,

principal components analysis.

1. Introduction

The applications of the bootstrap in principal components analysis (PCA)

go back almost as far as the advent of the bootstrap itself (Diaconis and Efron

(1983)), and over the years such applications have become part of standard prac-

tice in multivariate analysis (Davison and Hinkley (1997); Jolliffe (2002); Olive

(2017)). With regard to theory, there is also a well-established set of asymptotic

results showing that the bootstrap generally works in the context of PCA with

low-dimensional data (Beran and Srivastava (1985); Eaton and Tyler (1991)).

Furthermore, in aberrant situations where the bootstrap is known to encounter

difficulty in low dimensions, such as in the case of tied population eigenvalues,

various remedies have been proposed and analyzed (Beran and Srivastava (1985);

Dümbgen (1993); Hall et al. (2009)).
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However, in the context of PCA with high-dimensional data, the relationship

between theory and practice is quite different. On one hand, bootstrap methods

are popular among practitioners for solving inference problems related to high-

dimensional PCA (e.g., Wagner (2015); Fisher et al. (2016); Webb-Vargas et al.

(2017); Terry et al. (2018); Li and Ralph (2019); Nguyen and Holmes (2019);

Stewart et al. (2019)). On the other hand, the theory for describing these methods

is relatively incomplete.

To develop a more precise understanding of the bootstrap in this context, we

focus on the fundamental problem of approximating the joint distribution of the

leading eigenvalues λ1(Σ̂), . . . , λk(Σ̂) of a sample covariance matrix Σ̂ ∈ Rp×p,
where k < p. (Precise defnitions will be given later.) Because the fluctuations

of these eigenvalues are relevant to many inference tasks, this problem plays a

central role in multivariate analysis, and is also of broad interest in other areas,

such as signal processing (Couillet and Debbah (2011)) and finance (Ruppert

and Matteson (2015)). Below, we summarize some examples of inference tasks

involving sample eigenvalues. These tasks are illustrated using real-data examples

based on stock market returns in Section S9 of the Supplementary Material.

• Selecting principal components. A key step in any implementation of PCA is

to choose the number of principal components, and many established tech-

niques for making this choice are informed by the distributions of eigenvalue-

based statistics. Examples of these statistics include eigengaps λj(Σ̂) −
λj+1(Σ̂), the proportions of explained variance (λ1(Σ̂)+ · · ·+λk(Σ̂))/ tr(Σ̂),

as well as the componentwise proportions λj(Σ̂)/ tr(Σ̂) for j = 1, . . . , k.

Other selection rules are based on confidence intervals for the eigenvalues

λ1(Σ), . . . , λk(Σ) of the population covariance matrix Σ ∈ Rp×p. The con-

struction of such intervals is linked directly to the distribution of the eigen-

values of Σ̂. For a general overview of selection rules, we refer to Jolliffe

(2002).

• Quantifying uncertainty. The eigenvalues of a population covariance ma-

trix arise as unknown parameters of interest in many situations beyond the

selection of principal components. For instance, these parameters govern

the performance of statistical methods for covariance estimation, regression,

and classification (Ledoit and Wolf (2012); Hsu, Kakade and Zhang (2014);

Dobriban and Wager (2018)). These parameters also have domain-specific

meanings in applications ranging from portfolio selection to ecology (Fabozzi

et al. (2007); Chen et al. (2019)). Consequently, it becomes necessary to

quantify the uncertainty associated with the population eigenvalues, such
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as in constructing confidence intervals for them—and again, this leads to

the use of distributional approximation results for the sample eigenvalues.

Although there is an extensive literature on distributional approximations

for sample eigenvalues, this body of work primarily focuses on asymptotic results

involving analytical formulas. Roughly speaking, the bulk of the literature can

be divided into two parts, dealing either with classical asymptotics, where p is

held fixed as n → ∞ (Anderson (2003)), or with high-dimensional asymptotics,

where p/n converges to a positive constant as p and n diverge simultaneously (Bai

and Silverstein (2010)). In either case, an essential limitation is that asymptotic

results do not usually quantify how close the limiting distribution is to the finite-

sample distribution. In more practical terms, this means it is often difficult to

know if tests statistics and confidence intervals are well calibrated (i.e., if their

actual levels and coverage probabilities are close to the nominal values). A second

limitation is that approximations based on analytical formulas are often tied to

specific model assumptions, which can make it difficult to adapt such formulas

outside of a given model.

With regard to the second limitation, bootstrap methods have an advantage

insofar as they do not rely on formulas, and hence can be applied in a more

flexible manner. Nevertheless, the existing work on bootstrap methods for PCA

still tends to suffer from the first limitation above, since the results are generally

asymptotic (Beran and Srivastava (1985); Eaton and Tyler (1991); El Karoui

and Purdom (2019)). Thus, a key motivation for our work is to provide results

that explicitly quantify the accuracy of bootstrap approximation in terms of the

sample size n and the effective rank of Σ. (For example, our results can be used

to quantify how close the coverage probabilities of bootstrap confidence intervals

are to the nominal values.) Another motivation for our study is that, until quite

recently, most of the literature on bootstrap methods for PCA has been limited

to low-dimensional settings. Consequently, it is of general interest to establish a

more complete theoretical description of bootstrap methods for high-dimensional

PCA—a point that was highlighted in a recent survey on this topic (Johnstone

and Paul (2018, Sec. X.C)).

1.1. Contributions

Let X1, . . . , Xn ∈ Rp be centered i.i.d. observations with population covari-

ance matrix Σ = E[X1X
>
1 ]. Also, let Σ̂ = (1/n)

∑n
i=1XiX

>
i denote the as-

sociated sample covariance matrix, and let Σ̂? = (1/n)
∑n

i=1X
?
i (X?

i )> be its

bootstrap version, formed from random vectors X?
1 , . . . , X

?
n that are sampled
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with replacement from the observations. In addition, let the eigenvalues of

a symmetric matrix A ∈ Rp×p be denoted as λ1(A) ≥ · · · ≥ λp(A), and let

λk(A) = (λ1(A), . . . , λk(A)) for a fixed integer k < p.

In this notation, our goal is to establish non-asymptotic bounds on the mul-

tivariate Kolmogorov distance

∆n = sup
t∈Rk

∣∣∣∣∣P(√n(λk(Σ̂)− λk(Σ)
)
� t
)
− P

(√
n
(
λk(Σ̂

?)− λk(Σ̂)
)
� t
∣∣∣X)∣∣∣∣∣,

where the relation v � w between two vectors v, w ∈ Rk means vj ≤ wj for all j =

1, . . . , k, and P(· |X) refers to probability that is conditional onX1, . . . , Xn. Under

certain conditions, our central result (Theorem 1) shows that the dimension-free

bound

∆n ≤
Cn r(Σ)√

n
(1.1)

holds with high probability, where Cn > 0 is a polylogarithmic function of n, and

the quantity r(Σ) is the effective rank of Σ, defined by r(Σ) = tr(Σ)/λ1(Σ).

Several aspects of the bound (1.1) and the parameter r(Σ) are worth noting.

First, the effective rank satisfies 1 ≤ r(Σ) ≤ p whenever Σ is nonzero, and can

be interpreted as a proxy for the number of “dominant” principal components of

Σ. Hence, even in very high-dimensional settings, where n� p, the bound (1.1)

shows that the bootstrap can perform well if the number of dominant components

is not too large, which is precisely the situation where high-dimensional PCA is of

greatest interest. Meanwhile, even in situations where r(Σ) is moderately large,

e.g., r(Σ) → ∞ with r(Σ) = o(
√
n), the bound (1.1) is still able to quantify the

accuracy of the bootstrap. Indeed, both of these points are borne out by our

numerical experiments in Section 3, which confirm that the performance of the

bootstrap is governed more by r(Σ) than it is by p, and that the bootstrap can

still be accurate when r(Σ) is moderately large. More generally, it should also be

mentioned that effective rank has attracted attention in many other aspects of

high-dimensional PCA (e.g., Lounici (2014); Bunea and Xiao (2015); Koltchinskii

and Lounici (2017); Jung, Lee and Ahn (2018); Naumov, Spokoiny and Ulyanov

(2019); Koltchinskii, Löffler and Nickl (2020)).

As an alternative to approximating the distribution of
√
n
(
λk(Σ̂) − λk(Σ)

)
by bootstrapping in a direct manner, it can be advantageous to use a transfor-

mation prior to bootstrapping, which is a fundamental topic in the bootstrap

literature (e.g., DiCiccio (1984); Tibshirani (1988); Konishi (1991); DiCiccio and

Efron (1996); Davison and Hinkley (1997); Chernick (2011)). To be more specific,
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let h be a univariate scalar function, referred to as a transformation, and for any

symmetric matrix A ∈ Rp×p, let h(λk(A)) = (h(λ1(A)), . . . , h(λk(A))). Then,

the conditional distribution of
√
n(h(λk(Σ̂

?))−h(λk(Σ̂))) given the observations

can be used to approximate the distribution of
√
n(h(λk(Σ̂))−h(λk(Σ))). (Addi-

tional discussion is provided in Sections 2 and 3.) For instance, a classical choice

of transformation is h(x) = log(x), because it is known to be variance-stabilizing

under certain conditions when n → ∞, with p held fixed (Beran and Srivastava

(1985)). With this in mind, a second contribution our analysis is an extended

version of the bound (1.1) that can accommodate certain transformations (see

Theorem 2).

From a more methodological standpoint, our numerical experiments also

shed new light on the role of transformations in bootstrap methods for high-

dimensional PCA. Although we confirm that the classical logarithm transforma-

tion can be beneficial in low dimensions, we show that it is less effective when r(Σ)

is moderately large. Consequently, we explore some alternative transformations,

and provide numerical results demonstrating that there are opportunities to im-

prove upon h(x) = log(x) in high dimensions. To put such empirical findings into

perspective, we are not aware any prior work investigating how transformations

can be used to enhance bootstrap methods in this context.

1.2. Related work

Quite recently, there has been an acceleration in the pace of research on boot-

strap methods for high-dimensional sample covariance matrices, as evidenced in

the papers (Han, Xu and Zhou (2018); Johnstone and Paul (2018); El Karoui

and Purdom (2019); Lopes, Blandino and Aue (2019); Lopes, Erichson and Ma-

honey (2023); Naumov, Spokoiny and Ulyanov (2019)). Among these, the most

relevant to our work is (El Karoui and Purdom (2019)), which examines both the

successes and failures of the bootstrap in doing inference with the leading eigen-

values of Σ̂. In the negative direction, that paper focuses on a specialized model

with λ1(Σ) > 1 and λ2(Σ) = · · · = λp(Σ) = 1. This model also corresponds to

a very large effective rank r(Σ) � p that makes dimension reduction via PCA

inherently difficult. In the positive direction, that paper deals with a different

situation where Σ is assumed to have a near low-rank structure of the form

Σ =

(
A B

B> C(η)

)
, (1.2)
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where A is of size k × k with k � 1, and the diagonal blocks satisfy λ1(A) � 1,

and λ1(C(η)) . n−η for a fixed parameter η > 1/2. Working under an elliptical

model, (El Karoui and Purdom (2019)) show that the bootstrap consistently ap-

proximates the distribution of
√
n
(
λk(Σ̂) − λk(Σ)

)
in an asymptotic framework

where p/n . 1. In relation to our work, the most crucial distinction is that

our results quantify the accuracy of the bootstrap with non-asymptotic rates of

approximation. To illustrate the significance of this, note that our bound (1.1)

provides an explicit link between the size of r(Σ) and the accuracy of the boot-

strap, whereas in an asymptotic setup, the effect of r(Σ) is hidden—because it

“washes out in the limit.” Our numerical experiments will also confirm that dif-

ferent sizes of r(Σ) can have an appreciable effect on the finite-sample accuracy of

the bootstrap. In this way, our work indicates that the quantity r(Σ)/
√
n serves

as a type of conceptual diagnostic for assessing the reliability of the bootstrap in

high-dimensional PCA.

Beyond these points of contrast with (El Karoui and Purdom (2019)), there

are several distinctions with regard to model assumptions. First, we work in a

dimension-free setting where there are no restrictions on the size of p with respect

to n. Second, the model based on (1.2) implicitly requires that λj(Σ) . n−η

for all j ≥ k + 1, whereas this constraint on Σ is not used here. Third, it is

straightforward to check that in the model based on (1.2) with p/n . 1, the

condition η > 1/2 implies r(Σ) = o(n1/2−ε) for some fixed ε > 0. Hence, under

these conditions, our bound (1.1) also implies bootstrap consistency. In addition,

the bound (1.1) can ensure bootstrap consistency in models that are outside the

scope of (1.2). For example, this occurs if p � em(n) for some sequence of integers

satisfying m(n) = o(
√
n/Cn), and if λj(Σ) � j−1.

Other works on bootstrap methods related to high-dimensional sample co-

variance matrices deal with models or statistics that are qualitatively different

from those considered here. The papers (Han, Xu and Zhou (2018); Lopes, Erich-

son and Mahoney (2023)) look at bootstrapping the operator norm error
√
n‖Σ̂−

Σ‖op, as well as variants of this statistic, such as supu∈U
√
n|u>(Σ̂−Σ)u|/u>Σu,

where U is a set of sparse vectors in the unit sphere of Rp. In a different di-

rection, (Lopes, Blandino and Aue (2019)) focus on “linear spectral statistics”

of the form (1/p)
∑p

j=1 f(λj(Σ̂)), where f : [0,∞) → R is a smooth function.

They show that a type of parametric bootstrap procedure consistently approxi-

mates the distributions of such statistics when p/n converges to a positive limit.

Lastly, (Naumov, Spokoiny and Ulyanov (2019)) study statistics related to the

eigenvectors of Σ̂.
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Notation. For a random variable X and an integer q ∈ {1, 2}, define the ψq-

Orlicz norm as ‖X‖ψq
= inf{t > 0 | E[exp(|X|q/tq)] ≤ 2}. The random variableX

is said to be sub-exponential if ‖X‖ψ1
is finite, and sub-Gaussian if ‖X‖ψ2

is finite.

In addition, for any q ≥ 1, the Lq-norm of X is defined as ‖X‖q = (E[|X|q])1/q.
For any vectors u, v ∈ Rp, their inner product is 〈u, v〉 =

∑p
j=1 ujvj . For any

real numbers a and b, the expression a� b is used in an informal sense to mean

that b is much larger than a. Also, we use the notation a ∨ b = max{a, b} and

a ∧ b = min{a, b}. If {an} and {bn} are two sequences on non-negative numbers,

then the relation an . bn means that there is a positive constant c not depending

on n such that an ≤ c bn holds for all large n. When both of the conditions

an . bn and bn . an hold, we write an � bn.

2. Main Results

We consider a sequence of models indexed by n, in which all parameters may

depend on n, except when stated otherwise. In particular, the dimension p = p(n)

is allowed to have an arbitrary dependence on n. Likewise, if a parameter does

not depend on n, then it is understood not to depend on p either. One of the few

parameters that will be treated as fixed with respect to n is the positive integer

k < p.

Assumption 1 (Data-generating model).

(a). There is a non-zero positive-semidefinite matrix Σ ∈ Rp×p, such that the

ith observation is generated as Xi = Σ1/2Zi for all i = 1, . . . , n, where

Z1, . . . , Zn ∈ Rp are i.i.d. random vectors with E[Z1] = 0, and E[Z1Z
>
1 ] =

Ip.

(b). The eigenvalues of Σ satisfy min1≤j≤k
(
λj(Σ)− λj+1(Σ)

)
& λ1(Σ).

(c). Let uj ∈ Rp denote the jth eigenvector of Σ, and let Γ ∈ Rk×k have entries

given by Γjj′ = E[(〈uj , Z1〉2 − 1)(〈uj′ , Z1〉2 − 1)] for all 1 ≤ j, j′ ≤ k. Then,

the matrix Γ satisfies λk(Γ) & 1.

In connection with the model described by Assumption 1, our results will make

reference to a moment parameter defined as βq = max1≤j≤p ‖〈uj , Z1〉2‖q for any

q ≥ 1.

Remark 1. Regarding Assumption 1(b), it ensures that there is some degree

of separation between the leading eigenvalues of Σ. In less compact notation,

the assumption states that there is a fixed constant c > 0 such that the in-

equality λj(Σ)− λj+1(Σ) ≥ cλ1(Σ) holds for all j = 1, . . . , k and all large n.
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(There is no restriction on the size of c.) In general, a separation condition on

the leading eigenvalues is unavoidable, because it is known both theoretically

and empirically that the bootstrap can fail to approximate the distribution of√
n
(
λk(Σ̂)−λk(Σ)

)
if the leading population eigenvalues are not distinct (Beran

and Srivastava (1987); Hall et al. (2009)). In more technical terms, the source of

this issue can be explained briefly as follows: If Sp×p denotes the space of real

symmetric p × p matrices, and if λj(·) is viewed as a functional from Sp×p to

R, then λj(·) can be non-differentiable at Σ when λj(Σ) is a repeated eigenvalue

(i.e., with multiplicity greater than one). In turn, this lack of smoothness makes it

difficult for the bootstrap to approximate the distribution of
√
n(λj(Σ̂)−λj(Σ)).

To interpret Assumption 1(c), the matrix Γ serves a technical role as a sur-

rogate for the correlation matrix of
√
n
(
λk(Σ̂)−λk(Σ)

)
. Hence, the lower bound

λk(Γ) & 1 can be viewed as a type of non-degeneracy condition for the distribu-

tion of interest. The proposition below gives examples of well-established models

in which Assumption 1(c) holds. Namely, parts (i) and (ii) below correspond to

Marčenko-Pastur models and elliptical models, respectively. The latter case also

illustrates that the entries of the vector Z1 are not required to be independent.

Proposition 1.

(i) (Marčenko-Pastur case). Suppose that Assumption 1(a) holds. In addition,

suppose that the entries of Z1 are independent, and there is a constant κ > 1

not depending on n such that min1≤j≤p E[Z4
1j ] ≥ κ. Then, Assumption 1(c)

holds.

(ii) (Elliptical case). Let V be a random vector that is uniformly distributed on

the unit sphere of Rp, and let ξ be a non-negative scalar random variable

independent of V that satisfies E[ξ2] = p and E[ξ4] < ∞. Under these

conditions, if Z1 has the same distribution as ξV , then Assumption 1(c)

holds.

The proof of Proposition 1 is given in Section S1 of the Supplementary Material.

Bootstrap approximation. The following theorem is the central result of the

paper, and quantifies the accuracy of the bootstrap when it is used to approximate

the distribution of
√
n(λk(Σ̂)− λk(Σ)).

Theorem 1. Suppose that Assumption 1 holds and let q = 5 log(kn). Then,

there is a constant c > 0 not depending on n such that the event



BOOTSTRAP FOR HIGH-DIMENSIONAL PCA 1469

sup
t∈Rk

∣∣∣∣∣P(√n(λk(Σ̂)− λk(Σ)
)
� t
)
− P

(√
n
(
λk(Σ̂

?)− λk(Σ̂)
)
� t
∣∣∣X)∣∣∣∣∣

≤
c log(n)β33q r(Σ)

√
n

(2.1)

holds with probability at least 1− c/n.

Remark 2. The proof of Theorem 1 is given in Section S4 of the Supplemen-

tary Material. It is possible to provide a more concrete understanding of the

bound (2.1) by looking at how the factors r(Σ) and β3q behave in some well-

known situations. For instance, consider the class of matrices Σ whose eigen-

values have a polynomial decay profile of the form λj(Σ) � j−γ , for some fixed

constant γ > 0. This class offers a convenient point of reference, because it inter-

polates between models that have low-dimensional structure and those that do

not. Specifically, the effective rank can be related to γ as

r(Σ) �


1 if γ > 1

log(p) if γ = 1

p1−γ if γ < 1.

With regard to the parameter β3q, its dependence on q is simple to describe in

some commonly considered cases. If the entries of Z1 are i.i.d. and sub-Gaussian,

then β3q grows at most linearly in q, with β3q . q‖Z11‖2ψ2
. Alternatively, if the

entries of Z1 are i.i.d. and sub-exponential, then β3q grows at most quadratically

in q, with β3q . q2‖Z11‖2ψ1
. (See Chapter 2 of Vershynin (2018) for further

details.) Hence, a direct consequence of Theorem 1 in such cases is that bootstrap

consistency holds when γ > 1/2, p � n and ‖Z11‖ψ1
. 1. Likewise, when γ > 1,

the bound in Theorem 1 nearly achieves the parametric rate n−1/2 and is not

influenced by the size of p at all. This conclusion also conforms with the numerical

results presented in Section 3.

From a more practical standpoint, it is possible to gauge the size of r(Σ) in an

empirical way, by either estimating r(Σ) directly, or estimating upper bounds on

it. Some examples of upper bounds on r(Σ) for which straightforward estimation

methods are known to be effective in high dimensions include tr(Σ)/max1≤j≤p Σjj

and tr(Σ)2/‖Σ‖2F . (Although guarantees can be established for direct estimates

of r(Σ) in high-dimensions, such results can involve a more complex set of con-

siderations than the upper bounds just mentioned.)
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Transformations. To briefly review the idea of transformations, they are often

used to solve inference problems involving a parameter θ and an estimator θ̂ for

which the distribution of (θ̂−θ) is difficult to approximate. In certain situations,

this difficulty can be alleviated if there is a monotone function h for which the

distribution of (h(θ̂)−h(θ)) is easier to approximate. In turn, this allows for more

accurate inference on the “transformed parameter” h(θ), and then the results can

be inverted to do inference on θ. In light of this, our next result shows that the

rates of bootstrap approximation established in Theorem 1 remain essentially

unchanged when using the class of fractional power transformations from [0,∞)

to [0,∞). This class will be denoted by H, so that if h ∈ H, then h(x) = xa, for

some a ∈ (0, 1].

Beyond the class of transformations just mentioned, the bootstrap can be

combined with another type of transformation, known as partial standardiza-

tion (Lopes, Lin and Müller (2020)). Letting h ∈ H be a given function, and

letting ς2j = var
(
h(λj(Σ̂))

)
for each j = 1, . . . , p, this technique is well suited to

bootstrapping “max statistics” of the form

M = max
1≤j≤k

h(λj(Σ̂))− h(λj(Σ))

ςτj
, (2.2)

where τ ∈ [0, 1] is a parameter that can be viewed as a degree of standardization.

The ability to approximate the distribution of M is relevant to the construction

of simultaneous confidence intervals for λ1(Σ), . . . , λk(Σ). It also turns out that

the choice of τ encodes a trade-off between the coverage accuracy and the width

of such intervals, and that choosing an intermediate value τ ∈ (0, 1) can offer

benefits in relation to τ = 0 and τ = 1. This is discussed in greater detail later

in Section 3.

In order to state our extension of Theorem 1 in a way that handles both

partial standardization and transformations h ∈ H in a unified way, we need to

introduce a bit more notation. First, when considering the bootstrap counterpart

of a partially standardized statistic such as (2.2), the vector ςτk = (ςτ1 , . . . , ς
τ
k )

is replaced with the estimate ς̂τk = (ς̂τ1 , . . . , ς̂
τ
k ), whose entries are defined by

ς̂2j = var
(
h(λj(Σ̂

?))
∣∣X) for all j = 1, . . . , p. Second, the expression v/u involving

vectors v and u denotes the vector obtained by entrywise division, (v/u)j = vj/uj .

(To handle the possibility zero denominators, events of the form {V/ς̂τk � t} are

understood as {V � t� ς̂τk}, where V ∈ Rk is random, t ∈ Rk is fixed, and � is

entrywise multiplication. Lemma S5.5 in the Supplementary Material also shows

that such cases occur with negligible probability.) Lastly, recall that we write
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h(v) = (h(v1), . . . , h(vk)) for a k-dimensional vector v and transformation h.

Theorem 2. Suppose that Assumption 1 holds. Fix a transformation h ∈ H and

a constant τ ∈ [0, 1] with respect to n, and let q = 5 log(kn). Then, there is a

constant c > 0 not depending on n, such that the event

sup
t∈Rk

∣∣∣∣P
(
h(λk(Σ̂))− h(λk(Σ))

ςτk
� t
)
− P

(
h(λk(Σ̂

?))− h(λk(Σ̂))

ς̂τk
� t
∣∣∣∣X)

∣∣∣∣∣
≤

c log(n)β53q r(Σ)
√
n

(2.3)

holds with probability at least 1− c/n.

Remark 3. The proof of Theorem 2 is given in Section S5 of the Supplementary

Material. To comment on the technical relationship between Theorems 1 and

2, it is important to call attention to the differences between asymptotic and

non-asymptotic analysis. When using asymptotics, the process of showing that

bootstrap consistency for
√
n
(
λk(Σ̂)− λk(Σ)

)
implies the same for (h(λk(Σ̂))−

h(λk(Σ)))/ςτk can typically be handled with a brief argument, based on the delta

method and the consistency of the estimate ς̂τk . However, when taking a non-

asymptotic approach, this process is much more involved.

3. Numerical Experiments

In this section, we focus on the application of constructing simultaneous

confidence intervals for λ1(Σ), . . . , λk(Σ). We do so in a variety of settings, cor-

responding to different values of n and p, as well as different values of effective

rank, and different choices of transformations. In a nutshell, there are two over-

arching conclusions to take away from the experiments: (1) In situations where

n � p and r(Σ) � 1, the bootstrap generally produces intervals with accurate

coverage, which provides a confirmation of our theoretical results. (2) The clas-

sical log transformation mostly works well in low dimensions, but it can lead to

coverage that is substantially below the nominal level when r(Σ) is moderately

large. Nevertheless, we show that it is possible to find transformations that offer

more reliable coverage in this challenging case. More generally, this indicates that

alternative transformations are worth exploring in high-dimensional settings.

3.1. Simulation settings

The eigenvalues of the population covariance matrix Σ were chosen to have

two different decay profiles:
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(a) A polynomial decay profile λj(Σ) = j−γ for all j = 1, . . . , p, with γ ∈
{0.7, 1.0, 1.3}.

(b) An exponential decay profile λj(Σ) = δj for all j = 1, . . . , p, with δ ∈
{0.7, 0.8, 0.9}.

As a clarification, it is important to note that the effective rank of Σ increases

for larger values of δ, but decreases for larger values of γ. For the purposes of

simulations, the choices (a) and (b) have the valuable property that the eigenval-

ues are parameterized in the same way for every choice of p, which facilitates the

comparison of results across different dimensions. The matrix of eigenvectors for

Σ was drawn uniformly from the set of p×p orthogonal matrices. The dimension

p was taken from {10, 50, 100, 200}, and the sample size n ranged from 50 to 500.

For each triple (n, p, γ) or (n, p, δ), the data X1, . . . , Xn were generated in an

i.i.d. manner with the following choices for the distribution of X1:

(i) The vector X1 = Σ1/2ξV was generated with V being uniformly distributed

on the unit sphere of Rp, and ξ2 being an exponential random variable

independent of V with E[ξ2] = p.

(ii) The vector X1 was generated from the Gaussian distribution N(0,Σ).

For each parameter setting, we generated 1,000 realizations of the dataset X1, . . . ,

Xn, and for each such realization, we generated B := 1,000 sets of bootstrap sam-

ples of size n. When constructing simultaneous confidence intervals for λ1(Σ), . . . ,

λk(Σ), the value of k was set to 5.

3.2. Bootstrap confidence intervals

For any α ∈ (0, 1), we aim to construct approximate versions of ideal random

intervals I1, . . . , Ik that satisfy

P

(
k⋂
j=1

{
λj(Σ) ∈ Ij

})
≥ 1− α. (3.1)

To this end, consider the following max and min statistics, based on any choice

of partial standardization parameter τ ∈ [0, 1] and transformation h,

M = max
1≤j≤k

h(λj(Σ̂))− h(λj(Σ))

ςτj
,

L = min
1≤j≤k

h(λj(Σ̂))− h(λj(Σ))

ςτj
.
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Letting qM (α) and qL(α) denote the respective α-quantiles of M and L for any

α ∈ (0, 1), it follows that the desired condition (3.1) holds if each interval Ij is

defined as

Ij = h−1
([
h(λj(Σ̂))− ςτj qM

(
1− α

2

)
, h(λj(Σ̂))− ςτj qL

(
α

2

)])
, (3.2)

with h−1([a, b]) being understood as the preimage of [a, b] under h.

To construct bootstrap intervals Î1, . . . , Îk based on (3.2), we need only re-

place qM (1 − α/2), qL(α/2), and ς1, . . . , ςk with estimates. In detail, we first

estimate ςj using the sample standard deviation of B bootstrap replicates of the

form h(λj(Σ̂
?)), denoted ς̃j . Next, we use the empirical 1 − α/2 quantile of B

bootstrap replicates of the form M? = max1≤j≤k[h(λj(Σ̂
?))− h(λj(Σ̂))]/ς̃τj as an

estimate of qM (1− α/2), and similarly for qL(α/2).

Regarding the use of transformations, the following three options were in-

cluded in the experiments:

• log transformation: h(x) = log(x), with τ = 0.

• standardization: h(x) = x, with τ = 1.

• square-root transformation: h(x) = x1/2, with τ ∈ [0, 1] chosen data-

adaptively.

In the case of the log transformation, the choice of τ = 0 corresponds to the

way that this transformation has been used in the classical literature (Beran

and Srivastava (1985)), while in the case of standardization, the choice of τ = 1

is definitional. For the square-root transformation, the use of a data-adaptive

selection rule for τ ∈ [0, 1] is more nuanced, and can be informally explained

in terms of the following ideas developed previously in (Lopes, Lin and Müller

(2020)) and (Lin, Lopes and Müller (2021)).

In essence, this choice can be understood in terms of a trade-off between two

competing effects that occur in the extreme cases of τ = 1 and τ = 0. When using

τ = 1, the random variables [λj(Σ̂)1/2−λj(Σ)1/2]/ςj with ς2j = var(λj(Σ̂)1/2) and

j = 1, . . . , k are on approximately “equal footing”, which makes the behavior

of the statistic M sensitive to their joint distribution (and likewise for L). By

contrast, when τ = 0 is used, the variables [λj(Σ̂)1/2−λj(Σ)1/2] will tend to be on

different scales, and the variable on the largest scale, say j′, will be the maximizer

for M relatively often. In this situation, the statistic M is governed more strongly

by the marginal distribution of [λj′(Σ̂)1/2 − λj′(Σ)1/2]. So, from this heuristic

point of view, the choice of τ = 0 can simplify the behavior of M relative to the
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Figure 1. (Simultaneous coverage probability versus n in simulation model (i) with a

polynomial decay profile). In each panel, the y-axis measures P(∩5j=1{λj(Σ) ∈ Îj})
based on a nominal value of 95%, and the x-axis measures n. The curves correspond to
different values of p.

case of τ = 1, making the distribution of M easier to approximate. However, the

choice of τ = 0 also has the drawback that it can lead to simultaneous confidence

intervals that are excessively wide, because the widths are no longer adapted to

the different values ς1, . . . , ςk (since ς01 = · · · = ς0k = 1).

To strike a balance between these competing effects, we used the following

simple rule to select τ in the case of the square-root transformation. For a can-

didate value of τ , let Î1(τ), . . . , Îk(τ) denote the associated bootstrap intervals

defined beneath equation (3.2) (so that the dependence on τ is explicit), and let

|Î1(τ)|, . . . , |Îk(τ)| denote their widths. Also define µ̂(τ) = (1/k)
∑k

j=1 |Îj(τ)|
and σ̂(τ)2 = (1/k)

∑k
i=1(|Îj(τ)| − µ̂(τ))2. In this notation, we selected the value

of τ that minimized µ̂(τ) + σ̂(τ) over the set of candidates {0.0, 0.1, . . . , 0.9, 1.0}.
Different variants of this type of criterion minimization rule have also been ob-

served to be effective in other contexts (Lopes, Lin and Müller (2020); Lin, Lopes

and Müller (2021)).
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Figure 2. (Simultaneous coverage probability versus n in simulation model (i) with an
exponential decay profile). The plotting scheme is the same as that described in the
caption of Figure 1, except that the three columns correspond to values of the eigenvalue
decay parameter δ.

3.3. Discussion of coverage

Figure 1 contains nine panels displaying the results for the simultaneous

coverage probability P(∩5j=1{λj(Σ) ∈ Îj}), based on a nominal value of 95%

(i.e., α = 0.05), for simulation model (i) with a polynomial decay profile for the

population eigenvalues. The figure summarizes a large amount of information,

because it shows how the coverage depends on n, p, the eigenvalue decay pa-

rameter γ, and the three transformations described above. For each panel, the

x-axis measures n, and the y-axis measures P(∩5j=1{λj(Σ) ∈ Îj}). The results

corresponding to the dimensions p = 10, 50, 100, 200 are plotted with curves that

are labeled in the legend. The three rows of panels from top to bottom corre-

spond to the log transformation, ordinary standardization, and the square-root

transformation. The three columns of panels from left to right correspond to

the eigenvalue decay parameters γ = 0.7, 1.0, 1.3. In addition, Figure 2 displays

analogous results for exponentially decaying population eigenvalues in model (i).
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Figure 3. (Average width versus n in simulation model (i) with a polynomial decay

profile). In each of the nine panels, the y-axis measures the average width E[|Î1|+ · · ·+
|Î5|]/5, and the x-axis measures n. The curves correspond to p = 10, 50, 100, 200. The
three rows and three columns correspond to the choices of transformations and the values
of the eigenvalue decay parameter γ, respectively.

Lastly, results for model (ii), as well as for a nominal value of 90% (instead of

95%), are provided in Section S8 of the Supplementary Material.

There are several notable patterns in Figures 1 to discuss. The first is that

faster rates of decay tend to lead to better coverage accuracy—as anticipated by

our theoretical results. In particular, when the eigenvalue decay parameter is

set to γ = 1.3, the coverage is rather accurate, even when n � p. Furthermore,

the accuracy is essentially unaffected by the dimension p in this situation, as

indicated by the overlap of the four curves. On the other hand, as the decay

parameter becomes smaller, the three transformations perform in different ways.

For instance, when γ = 0.7, p = 200, and n < 200, the log transformation

yields coverage that clearly falls short of the nominal level. By contrast, the

standardization and square-root transformations tend to err more safely in the

conservative direction when γ = 0.7. To give some indication of the difficulty

of γ = 0.7, note that if γ were decreased slightly to 0.5 with p & n, this would
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Figure 4. (Average width versus n in simulation model (i) with an exponential decay
profile). The plotting scheme is the same as that described in the caption of Figure 3,
except that the three columns correspond to values of the eigenvalue decay parameter δ.

imply r(Σ)/
√
n �

√
p/n & 1, in which case bootstrap consistency would not

be guaranteed. When considering all three cases γ = 0.7, 1.0, 1.3 collectively,

the square-root transformation seems to yield the best overall coverage results if

conservative errors are viewed as preferable to anti-conservative ones.

Turning to the coverage results for exponential spectrum decay, the log and

square-root transformations continue to follow the pattern that faster decay im-

proves coverage accuracy. (Recall that smaller δ corresponds to faster decay.)

Also, the log transformation maintains its tendency to err in the anti-conservative

direction, while the square-root transformation still tends to err in the conserva-

tive direction. Lastly, ordinary standardization yields larger errors in the anti-

conservative direction than it did in the previous context.

3.4. Discussion of width

Beyond coverage probability, interval width is another important factor to

consider when appraising confidence intervals. In Figures 3-4, the average width E[|Î1|+
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· · · + |Îk|]/k is plotted on the y-axis as a function of the sample size n on the

x-axis, with the underlying parameter settings being organized in the same man-

ner as in Figures 1-2. (Corresponding results for settings based on model (ii)

and a nominal value of 90% are presented in Section S8 of the Supplementary

Material.) With regard to the three transformations, they produce intervals that

have roughly similar widths across most parameter settings. However, at a more

fine-grained level, the results in the case of polynomial spectrum decay show that

the log transformation tends to yield slightly shorter widths than the square-root

transformation, which in turn, tends to yield slightly shorter widths than ordi-

nary standardization. In the case of exponential spectrum decay with δ = 0.9,

the same pattern is also apparent, while for smaller values of δ, there is not much

difference among the transformations.

Aside from the transformations, there are two other general trends to notice.

Within each of the 18 panels of Figures 3-4, there is a monotone relationship

between width and the dimension p, with the width increasing as the dimension

increases. Similarly, the width generally also increases as the effective rank r(Σ)

increases.

Supplementary Material

The Supplementary Material contains the proofs of all theoretical results,

additional simulation results, and real-data examples based on stock market re-

turns.
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