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Abstract: This study examines matrix quantile regression where the covariate is

a matrix and the response is a scalar. Although the statistical estimation of ma-

trix regression is an active field of research, few studies examine quantile regression

with matrix covariates. We propose an estimation procedure based on convex reg-

ularizations in a high-dimensional setting. In order to reduce the dimensionality,

the coefficient matrix is assumed to be low rank and/or sparse. Thus, we impose

two regularizers to encourage different low-dimensional structures. We develop the

asymptotic properties and an implementation based on the incremental proximal

gradient algorithm. We then apply the proposed estimator to quadratic quantile

regression, and demonstrate its advantages using simulations and a real-data anal-

ysis.

Key words and phrases: Dual norm, interaction effects, matrix regression, penaliza-

tion.

1. Introduction

Quantile regression (Koenker and Bassett (1978)) is a useful statistical tool

in data analysis. It provides a complement to a mean regression, allowing us

to analyze the entire conditional distribution by modeling the covariate effects

at different quantile levels. Despite there being a large body of literature on

the theoretical and computational aspects of vector covariate quantile regression

(Koenker (2005); Belloni and Chernozhukov (2011); Yu, Lin and Wang (2017);

Yi and Huang (2017)), matrix quantile regression is rarely studied. However,

matrix data arise frequently in fields such as digital image analysis (Zhou and Li

(2014)), multi-task regression (Yuan et al. (2007); Argyriou, Evgeniou and Pontil

(2008); Bunea, She and Wegkamp (2012)), matrix completion (Candes and Plan

(2010); Koltchinskii, Lounici and Tsybakov (2011); Negahban and Wainwright

(2012)), and quadratic regression (Bien, Taylor and Tibshirani (2013)).
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The primary challenge in matrix data analysis is its typically high-dimensional

nature. A popular way to reduce the dimensionality is to impose a sparsity as-

sumption on the covariates, which is often encouraged by penalties such as the

lasso (Tibshirani (1996)), smoothly clipped absolute deviation (SCAD) (Fan and

Li (2001)), elastic net (Zou and Hastie (2005)), and many others. For high-

dimensional vector quantile regression with sparsity assumptions, Belloni and

Chernozhukov (2011) established a uniform convergence rate for `1 penalization.

Later, Zheng, Peng and He (2015) achieved the oracle rate by employing an adap-

tive lasso penalty. Other recent works studying related problems include, among

others, Kato (2011), Chao, Volgushev and Cheng (2017), Belloni et al. (2019),

and Pan and Zhou (2020).

For matrix data, a low-dimensional structure can be in the form of sparsity

and/or low rankness. The nuclear norm is a convex relaxation of the matrix rank,

so it is used as a penalty in many penalized least squares approaches to encourage

low rankness (Yuan et al. (2007); Argyriou, Micchelli and Pontil (2010); Koltchin-

skii, Lounici and Tsybakov (2011); Negahban and Wainwright (2011); Zhou and

Li (2014)). Other penalties, such as the rank (Bunea, She and Wegkamp (2011)),

Von Neumann entropy (Koltchinskii (2011)), and Schatten-p norm (Rohde and

Tsybakov (2011)) are also used. Furthermore, some works consider low rankness

and sparsity to further improve the dimension reduction or interpretation. For

example, Agarwal, Negahban and Wainwright (2012) decomposed the true signal

into a sum of a low-rank matrix and a sparse matrix. Other works assume a co-

efficient matrix satisfying low rankness and sparsity simultaneously, such as the

sparse reduced-rank regression (Chen, Chan and Stenseth (2012); Ma, Ma and

Sun (2020)) and two-step joint rank and row selection estimator (Bunea, She and

Wegkamp (2012)). However, these works are all based on penalized least squares.

We propose an estimator in quantile regression with matrix covariates and a

scalar response in a high-dimensional setting. Compared with mean regression,

quantile regression has advantages in terms of its robustness to outliers, skew-

ness, and heterogeneity, and it can be used to build prediction intervals. In order

to deal with the high dimensionality, we apply convex regularization techniques.

In particular, we assume the underlying matrix lies in a low-dimensional sub-

space that is both sparse and low rank. Then, we provide a convex regularized

optimization approach using both the nuclear norm and the entry-wise `1 norm

as regularizers to exploit the low-dimensional structure. Unlike some previous

approaches, our method encourages low rankness and sparsity simultaneously.

Moreover, we derive the upper bound on the estimation error of the proposed

method in the high-dimensional setting. Theoretical results for high-dimensional
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quantile regression are more complicated than those of the least squares regres-

sion models. They also require more technical analysis associated with the matrix

norms than in the case of penalized quantile regression with vector coefficients.

We then apply the matrix quantile regression to linear quantile regression

with interaction effects. Dimension reduction is desirable for models with inter-

actions, because even when the number of covariates p is moderate, quadratic re-

gression involves O(p2) parameters. Several variable selection methods have been

proposed to reduce the number of parameters for quadratic regression, including

regularization methods (Choi, Li and Zhu (2010); Bien, Taylor and Tibshirani

(2013); Hao, Feng and Zhang (2018)) and screening (Hao and Zhang (2014); Fan

et al. (2015)). These works all rely on the sparsity assumption, which requires

that the number of significant variables is small and the signal size is sufficiently

large. We consider an alternative strategy using matrix regression, which does

not necessarily require sparsity. Note that by writing Zi = (1,x>i )>(1,x>i ), where

xi is a p-dimensional vector predictor, the main effect xi and quadratic interac-

tions are all incorporated in matrix form. Thus, a rank constraint can be used

to restrict the effective number of parameters.

The rest of the paper is organized as follows. In Section 2, we introduce

the estimator for the matrix quantile regression model based on regularization,

and present the implementation details and application to quadratic regression.

Section 3 establishes the theoretical properties. In Section 4, we investigate the

finite-sample properties on simulated and real data sets in quadratic quantile

regression. We conclude the paper in Section 5.

2. Matrix Quantile Regression

2.1. General model setup

In this paper, we study a matrix quantile regression model with a scalar

response y ∈ R and a matrix covariate Z ∈ Rd1×d2 . Define the τth conditional

quantile of y given Z as Qτ (y|Z) = inf{t : Fy|Z(t) ≥ τ}, where Fy|Z(t) is the

conditional distribution function. We consider the setting that, for a certain

quantile level τ ∈ (0, 1), Qτ (y|Z) is modeled by the linear regression model

Qτ (y|Z) = 〈B,Z〉, (2.1)

where B ∈ Rd1×d2 and 〈B,Z〉 = tr(B>Z) = 〈vec(B), vec(Z)〉 is the inner product

between matrices. In the above, we omit the intercept for simplicity. The in-

tercept does not play a significant role in developing the theory, but is certainly
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useful in practice. On the other hand, the intercept is already incorporated into

B for quadratic regression, and thus in such a special case, an additional intercept

in (2.1) is not necessary.

We apply the convex regularization framework to estimate the coefficient

B under low-dimensionality assumptions, including low rankness and sparsity.

Given an independent and identically distributed (i.i.d.) sample (yi,Zi), for i =

1, . . . , n, the regularized estimator is defined by

B̂ = argmin
1

n

n∑
i=1

ρτ (yi − 〈B,Zi〉) + λ1R1(B) + λ2R2(B), (2.2)

where ρτ (u) = u(τ − I{u < 0}) is the check loss function, and R1(B) and

R2(B) are the regularizers that exploit the low rankness and sparsity structure,

respectively. Let (σ1(B), . . . , σr(B)) be the nonzero singular values of B, with

r = rank(B) the rank of B. The nuclear norm ‖B‖∗ =
∑r

j=1 σj(B) is a convex

relaxation of rank(B). Thus, we use R1(B) = ‖B‖∗ to encourage low rankness.

A widely used regularizer to encourage entry-wise sparsity is the `1 norm, such

as the lasso in classical linear regression (Tibshirani (1996)). We use R2(B) =

‖B‖1 :=
∑d1

j=1

∑d2
k=1 |Bjk| as the sparsity regularizer.

The convex optimization problem (2.2) includes two regularizers, and the

optimization problem with one penalty can be solved using a proximal gradient

algorithm. Thus, we can use the incremental proximal gradient method (Bert-

sekas (2011)). Specifically, denoting `(B) = (1/n)
∑n

i=1 ρτ (yi − 〈B,Zi〉), the in-

cremental proximal gradient method operates on R1 and R2 in turn, and treats

`(B) in a (sub-)gradient step. The tth iteration of the algorithm computes

Bt
1 = argmin

{
R1(B) +

1

2γ
‖B−Bt−1‖2F

}
,

Bt
2 = argmin

{
R2(B) +

1

2γ
‖B−Bt

1‖2F
}
,

Bt = Bt
2 − γ∇`(Bt

2),

where ∇`(B) is a sub-derivative of the loss, and γ is the step size. The pseudo-

code is presented in Algorithm 1. The initial value B0 is a matrix with inde-

pendent standard normal entries. In fact, because the optimization problem is

convex, the initial estimator has little effect in our procedure. For the step size,

setting γ too large may make the algorithm fail to converge, while too small a

value makes the convergence very slow. In our simulations, the step size γ is set

to 0.1, which is satisfactory in our numerical studies. An investigation of a more
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principled and adaptive approach for the step size is left for future work. We stop

the algorithm when the decrease of the objective function value is less than 10−5.

Because the algorithm can be seen as a special case of the incremental proximal

gradient method, its numerical convergence is guaranteed by Proposition 3 and

Proposition 4 in Bertsekas (2011).

Algorithm 1. Incremental proximal gradient method for quantile matrix regression.

Input: Initial value B0, γ
repeat

SVD for Bt−1: Bt−1 = Udiag(σ1, . . . , σmin{d1,d2})V
>

σ̃j = sign(σj)(|σj | − γλ1)+, for j = 1, . . . ,min{d1, d2}
Bt

1 = Udiag(σ̃1, . . . , σ̃min{d1,d2})V
>

(Bt
2)jk = sign((Bt

1)jk)(|(Bt
1)jk| − γλ2)+, for j = 1, . . . , d1, k = 1, . . . , d2

Bt = Bt
2 − γ∇`(Bt

2)
until convergence criterion is met

2.2. Application to quadratic linear regression

We consider the regression model with interaction effects

Qτ (y|x) = ξ0 +

p∑
j=1

ξjxj +

p∑
j,k=1

βjkxjxk, (2.3)

where x = (x1, . . . , xp)
> is the p-dimensional covariate, ξ0 is the intercept, and

ξ = (ξ1, . . . , ξp) and β = (β11, . . . , βpp) are the main effects and interaction ef-

fects, respectively. For identifiability, we assume βjk = βkj . Model (2.3) can be

expressed in matrix regression form by rearranging the coefficients into a matrix

B ∈ R(p+1)×(p+1), with B0,0 = ξ0, Bj,0 = B0,j = ξj/2, and Bj,k = βjk. In this

way, model (2.3) becomes (2.1), with Z = (1, x1, x2, . . . , xp)
>(1, x1, x2, . . . , xp).

Dimension reduction in traditional interaction effects models often considers only

the sparsity structure. The advantage of expressing the model in matrix form

is that we can impose a sparsity assumption and a low-rankness assumption to

further reduce the dimension, which is useful when the number of nonzero entries

is still large.

Because B is a symmetric matrix, the estimate B̂ should be the minimizer

of the objective function (2.2) in the set of symmetric matrices in R(p+1)×(p+1).

The incremental proximal gradient method can also deal with the case easily by

changing the original gradient step by Bt = PSp+1

(
Bt

2 − γ∇`(Bt
2)
)
, where Sp+1

is the set of symmetric matrices in R(p+1)×(p+1) and PSp+1 denotes the projection

on Sp+1. This can be written more explicitly as Bt = (1/2)[
(
Bt

2 − γ∇`(Bt
2)
)>

+
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Bt

2 − γ∇`(Bt
2)
)
]. However, it is easy to see that as long as the initial value of

B is symmetric, all subsequent steps still produce a symmetric matrix, and the

projection step is redundant.

3. Theoretical Properties

In this section, we establish an upper bound for the estimation error of B̂

obtained from (2.2) in a high-dimensional scenario. There are two key elements

that allow us to derive the upper bound, following the pioneering work of Negah-

ban et al. (2012). The first is the concept of decomposability for penalties. For

a subspace M ⊂ Rd1×d2 , define its orthogonal complement as

M⊥ =
{

V ∈ Rd1×d2 ; 〈U,V〉 = 0 for all U ∈M
}
.

Given a pair of subspaces M ⊆ M̄ ⊂ Rd1×d2 , a regularizer R is decomposable

with respect to (M, M̄⊥) if

R(U + V) = R(U) +R(V), for all U ∈M and V ∈ M̄⊥.

When B is a rank-r matrix with r ≤ min{d1, d2}, let U ⊆ Rd1 and V ⊆ Rd2 be a

pair of r-dimensional subspaces spanned by the left and right singular vectors of

B, respectively. Consider the subspaces

M1 =
{

A ∈ Rd1×d2 |row(A) ⊆ V, col(A) ⊆ U
}
,

M̄⊥1 =
{

A ∈ Rd1×d2 |row(A) ⊆ V⊥, col(A) ⊆ U⊥
}
,

where row(A) and col(A) are the row and column spaces, respectively, for the

matrix A. It is known that R1 is decomposable with respect to (M1, M̄⊥1 ). For

the sparsity penalty R2, let S ⊆ {1, . . . , d1} × {1, . . . , d2} be the indices of the

nonzero entries with cardinality |S| = s, and let S⊥ = {1, . . . , d1}×{1, . . . , d2}\S.

Then, R2 is decomposable with respect to (M2, M̄⊥2 ), where

M2 = M̄2 =
{

A ∈ Rd1×d2 |Aij = 0 for all (i, j) ∈ S⊥
}
,

M̄⊥2 =
{

A ∈ Rd1×d2 |Aij = 0 for all (i, j) ∈ S
}
.

The second property concerns the restricted set that B̂ − B can be proved

to be in. Let PU⊥ and PV⊥ be the projection matrices to spaces U⊥ and V⊥,

respectively. Then, for a matrix ∆, define ∆′′ = PU⊥∆PV⊥ ∈ M̄⊥1 (this is

actually the projection of ∆ on M̄⊥1 ) and ∆′ = ∆ −∆′′ ∈ M̄1. In addition, we
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denote by ∆S the matrix in which (∆S)ij = ∆ij if (i, j) ∈ S, and (∆S)ij = 0

if (i, j) /∈ S (∆S is the projection of ∆ on M2). Then, the restricted set in our

setting is defined as

C =
{
∆| λ1R1(∆

′′) + λ2R2(∆S⊥) ≤ 3λ1R1(∆
′) + 3λ2R2(∆S).

}
.

The value 3 in the above is somewhat arbitrary, and can be replaced by any

constant larger than one. For convenience in the theoretical analysis, we write

λ1 = λα, λ2 = λ(1−α), with λ = λ1 +λ2 and α = λ1/λ. Then, the restricted set

can also be written as

αR1(∆
′′) + (1− α)R2(∆S⊥) ≤ 3(αR1(∆

′) + (1− α)R2(∆S)).

Let p = d1d2, zi = vec(Zi). In order to obtain the upper bound, we assume

the following conditions. In the following, C denotes a generic positive constant,

the value of which can change between instances.

C1. J := E[ziz
>
i ] is positive definite with its maximum eigenvalue σmax(J)

bounded by a constant.

C2. zi = vec(Zi) is sub-Gaussian in the sense that there exists a constant C > 0,

such that for any unit norm vector a, we have E[eta
>zi ] ≤ eCt2 , for ∀t > 0.

C3. With B denoting the true coefficient matrix, there is a constant c1 > 0 such

that E[ρτ (yi − 〈B + ∆,Zi〉)]−E[ρτ (yi − 〈B,Zi〉)] ≥ c1(‖∆‖2 ∧ ‖∆‖F ), for

all ∆ ∈ C, where ‖.‖F denotes the Frobenius norm.

Condition C1 is a mild moment assumption. The sub-Gaussianity of Zi is

required to bound different norms of a certain random matrix, as in Lemma 2 in

the Supplement Material, and such a light-tail condition is often used in high-

dimensional asymptotic analysis. Finally, C3 can be verified using more primitive

assumptions, including the boundedness conditions for the conditional density

of yi given Zi and inf∆∈C (E|〈∆,Zi〉|2)3/2/E|〈∆,Zi〉|3 > 0. Furthermore, the

latter can be satisfied when, for example, Zi is Gaussian. The proof is similar

to that of Lemma 4 (3.7) of Belloni and Chernozhukov (2011), as shown in the

Supplementary Material.

Theorem 1. Suppose the true parameter B has rank r and s nonzero entries,

and assumptions C1–C3 hold. If α ∈ [0, 1] and λ ≥ C min{
√

(d1 + d2)/nα2,√
log p/(n(1− α)2)} for a sufficiently large C > 0, with probability approaching

one, we have

‖B̂−B‖F ≤ Cλ(α
√
r + (1− α)

√
s),
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as long as the right-hand size above is o(1). In particular, taking λ � C min{√
(d1 + d2)/nα2,

√
log p/(n(1− α)2)},

‖B̂−B‖F

≤ C min

{√
(d1 + d2)r

n
+

1− α
α

√
s log p

n
,

α

1− α

√
(d1 + d2)r

n
+

√
s log p

n

}
.

Note that we allow d1 and d2 (and so does p = d1d2) to diverge with n. On the

other hand, the growth rates of d1, d2, and s must satisfy λ(α
√
r+ (1−α)

√
s) =

o(1). The theorem shows that the estimator can track the better performer of

the nuclear-norm penalized estimator and the sparse (lasso) estimator. When α

is sufficiently close to one, the rate becomes
√

(d1 + d2)r/n, which is the same

as the rate in Negahban and Wainwright (2011) for least squares regression. On

the other hand, when α ≈ 0, the rate becomes
√
s log p/n, as in Belloni and

Chernozhukov (2011).

Remark 1. Theorem 1 establishes the error bound for a single quantile level

τ ∈ (0, 1). Suppose now model (2.1) is true for τ ∈ [τL, τU ] ⊂ (0, 1). When

considering the uniform error bound for τ ∈ [τL, τU ], an additional condition on

the true coefficient matrix B(τ) is needed. That is, there exist a (diverging)

constant L > 0 such that

‖B(τ)−B(τ ′)‖F ≤ L|τ − τ ′|, for all τ, τ ′ ∈ [τL, τU ].

Then, is we make assumption C3 also uniform over τ , by following the same

proof strategy as in Belloni et al. (2019), we expect to establish the same bound

uniformly over τ ∈ [τL, τU ]. However, we leave the details out and focus on the

single τ case here.

Remark 2. When α = 0, the rate is only near oracle. We think that employing

the adaptive lasso penalty
∑

j,k=1wjk|Bj,k|, where wjk = 1/|B̃j,k| and the initial

estimator B̃ is obtained using a lasso penalized quantile regression, would lead to

the oracle rate, under additional conditions that involve a signal strength require-

ment, that is, a lower bound on inf(j,k)∈S |Bj,k|. Signal strength conditions can

be restrictive, but are usually required for the oracle property; see, for example,

Zhao and Yu (2006), Meinshausen and Bühlmann (2006), Bühlmann and Van

De Geer (2011), Zheng, Peng and He (2015), and Ndaoud (2019). A nonconvex

penalty can also possibly achieve the oracle rate under such conditions. It would

be interesting to establish the oracle rate for quantile matrix regression with both

sparsity and low-rankness constraints, which is left to further research.
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4. Numerical Results

We consider the quadratic quantile regression problem. The response is ob-

tained using yi = 〈B,Zi〉+ εi, where Zi = (1, xi1, . . . , xip)
>(1, xi1, . . . , xip), with

xij generated independently from a standard normal distribution, and the ran-

dom error is generated as εi = (1 + 0.2|xi,1|)εi, with εi ∼ N(−qτ , σ2), where qτ
is the τth quantile of the Gaussian distribution N(0, σ2). The coefficient B is a

rank-r symmetric matrix obtained using UDU>, where U ∈ R(p+1)×r is the top

r left singular vectors of a matrix with independent standard normal entries. In

order to generate a sparse matrix B, we first generate U ∈ Rp′×r, and then insert

p+ 1− p′ zero rows into U. Let q = p′/(p+ 1) be the proportion of zero rows in

U. We investigate the effect of different values of q in our simulations.

Here, we apply the proposed method to estimate the coefficient matrix B.

First, we set the sample size n = 300, 500, and 700, and the dimension is set

to p = 30. The true rank r is 3, and we set q = 0.5 and σ = 3. The tuning

parameters λ1 and λ2 are selected using five-fold cross-validation, and the step

size γ is always set to 0.1. We use ‖B̂ − B‖F as the errors reported in the

simulation results. All simulations are repeated 200 times. Figure 1 compares

our method with the lasso approach for the model with interactions. We see the

errors decrease with n, and our approach outperforms the lasso as expected.

In the results reported in Figure 2, we set n = 500, and q = 0.3, and vary

the dimension p ∈ {30, 50, 70}. In Figure 3, we report the results with n = 500,

p = 30, and varying q ∈ {0.3, 0.5, 0.7, 0.9, 1} (corresponding to about 8%, 23%,

46%, 76%, and 100%, respectively, nonzero entries). It can be seen that our

approach outperforms the lasso in all cases, and the improvement is larger when

B is denser.

Moreover, we compare the proposed quantile regression approach at τ = 0.5

with the low-rank matrix mean regression Negahban and Wainwright (2011). For

both mean and 0.5 quantile regression, we use ‖B‖∗, ‖B‖1, or α‖B‖∗+(1−α)‖B‖1
as regularizers. We take n = 500, r = 3, q = 0.3, and p = 30, 50 and 70, and

the random error is generated from N(0, 1) and t(3). The results reported in

Table 1 show that the performance of a mean regression may be better than

that of a median regression when the random errors follow a standard normal

distribution (but not always so, probably because we have heterogeneous errors

here). However, a median regression outperforms a mean regression with heavy-

tailed errors. The computing times of different methods are reported in Table 2.

The settings are the same as those in the simulations.

Finally, we apply quadratic regression to nine regression problems from the
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Figure 1. Estimation errors at quantile levels τ = 0.25, 0.5, and 0.75 when p = 30, r = 3,
q = 0.5, and σ = 3. The error bars represent ± one standard deviation.
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Figure 2. Estimation errors at quantile levels τ = 0.25, 0.5 and 0.75 when n = 500, r = 3,
q = 0.3 and σ = 3. The error bars represent ± one standard deviation.

UCI machine learning repository. For each problem, we compare the proposed

estimator with the lasso estimator (with interaction effects). The test errors are

obtained using cross-validation, and the tuning parameters are chosen using five-

fold cross-validation on the training set. The results are shown in Table 3. It can

be seen that introducing the low-rank regularizer improves the performance.
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Figure 3. Estimation errors at quantile levels τ = 0.25, 0.5, and 0.75 when n = 500,
p = 30, r = 3, σ = 3, and q ranges from 0.3 to 1. The error bars represent ± one
standard deviation.

Table 1. Estimation errors for the proposed method (sparse and low rank) at quantile
level τ = 0.5 and mean regression (least square) when n = 500, r = 3, q = 0.3, and
p = 30, 50, and 70. Numbers in parentheses denote the standard errors.

Regularizer Method p = 30 p = 50 p = 70

N(0, 1)

‖B‖∗
0.5 quantile 0.60(0.08) 1.21(0.19) 2.72(0.61)

Mean 0.62(0.09) 1.81(0.38) 3.28(0.68)

‖B‖1
0.5 quantile 0.58(0.10) 1.81(0.47) 4.83(1.45)

mean 0.52(0.09) 2.37(0.62) 4.85(1.33)

‖B‖∗ and ‖B‖1
0.5 quantile 0.43(0.06) 0.82(0.10) 1.64(0.25)

mean 0.38(0.05) 0.74(0.14) 1.55(0.34)

t(3)

‖B‖∗
0.5 quantile 0.75(0.11) 1.49(0.23) 3.03(0.66)

Mean 0.88(0.16) 2.02(0.38) 3.40(0.70)

‖B‖1
0.5 quantile 0.73(0.13) 2.19(0.58) 5.07(1.46)

mean 0.88(0.21) 2.59(0.62) 4.98(1.32)

‖B‖∗ and ‖B‖1
0.5 quantile 0.52(0.07) 1.00(0.13) 1.88(0.32)

mean 0.60(0.12) 1.07(0.20) 1.90(0.42)

Table 2. Average computing times (in second) of the proposed sparse and low-rank
method, lasso, and least squares approaches to complete the simulations, using R (version
3.6.3) on our desktop computer with a 3.40 GHz CPU.

p = 30 p = 50 p = 70

Sparse and low-rank 68.71 144.36 322.69

Lasso 24.58 36.81 113.46

Least square 86.38 168.65 236.29
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Table 3. Test errors for nine regression problems at quantile levels τ = 0.25, 0.5, and
0.75.

dataset n p τ Lasso Sparse & low-rank

Wisconsin Prognostic
Breast Cancer

155 32

0.25 1.46 0.93

0.5 2.54 1.22

0.75 1.89 0.81

Residential
Building–Sales Price

298 26

0.25 0.18 0.11

0.5 0.21 0.09

0.75 0.08 0.07

Residential Building–
Construction

298 26

0.25 0.21 0.14

0.5 0.10 0.06

0.75 0.07 0.04

Real Estate Valuation 331 6

0.25 2.34 2.03

0.5 2.85 2.72

0.75 2.55 2.37

Forest Fires 414 10

0.25 0.28 0.28

0.5 0.58 0.53

0.75 0.54 0.52

Geographical Original
of Music– Latitude

847 68

0.25 1.91 0.97

0.5 0.68 0.56

0.75 1.23 0.44

Geographical Original
of Music– Longitude

847 68

0.25 2.72 1.47

0.5 1.31 1.14

0.75 1.23 0.98

PM2.5
Beijing–Aotizhongxin

1,071 11

0.25 0.12 0.10

0.5 0.12 0.10

0.75 0.09 0.08

Wine Quality–Red 1,279 11

0.25 0.20 0.19

0.5 0.26 0.24

0.75 0.22 0.21

5. Conclusion

In this paper, we have proposed a convex regularized optimization approach

for quantile regression with matrix covariates. The motivation for our work is the

wide application of matrix regression and the lack of studies on matrix quantile

regression. In order to reduce the effective number of parameters in the high-

dimensional setting, two regularizers corresponding to low rankness and sparsity

are imposed at the same time. We establish the upper bound on the estimation

error of the proposed estimator and develop an algorithm based on the incre-

mental proximal gradient. We apply the proposed method to quadratic quantile
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regression, where the covariates and their interactions can be reformed into a

matrix. The advantage of the proposed method in quadratic regression problems

is demonstrated using simulations and a real-data analysis.

When studying quadratic regression, the hierarchy restriction, that an inter-

action can only be included in the model if both or either main effects are selected,

is often assumed; see, for example, Bien, Taylor and Tibshirani (2013), and Hao

and Zhang (2014). When using the entry-wise lasso as a sparsity regularizer, a

hierarchical structure is not incorporated. Strong heredity (an interaction effect

can be selected only if both main effects are selected) can be incorporated by

replacing ‖B‖1 with a hierarchical penalty, for example, the composite absolute

penalty in (Zhao, Rocha and Yu (2009))

R2(B) =

p∑
j,k=1

(|Bj,k|+ ‖ (Bj,0,B0,k,Bj,k) ‖2) .

The theoretical guarantee for this hierarchical penalty are left for further work.

Supplementary Material

Proofs of the theorems are contained in the online Supplementary Material.

Acknowledgments

We sincerely thank the editor, associate editor, and two anonymous reviewers

for their insightful comments. The research of Zhongyi Zhu was supported by

National Natural Science Foundation of China (11731011, 11690013, 12071087).

The research of Heng Lian was supported by Project 11871411 from the NSFC

and CityU Shenzhen Research Institute, and by Hong Kong General Research

Fund 11301718, 11300519, and 11300721.

References

Agarwal, A., Negahban, S. and Wainwright, M. J. (2012). Noisy matrix decomposition via convex

relaxation: Optimal rates in high dimensions. The Annals of Statistics 40, 1171–1197.

Argyriou, A., Evgeniou, T. and Pontil, M. (2008). Convex multi-task feature learning. Machine

Learning 73, 243–272.

Argyriou, A., Micchelli, C. A. and Pontil, M. (2010). On spectral learning. Journal of Machine

Learning Research 11, 935–953.

Belloni, A. and Chernozhukov, V. (2011). `1-penalized quantile regression in high-dimensional

sparse models. The Annals of Statistics 39, 82–130.

Belloni, A., Chernozhukov, V., Chetverikov, D. and Fernández-Val, I. (2019). Conditional quan-

tile processes based on series or many regressors. Journal of Econometrics 213, 4–29.



958 LU, ZHU AND LIAN

Bertsekas, D. P. (2011). Incremental proximal methods for large scale convex optimization.

Mathematical Programming 129, 163–195.

Bien, J., Taylor, J. and Tibshirani, R. (2013). A Lasso for hierarchical interactions. The Annals

of Statistics 41, 1111–1141.
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