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Abstract: Edgeworth expansions are developed for a general class of symmetric statis-
tics. Applications of the results are given to obtain approximations to the sampling
distributions of statistics in the random censorship model and of linear combina-
tions of order statistics. In addition, Edgeworth expansions are also developed for
the bootstrap distributions of these symmetric statistics, showing that the bootstrap
approximations are accurate to the order of O,(n™1).
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1. Introduction

Let X;,Xs,...,X, be ii.d. random vectors. A statistic S = S(X;,...,Xn)
is said to be symmetric if it is invariant under permutation of the arguments.
Assuming that ES? < oo, let u = ES and define

A(z;) = E(S|X; = z:) — n,
B(zi,z;) = BE(S|1Xi = z:, X; = z;) — BE(S|Xi = z:) - E(S|X; = z;)+p (i #))

etc. Then B(z,y) = B(y,z), etc., and, as shown by Efron and Stein (1981), S
has the ANOVA decomposition

S—p = > AX)+ > BXiXj)+ > CXi,X;,Xi)
i=1 1<i<j<n 1<i<j<k<n
+ Y DX, X5, X, Xn) + -+ R(Xy, ..., Xn), (1.1)

1<i<j<k<h<n

where all 2" — 1 random variables on the right hand side of (1.1) have mean 0
and are mutually uncorrelated with each other. In fact, E{B(X;, X2)|X1} = 0,
E{C(X;, X,, X3)| X1, Xz} = 0, etc.

Let o be a Borel function such that Ea(X;) = 0. When 4 = n~Y2q and
all the other functions on the right hand side of (1.1) vanish, S — u reduces to a
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normalized sum of i.i.d. zero-mean random variables, for which the Edgeworth
expansion

P{(§ - pn)/o < 2} = &(2) - n"2(2)Pi(2) = n" d(2) Pa(2) + o(n™") (1.2)
holds under the assumption
Ed?(X,) =02 >0, Ea*(X;) < oo and lim sup |Eeit*(X1)| < 1. (1.3)

|t]— o0

Here, and in the sequel, we use ¢(z) and ®(z) to denote the density and distri-
bution functions of the standard normal distribution, and Pi(z), P»(z) to denote
polynomials in z. In addition to its obvious application as a more accurate ap-
proximation to P{(S—u)/o < z} than the crude normal approximation ®(z), the
Edgeworth expansion (1.2) has recently been-used to show that P{(S—pu)/c < z}
can be alternatively approximated by Efron’s (1979) bootstrap method with an
error of the order Op(n™!), (cf. Hall (1986, 1988)).

When all functions except A and B on the right hand side of (1.1) vanish,
S — p reduces to a U-statistic of degree 2. In this case, Bickel, G6tze and van
Zwet (1986) established an Edgeworth expansion of the form (1.2) under the
assumption that the functions @ = n!/2A and 8 = n!/?(n — 1) B satisfy (1.3) and
the following condition:

Condition (B). E|B(X1, X2)[” < oo for some r > 2, and the linear operator
L, mapping a function f (with Ef?(X;) < o) to the function Lf defined by
(Lf)(y) = E{B(y, X1)f(X1)}, has at least K nonzero eigenvalues (with multiple
eigenvalues repeated) such that X > 4r/(r — 2).

In this paper we show that the Edgeworth expansion (1.2) holds much more
generally for symmetric statistics with A ~ n™*/2q, B ~ n™%/28 and C ~ n™%2y
for some given Borel functions a, 3,7, and with the sum of the remaining terms
in the ANOVA decomposition (1.1) having the order O(n™*7¢) for some € > 0.
Our main result, which is stated in Section 2 and proved in Section 4, provides
an Edgeworth expansion of the form (1.2) for a general class of statistics, which
we call asymptotic U-statistics, and which are based on asymptotic modifications
of (1.1) to make the decomposition more flexible and transparent in applications.
In Section 3 we show that this main result yields Edgeworth expansions not
only for the sampling distributions of a large variety of symmetric statistics but
also for their bootstrap distributions. Of particular interest are the Edgeworth
expansions in the random censorship model. Since censoring greatly complicates
the distribution theory of the statistics, it has led to a heavy reliance on normal
approximations. The Edgeworth expansions developed herein for these censored
statistics not only provide more accurate approximations but also establish the
bootstrap approach as a much more practical alternative that is accurate up to
an Op(n~1) error.
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2. Asymptotic U-statistics and Edgeworth Expansions

Let X, X1, ..., X, beiid. p-dimensional random vectors and let U, = Un(X1,
., X,) be a real-valued function of X1,..., X,,. We shall call U, an asymptotic
U-statistic if it has the decomposition

_N- el B(Xi, X;) (X, X5, X)
Un _Z{ \/ﬁ 13/2 } Z Tl Z _775“—"'1?‘"’ (2.1)

i=1 1<igj<n 1<i<j<k<n

where o, o', 3, are nonrandom Borel functions which are invariant under per-
mutation of the arguments and which satisfy assumptions (A2)-(A4) below, and
the R, are random variables satisfying (A1).

(A1) P{|R,| > n~17¢} = o(n~1) for some € > 0,

(A2) Ea(X) = Ea'(X) = 0,

(A3) B{B(X1, X2)| X1} = 0, E{y(X1, X2, X3)| X1, X2} = 0,
(A4) E{|/(X1)® + [7(X1, X2, X3)[*} < 0.

The main result in this section is an Edgeworth expansion of the form (1.2)
for U, under the assumption (1.3) on a. This result uses a more convenient refor-
mulation of Condition (B) and also replaces it, in situations where it fails, by an
assumption that is slightly stronger than the usual Cramér (strongly nonlattice)
condition lim sup_, o |Eet(X1)| < 1 in (1.3). To begin with, consider the linear
operator L defined by (Lf)(y) = E{ﬁ(y, X)f(X)} on the Hilbert space of Borel
functions f : RP — R with ||f||2 = Ef*(X) < co. Then either L has infinitely
many nonzero eigenvalues, or P{8(X;, X2) = 0} = 0 a.s. (which corresponds to
the case of no nonzero eigenvalue), or there exists some positive integer K for

which
K

B(X1,X2) =Y hwy(X1)wy(X2) as., (2.2)

v=1

where the )\, are the nonzero eigenvalues of L and the w, are the corresponding
eigenfunctions which satisfy

Ew,(X)=0, EBw*(X)=1, E{w,(X)w(X)}=0for£+#v, (2.3)
(cf. (3.17) and (3.18) of Bickel, Gétze and van Zwet (1986)). Note that (2.2)

implies

K
> B(XiX;) = Z { >, <,~>wu<Xj>}

1<i<j<n 1<igj<n

= z};)\ /2) {(Zw., )2—gw3(Xi)}, (2.4)
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and, therefore,

S{ER A s A s i - 33 hdon)

i=1 1<i<j<n

n

+ ﬁH(n_l > a(X),n > wi (X)), ..., ZwK(X,-)), (2.5)
i=1 =1

=1

where H(z,wy, ..., wg)=z+ 2K Ayw2/2 The seminal work of Bhattacharya
and Ghosh (1978) on Edgeworth expansions of smooth functions of sample mean
vectors requires the joint Cramér condition

lim sup (2.6)

lt|+ls1]+...+]|sx|— o0

K
Eexp {ita(X) +1 2 s,,w,,(X)} <1
v=1

when it is applied to the above function H. Bai and Rao (1991) recently estab-
lished Edgeworth expansions under the conditional Cramér condition

li’nlnsupElE(e““(X)lwl(X),...,wK(X))| <1, (2.7)
t|—o0

which can be used even when w, (X) is not strongly nonlattice. In Condition (D)
below, we shall introduce a Cramér-type condition which is weaker than either
(2.6) or (2.7).

As shown in Section 4 of Bickel, Gotze and van Zwet (1986), one can check
whether the number of nonzero eigenvalues of L satisfies Condition (B) without
direct evaluation of these eigenvalues by checking Condition (C) below in the
special case v = 0. In fact, for v = 0, Condition (B) is equivalent to Condition
(C), cf. Lemma 4.1 of Bickel, Gétze and van Zwet (1986).

Condition (C). E|B(X1,X2)|” < oo for some r > 2 and there exist K Borel
functions f, : RP — R such that K(r — 2) > 4r + (28r — 40)I g} (X1,X3,X3)|>0)
Ef2(Xy) < oo (v = 1,...,K), and the covariance matrix of (Wx, ... ,Wk) is
positive definite, where W = (Lf,)(X1) and (Lf)(y) = E{B(y, X2)f(X2)}.

When condition (B) fails, the argument used in Section 3 of Bickel, Gotze
and van Zwet (1986) breaks down. However, since the representation (2.2) holds
in this case, (2.5) suggests an alternative argument that involves a joint or con-
ditional Cramér condition (2.6) or (2.7). Since what is actually involved in this
argument is a representation of the form (2.2) without requiring the w, to be
eigenfunctions of L, we arrive at the following more general and convenient as-
sumption.

Condition (D). There exist constants ¢, and Borel functions g, : RP — R
such that Eg,(X) = 0, E|g,(X)|” < oo for some r > 5 and B(X;,X,) =
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S ¢,9.(X1)g,(X2) a.s.; moreover, for some 0 < 6 < min{1,2(1 - 11r~1/3)},

Eexp (z’t{a(X) + ésugu(X)}>

lim sup sup <1

ti—oo |syl+Hisi <[t~

Clearly, for g, = w,, the joint Cramér condition (2.6) implies the Cramér-
type condition in (D), which is also weaker than the conditional Cramér condition
(2.7) since

K
Be {ita0) + i3 0.0.00) }| < BIBEOar (), . gx (X)L
v=1

On the other hand, the Cramér-type condition in (D) implies the condition
lim supj4|— oo |Ee*(X)| < 1 in (1.3), and is equivalent to the latter condition in
the case where g, is a scalar multiple of & for every v € {1,...,K}.

Theorem 1. Let U, be an asymptotic U-statistic defined by (2.1) and (Al)-
(A4). Suppose a satisfies (1.3) and either Condition (C) or (D) holds. Let
o = (Ea?(X))Y? as in (1.3) and define

a3 = Ea®(X), as = Ea*(X), o' = E{a(X)a'(X)}, b= E{a(X1)a(X2)B(X1, X2)},
¢ = E{a(X1)a(X2)a(X3)v(X1, X2, X3)}, k3 = a3 + 3b,
ks = ag — 30* + 4c + 12E{a®(X1)a(X2)B(X1, X2)
+ a(X1)a(X2)B(X1, X3)B(X2, X3)},
Pi(z) = k3o 3(2% - 1)/8,

Py(z) = {a'..}.w} z n K4

0?2 2404

2
(22 = 3z2) + —m—;—(z5 - 102° + 152).

Then P{U, /o < z} = ®(2) —n~Y29(2)P(2) —n~1¢(2) Pa(2) + o(n™1), uniformly
m —oo < z < 00.

In the remainder of this section we give three important examples of asymp-
totic U-statistics. These examples have motivated the preceding definition of
asymptotic U-statistics and our development of Edgeworth expansions and boot-
strap methods for them. They illustrate the wide applicability of Theorem 1 to
give Edgeworth expansions for nonparametric statistics that are smooth function-
als of empirical distribution functions, analogous to the Edgeworth expansions
for smooth functions of sample mean vectors that have been developed by Bhat-
tacharya and Ghosh (1978), Skovgaard (1981), Bai and Rao (1991) and others.

Example 1. Let Ty, T3, ... be i.i.d. random variables with a common continuous
distribution function F. Consider the “random censorship model” in which the
observations are X; = (T; A Ci,I{T,-SCi}), i=1,...,n, where C1,Cy, ... are i.i.d.
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random variables that are independent of Ti,T%,..., and A denotes minimum.
Let A = —log(1 — F) be the cumulative hazard function. Let
T; =T;ACj, Yi(8) = Iig,5g  Nils) = Iimy<ami<e;) (2.8)

The Altschuler-Nelson estimate of A(t) is given by

-1

b= ¥ (ZYT) =§/w(gws)) aN(s), (29)

T <t,T;<C;

(cf. Fleming and Harrington (1991)). Define

p(s) = EYi(s), wi(s) =Yi(s) —p(s), Mi(t) =Ni(t)—/_ Yi(s)dA(s).  (2.10)

Then {M;(s), —00 < s < oo} is continuous-time martingale and

dM;(s) dM;(s)
A t / / .
vr(Aa(t) \/—Z nt Yo Yi(s \/_Z p(s) +n=t 327, wils)

Suppose that p(t) > 0 and let U, = \/ﬁ(f\n(t) — A(t)). Expanding f(z) =
(p(s) + z)~! around z = 0 by Taylor’s theorem and making use of the identity

Zw np(s)(1 = p(s)) + (1 = 2p(s)) 3 w; (s)
we can represent U, in the form (2.1) with
t dM;(s)
a(X;) = / 2
©wi(s) " 1-p(s)
= - [ [ Sty
B(Xi, X;) /oo zts w;(8)dM;(s )+wj(s)dM,-(s)),

p
2
v (Xi, X5, Xx) = / T {wi(s)wj(s)de(s) + wi(s)w(s)dM;(z)

+wj(s)wk(s)dM-(s)}

Z/ { (1- 2pn5/2 E(n )1 w;(s)

{-12 O
R TR T )

where 6,(s) lies between 0 and 1. An application of the exponential inequal-
ity for continuous-parameter martingales (cf. Shorack and Wellner (1986, page
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899)) and exponential bounds for the empirical process y.;_; w;j(s) can be used
to show that P{|Rn| > n~1=¢} = o(n~!) for 0 < € < 1/2. Moreover, as will be
shown below, Condition (C) is satisfied. Hence Theorem 1 is applicable to give
an Edgeworth expansion of the form P{\/ﬁ([\n(t) — A@t)) € oz} = O(z) -
n~12¢(2)Py(z) — n"1¢(z)Pa(z) + o(n~1) when a(X;) = It dM;(s)/p(s) sat-
isfies (1.3) and F(t) > 0, p(t) > 0.

To show that Condition (C) holds, let f,(X;) = [ hu(s)dM;(s) for v =
1,2,..., where h, : R — R is a nonrandom Borel function that will be specified
later. Then

W, = B{B(X1,X2)fu(X2)|X1}

s

- _/_too 2_7.2%5{wl(s)hu(s)p(s)d/x(s) —p(s)</_°o hu(u)dA(u)>dM1(s)},

as can be shown by standard martingale and stochastic integral arguments (cf.
Fleming and Harrington (1991, page 86)) and by noting that E{ws(s)dM3z(u)} =
—I{szu}p(s)dA(u). Hence, for any K > 1 and constants a3, ..., ak, fo.__l a, W, =
0 a.s. implies that

/ t@(wﬂs)/p(s)) ( ‘IL_{j ayhu<s>)«m(s>

t s K
= / {/ za,,,h,,(u)dA(u)}(p(s))'ldMl(s) a.s. (2.11)
—oo L /-0 yz)
Since E{wl(s)u{i’lgu}’I{T1§C1}I{T'1§u}’u < 7} = (p(s)/P(T)) i, 57} — p(s) for
s > 7, it follows by taking conditional expectations on both sides of (2.11) that

7wy (s) X wy (1) t' K
/_m 2(s) (;auhu(s)>d/\(s)+———pm [ ;auhu(s)d/\(s)
s K

= /T {/ a,,h,,(u)dA(u)}(p(s))'ldMl(s) a.s. (2.12)
—oo L /=00,y

for all 7 < t. Letting h, = A” and taking variances on both sides of (2.12) gives

1 _p(T) a Qy v+1 _ Av+l e 2
P O[S e e -4 )

v=1

+ 2{ é S (A (E) A""’l(r))}{ /_; Iz; l—;(—i%ﬂa,,A”(s)dA(s)}

K

[ a 2dA(s)
= /_w(zu_ﬁ/\ +1(s)) o) for all T <t.

v=1
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Since A is continuous, this implies that a; = -+ = ag = 0. Note that (X, X2)
is a bounded random variable since p(t) > 0. Hence Condition (C) holds, and the
linear operator L defined by (Lf)(y) = E{B(y, X2)f(X2)} has infinitely many

nonzero eigenvalues.

Example 2. Suppose that in the random censorship model of Example 1, the
T; are related to covariates Z; via the linear regression model T; = pZ; + €,

where (Zy1,€1),...,(Zn, €,) are i.i.d. random vectors such that Z; is bounded and
independent of e, Wthh is assumed to have a continuous distribution function
H. Letting e;(a) = Ti — aZ; and #i(a) = 2721 I{e;(a)>ei(a)}» modified log-rank

statistics of the form

Sn(a) = > {Zz

1<i<n,Ti<Cin(r+aZi)

-3 ZjI{ej(a)zei(a)}/#i(a)} (2.13)

j=1

have been studied by Tsiatis (1990) in connection with testing Ho : p = po on
the basis of the test statistic S,(pp) and estimating p via the estimating equation
Sn(a) = 0. When 7 = oo, (2.13) corresponds to the usual log-rank statistic.
Tsiatis op. cit. chooses 7 so that p(7) > 0, where

p(s) = P{ey A (Cy1 — pZ1) 2 s} = EYi(s),
}/’l(s) = I{c;/\(C —pZ;)>s}> wi(s) = Y(S) - (S),

Mi(s) = Ite,<sn(Ci—p2:) / Yi(s)dA(s), A= —log(l—-H).

A basic tool in Tsiatis’ analysis to use the stochastic integral representation

Z/ {z LAY S0 }dMi(s), (2.14)

s)+n? Z, -1 w;(s)

with martingale integrators M; and left continuous integrands. By an argument
similar to that in Example 1, it can be shown that n ~1/25,(p) is an asymptotic
U-statistic with X; = (ZzaTuI{T,-SC,'}) and

Q(Xi) = (Z,-—EZl)/T dMi(S),

@) = £2) [ i:) amais) - [ {228 - pa amao

(Ezl)/T 1= “)dM( )

S

(EZ )wu(s) Z,Y,(s)
B(X:, X;) = > pP _ZRCRT L EZy pdM,(s),
’ (1) €{(07), (3} / { p(s) p(s) }
062,30 = T [ {Ga¥unte) - pe182)
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_I%ww(j)( 8)Wr(k)(S )}dM NOE

where " denotes summation over all six permutations of {i,4, k}; moreover,
Condition (C) is satisfied.

Example 3. Let X;,...,X,, beiid. random variables with a common contin-
uous distribution functlon F such that [*° |z|3dF(z) < co. Let F, =n~1 Y%,
It x,<z) denote the empirical distribution functlon and let X3) < -+ < X

denote the order statistics. Let 9 : [0,1] — R be four times continuously differ-
entiable. As shown by Moore (1968), the linear combination

Sn= Y wi/mX =1 [ ab(Fu(@)dFa(o)

-0

of order statistics is asymptotically normal with asymptotic variance no?, where
o =2 [[ wFE@WEFE©Q-FO)sar
<t
Let G(u) = F~(u) (= sup{t: F(t) = u}), F2(u) = F, (F~(u)) and

Z, = n_l/z{Sn _n / ~ w(F(m))dF(x)}

= vl | 1 G(uw(;‘;(u))dF;(u) - [ 1 Glu)(u)d .

Note that F is the empirical distribution function of the i.i.d. uniform random
variables F(X,),...,F(X,). As shown by Moore (1968, pages 264-265), Z,, =
Iyn + Is, + I3,, where

Ln = —vm / (u)(F2 (u) - u)dG(u),
Ln = v / {Wu) (Faw) - + L )y

+ O(|F (u) — )}{du+d(F;;(u) —u)}, (2.15)
B = =2 [ (R - v (W @G + Gluyw (w)du)

+ e / G () (w)dF (u)

Let w;(u) = Iyp(x,)<u} — v and note that

(Fr(u) —u)? = n‘z{Zw Z 'w,-(u)wj(u)}

1<i<j<n
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= n7lu(l —u) +n"2(1 - 2u) ij +2n72 Z w;i(u)w;(u),

1<i<j<n
(Fy(w) - u)® = n-3{§njw§-<u>+3 S wi (s (u)
i=1

1<i#j<n

+ 6 E wi(u)wj(u)wk(u)}.

1<i<j<k<n

Using these representations in (2.15), it can be shown that

Zn + é——l\/—ﬁ{ /01 u(l — u)y' (u)dG(u) — /01 G(u)w’(u)du}

is an asymptotic U-statistic with

e

U’Il

(X)) = / (w)wi (w)dG(u / G (u) (w)dw (w),
o (X;) = { / Gl (w)u(l — w)dws(u / (1 = 2u)w; (u)9 (u )dG(u)},
puxX;) = - | () () () dG (),
106X, %0 = [ Gl (wws(wyw; () (u)du

1
+ %2,,:/0 G(w)3" (w)wn (i) (w)wn(s) (w)dwr i) (u),

and that Condition (C) is satisfied, where ), denotes summation over all six
permutations of {i,7,k}.

3. Edgeworth Expansions of Bootstrap Distributions

For statistics which can be expressed as smooth functions of multivariate
sample means, it is known that Efron’s (1979) bootstrap method provides an
empirical Edgeworth expansion, with an O,(n~!) error, of the sampling distribu-
tion, (cf. Singh (1981), Beran (1982), Abramovitch and Singh (1985) and Hall
(1986, 1988)). The following theorem, which will be proved in Section 4, shows
that this result can be extended to asymptotic U-statistics.

Theorem 2. With the same notation and assumptions as in Theorem 1, let H
denote the distribution of X; and Ho(A) =n~1 3%, It x.ca) denote the empirical
distribution, and let X{,..., X be i.i.d. with common distribution H,. Suppose
that there exist functions dn,An,Bn,ﬁn, depending on H, and invariant under
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permutation of the arguments, such that

AN AP+ Y Ae(Xs X, Xl = 0,(1), (3.1)
1=1

1<i<j<k<n

Doan(Xi) = Y An(X)=0=) falvr, X)
i=1 i=1 i=1

= Z’?n(ylvy?:Xi)a fO'f' any yi,Y2 € S(H)’ (32)
i=1
sup 10xl®) =gy 15 (0,y) - Ble vl = 0,7, (33)

2€S(H) 1+ |a(:z:)| 2, y€ES(H)
where S(H) denotes the support of H. Let

n

. Z{dn(X;)+An(X;)}+ 5 Ba(X:,X3)

U,
3/2 3/2
\/;L- n 1<i<i<n n

+n72 > 4u(X7L XS, XR) + Ry, (3.4)
1<i<j<k<n

i=1

where nP{|R%| > n~17¢|H,} L0 for some € > 0. Let 62 = E{62(X})|H,}.
Then

P{U: < 6p2|H,} = ¥(2) - n~2¢(2)P1(2) + Op(n™1), wuniformly in — oo < z < oo.

Consequently, sup, |P{Un /o < z} — P{U% < Gn2|H,}| = Op(n71).

As an illustration of the applications of Theorem 2, the following corollary
shows that P{y/n(A,(t)—-A(t))/o < z} in Example 1 can be approximated by the
bootstrap estimate with an error of the order O,(n™!). First we review the boot-
strap method for randomly censored data X; = (T; A Ci, Ii1i<ci}), ¢ = 1,..., .
Let £, and G, be the Kaplan-Meier (1958) estimates of the distribution functions -
'F and G of T} and Ci, respectively. Generating independent 7, from I:"n and
Cr from G, gives the bootstrap sample X} = (T A CZ,I{T,-‘SC:})’ 1=1,...,n.
In the random censorship model, this is equivalent to taking i.i.d. observations
from the empirical distribution of X1, ..., X,, as shown by Efron (1982).

Corollary. With the same notation and assumptions as in Ezample 1, suppose

that F(t) > 0, p(t) > 0 and that a satisfies (1.3). Let H,, put weight 1/n on each
of the bivariate vectors X; = (T; A Ci, Ii1y<cyy), 1= 1,...,n, and let X{,..., X7

be i.1.d. with common distribution fIn. Let

n -1
Ty =T ACI, Y7 (s)=Iiges,y, Ant)= ) (ZY;(T‘;)> )

wTr<t,Tr<c; " I=1
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and &3; = nzi;TiSt,Tisci(E?=l K?(T't))_l{l - (Z?:l Y:‘i(’f;))_l} Then

[VAAL(®) = An®)) < Gn2lBn )~ P{VR(AA() - An(t)) < 02}| = 0,(1).

Proof. Let p(s) = n™' T, Yi(s), Ni(s) = Izr<srr<cry wils) = ¥i°(s) -

p(s), and MF(t) = Nx(t) - [* . Y*(s)(1 - A”n(s))dAn(s), where AA,(s) =

An(s) — An(s=). Then the same argument as that in Example 1 shows that
= /n(A%(t) — A.(t)) has the representation (3.4) with

Gn(X7) = / CA) g xg) = - /_ e e

w (s) 2(s)
(1 - 26(s)) o5 w3 () {n 1 i, wi (o)) .
E/ { WER(s) | Vale) F Ba(en Tl S, wi ()1 fas 9,

where 0 < 6,(s) < 1, and with An, 4. bounded in absolute values by some
nonrandom constant C on the event 2, = {(t) > 1p(t)}. Since P(Q2,) — 1 and

sup s<t|p(s) — p(s)] = Op(n~1/%), the conditions of Theorem 2 are satisfied and
therefore we can apply Theorem 2 to obtain the desired conclusion, noting that

BE(XDIE) = [ —;A(—f;(—)cm (s),

n -1
Af\n(s) (ZY;(S)) at s = Ti with T; < C;.

While Example 1 provides an Edgeworth correction to the normal approxi-
mation ®(z) for the probability - P{v/n(An(t) — A(t))/c < z}, the above corollary
shows that comparable accuracy can be achieved by using the bootstrap approx-
imation, which can be evaluated by simulation without assuming any knowled-
dge about the underlying distribution functions F and G of Ty and C;. Ta-
bles 1 and 2 below report some numerical results comparing the normal, Edge-
worth and bootstrap approximations to this probability in the case of exponen-
tial 73 and C;, with respective density functions A1e~*'* and e *2%(z > 0).
Here A(t) = Mt and p(t) = e~(M1+22)t In addition, the “exact” value of
P{/n(An(t) = A(t))/o < 2} is computed by the Monte Carlo method using
100,000 simulations. The Edgeworth approximation is the one-term Edgeworth
correction EDG(z) = ®(z) — n1/2¢(z)Py(z) to the normal approximation ®(z),

which is accurate to the order of O(n~!) by Theorem 1.
Each bootstrap approximation in Tables 1 and 2 is based on (i) a single
random sample of n observations X; = (T; AC;, I <c;)), ¢t =1, ..., n, giving the

empirical distribution H,, and (ii) 10,000 bootsrtap samples for the evaluation
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of P{y/n(A%(t) = An(t))/én < 2} by simulation. Instead of the 62 defined in the
above corollary, we use here the following simpler version:

n -1

22 _ (T

bn=Liy =0t D < YJ(TI)) Ly vawzay
i:T,'St,T;SC,‘ Jj=1

This differs from the 62 in the corollary by at most O,(n~!), and has the ad-

vantage of being always positive. As the proof of Theorem 2 shows, an Op(n~1)

modification of 6, does not change the conclusion of the theorem.

Table 1. Values of P. = P{\/n(A,(0.4) — A(0.4))/0 < z} and of the normal approxima-
tion ®(z), Edgeworth approximation EDG(z), and bootstrap approximation BOOT(z),
for exponential T; (with A; = 0.6) and C; (with A, = 0.4).

n =20 n = 60
z P. &(z) EDG(z) BOOT(z) P. ®(z) EDG(z) BOOT(z)
-0.5 0.373 0.309 0.315 0.387 0.327 0.309 0.312 0.322
—-0.25 0.419 0.401 0.411 0.402 0.432 0.401 0.407 0.433
—0.1 0.494 0.460 0.470 0.469 0.486 0.460 0.466 0.479
0 0.564 0.500 0.510 0.586 0.531 0.500 0.506 0.536
0.1 0.605 0.540 0.550 0.617 0.568 0.540 0.546 0.561
0.25 0.629 0.599 0.608 0.643 0.625 0.599 0.604 0.622
0.5 0.724 0.692 0.698 0.698 0.711 0.692 0.695 0.703

Table 2. Values of P, = P{/n(A,(0.4) — A(0.4))/o < z} and of the normal approxima-
tion ®(z), Edgeworth approximation EDG(z), and bootstrap approximation BOOT(z),
for exponential T; (with A\; = 0.2) and C; (with Ay = 0.8).

n = 60 n = 200

z P. ®(z) EDG(z) BOOT(z) P. &(z) EDG(z) BOOT(z)
—0.5 0.347 0.309  0.321 0.382  0.323 0.309 0.315 0.325
—0.25 0.433 0.401 0.418 0416  0.420 0401  0.411 0.422
~0.1 0483 0460  0.479 0.464  0.481 0460  0.470 0.480
0 0545 0.500 0.519 0547 0521 0500 0.510 0.524
0.1  0.595 0.540  0.558 0.606  0.559 0.540  0.550 0.563
0.25  0.630 0.599  0.616 0.639  0.619 0599  0.608 0.623
0.5 0.717 0.692  0.704 0.699  0.706 0.692  0.698 0.709

The censoring probability P{C; > T;} is 40% in Table 1 and 80% in Ta-
ble 2. The tables show consistent improvement of the bootstrap and Edgeworth



530 TZE LEUNG LAI AND JULIA QIZHI WANG

approximations over the normal approximations, and the improvement is partic-
ularly apparent when there is non-negligible discrepancy between the exact value
and the normal approximation, e.g., at z = 0 where ®(2) = 0.5 while the exact
value ranges from 0.52 to 0.56 in the four cases. The bootstrap method even
outperforms the Edgeworth approximation in most cases.

4. Proof of Theorems 1 and 2

The following two lemmas are basic to the subsequent proofs.

Lemma 1. Let X;q,...,X, be i.i.d. random vectors and let k > 2. Suppose that
Elp(X1,...,Xk)|" < o0 for somer > 2 and E{p(X1,...,Xi)|X;s,5 € I} =0 for
any proper subset I of {1,...,k}. Then there ezist absolute constants Akr and
By, depending only on k and r, such that for alln > k,

E < Ak,rnkr/zEI":b(Xla'"7Xk)|r’

> (X, Xy

1<i; <--<ix<n

Z Z '@L'(XhXju'"vXjk—l)

i=]1 i< < <Jr-1<N
forall 1<m<n-k+1.

r

E < By (mnF ) PEW(Xy,. ., X[

Proof. The case k = 2 and r = 3 has been established by Callaert and Janssen
(1978). A straightforward extension of their argument, making use of the moment
bounds of Dharmadhikari, Fabian and Jogdeo (1968) for martingales, can be used
to prove the lemma by induction.

Lemma 2. (Esseen’s smoothing inequality, cf. Feller (1971)). Let F, be a prob-
ability distribution function and G, be a function of bounded variation on the
real line with respective characteristic functions f, and g, such that g,(0) = 1
(= fa(0)) and ¢,,(0) = f(0) = 0. Suppose that F, — G, vanishes at oo and
that G, has a bounded derivative. Then for every T > 0,

fa(t) = gn(t) ’

24
" dt+ — sup |Gn(2)]. (4.1)

7T —o0<z<00

T
sup_[Fa(s) = Gula)| <+ [

—oco<z< 00 T J-T

To prove Theorem 1, let U}, = U, — R,,. Since P{|R,| > n"17¢} = o(n~!) by
(A1) and since

sup {18z +1) = 8(2)| + 18z + ) P;(z + 1) - $(2)P;(2)]} = o(n ™),

Jtj<n~17¢ —oc0<z<©

for 7 = 1,2, it suffices to show the validity of the Edgeworth expansion with U},
in place of U,. We shall therefore apply (4.1) with T = nlogn and

Fo(2) = P{ULJo <z}, Ga(2) = ®(2) — n"2¢(2)Pi(2) - n~ ¢(2)Pa(2). (4.2)
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Since g (t) = e—tg/z{l +n72q1(t) + n1gy(2)} for some polynomials ¢, g2,
[ a(0lde = otn™), for any 6> 0. (4.3)
[t|>n®

Let r > 2 be the same as that in Condition (C) or Condition (D) when (C) or
(D) holds. In view of (4.1) and (4.3), Theorem 1 will follow if it can be shown
that

|fn(t) — gn(t)] = ofn-1
/lflsw It] dt = o(n ™), (4.4)

/ 472 Fa(t)]dt = o(n™Y), (4.5)
n <[t|<n(r=D/" (log n)-1

/ £ fa(t)ldt = o(n™), (46)
n(r=1}/r(logn)~1<|t|<nlogn

where 0 < p < 1/4 will be specified later. Throughout the sequel we shall let
i=v=-1,9(t) = Be'*X)| 4,(X) = o(X) + n71a/(X) and n(t) = EeitAn(X),
Note that ¥, (t) — t(t) uniformly in |t| < n(logn)~1.

Proof of (4.4) under the assumptions of Theorem 1. We shall modify
the arguments in Section 2 of Bickel, G6tze and van Zwet (1986), which will be

denoted by BGZ for brevity. Take 2 < s < min(3,7) and choose 0 < p < 1/4
such that s/2 — p(s — 1) > 1 — 2p. In view of (A1)-(A4) and Lemma 1,

S

n~%/2 Z B(Xi, X;)

1<i<j<n

2
t2E<n“5/2 ) 7<Xi,xj,xk>) +t1E

1<i<j<k<n

= o(n=(+2|t)),

tzE{

n_5/2 Z 7(X13X_7a-Xk)

n32 N (X, X;)

1<i<j<k<n 1<i<j<n
' 2 2
< n"4t2(El/z S (X X, X0 )(El/z > B(XiX;) )
1<i<j<k<n 1<i<j<n
= o(n™%4jt)),

uniformly in [¢| < n?. Combining these with (2.1) and the Taylor expansions
e = 14+iu+O(u?), ™ =14 O([u]) and e = 1 + iu — u?/2 + O(|ul*) as u — 0
(cf. (2.7) of BGZ) yields

EeitU'I‘/a

= E{ (1 + i Z ’Y(Xi,Xj,Xk)) exp (oit/ﬁ iz:;An(Xi)

5/2
on
1<i<j<k<n

= Y ﬂ(xi,xjo)}+o<n-“+2">atl>

3/2
oan
1<i<j<n
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it
= E{ <1+;ﬁm Z ﬂ(X,',XJ')

1<i<j<n

it <
20’21’L3 <1<§<nﬁ XHX ) >exp <0’\/ﬁ £ An(Xz))}

+ a;_g_ﬂE{( R N R > An(x:)) } +o(n=0+20))4)

1<i<j<k<n i=1

= 2 (avm) + 7 (3 )7 (5)

B{B06 X exp (S7=(n(X0) + 40X )|
- g ()0 (5 ) B{ 06 Xy e ( o anr) + A )}
- (e (G)s {ﬂ(Xl,Xs)ﬁ(Xz,Xa)eXP (%T;An(xn)}
2 ()

() ) oo (i)

+ o(n~(+20) ). (4.7)

3

T ) |

Applying Taylor’s expansions for 9, (t/c+/n) and for el to the above expression
then shows that f,,(t) = EeltVs/7 is equal to
e~ /2 — =133 /2 (a4 /6 + b/2) J0° |
2
tze‘*2/2 o’ Eﬁz(Xl,Xz) . tie—t /2ﬁ _ t6e—t 2/2 a3 N 2113 N -b_2‘
no? 4 not 24 nob 72 12 8
+ o(n~U+2))),

uniformly in |t| < n?. Hence f,(t) = gn(t) + o(n~(*20)|¢|) uniformlly in |t| < n?,
implying (4.4).

Proof of (4.5) under the assumptions of Theorem 1. Following BGZ, we

shall decompose the range of integration in (4.5) into two parts: n("=1)/"(log n)~!
> |t| > ev/n and e/n > |t| > n”, where € > 0 will be specified later. By (1.3),
there exists 0 < 7 < 1 such that supj,;>¢ [¢(u)| < 7. For m < n, let

Wm,n =n-1/22A‘n(Xi)+n_3/2 z ﬁ(Xian)+n_5/2 Z ﬂ(Xi’Xjan)'
1=1 m+1<i<j<n m+1<i<j<k<n

(4.8)
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For n(™= 1)/’(log'rz)"1 > |t| > ey/n, apply Lemma 1 with m ~ (27 logn)/|log 7|
to get

m 2
( -5/2 Z Z X,, j,Xk)> + ,tlrE n—3/2

i=1 i<j<k<n

iy
i=1 j=it+1

= O(n"*(logn)~"/?), (4.9)

i R

4y 1/4
< [tll+37‘/4n—5/2——91‘/8{ (Z Z X,,XJ,)u))}
=1 i<j<k<n
- {E DY B(XiX;)

tn_5/2z E Xz,X];XL

1=l i<j<k<n

m*”zz Z B(X:, X;)

i=1 j=1i41

1‘}3/4
i=1 j=i41

= O(n=3/4=1/" (log n)=1/2-37/8) (4.10)

using Hélder’s inequality. Let H be the greatest integer < r, and let h be the
greatest integer < 3r/4. Combining (2.1) with (4.9), (4.10) and using Taylor’s

expansions for e'* as in the first two equalities in (4.7) yields

H
fn(t) = E{ZU'<UTL3/2 Z Z :BX,,X ) lth,n/a}

i=1 j=i41

crn5/2 {(Z . 7(X”XJ’X“))‘Z: 1( na/zz Z B(Xi, X;) )D

i=1 i<j<k<n =1 j=i41
% eitwm,n/a} +0(n"*(logn)~"/?). (4.11)
In view of (4.8), |E(elWmn/o|X, 11 ... X, )| < |Eexp(itn™/25™ | 4,(X;)

/o) = W™ (n"Y?t/5)|, and therefore [Ee‘twm "/"] < lwn(t/a\/_)lm. L1kew1se
conditioning on X, X;ny1,..., X, can be used to show that

m~—1
< |Eexp '<itn_1/2 Z An(Xi)/cr)

=1

]Eﬁ(xm,xm+1)eifwm-n/° (BIB(Xm, Xms1)]),

and, therefore, by symmetry,

Z Z 'Eﬁ Xi, X;)eltWmin/o

i=1 j=m<+1

< m(n —m)[ya(t/ovn)|™ " BIB(X1, X)),

Repeating this argument for the other terms of (4.11) shows that
[fn (O] = o(n[gn(t/ov/n)|™H) + O(n~* (log n)~"/2), (4.12)
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uniformly in ev/n < t < n=D/7(logn)~1. Since ¥n(t/ov/n) = ¥(t/a/n) + o(1)
uniformly in |t| < n"~Y/"(logn)~! and since supjy|¥(u)| < ne while m ~
(2rlogn)/|log ne|, (4.12) implies that |fn(t)] = O(n~1(logn)~"/?) uniformly in
ev/n < |t] < n /" (logn)~L.

For n? < |t| < ey/n, take 2 < s < min(3,r) and apply Lemma 1 with m
~ (9nlogn)/t? to show that

m 2
tzE(n"s/zz > v(Xi,XJ-,Xo) +tI°E

i=1 i<j<k<n
2})

s

2SS B X))

i=1 j=i+1

= O((n"logn)*/?),

(orforE 5
i=1 i<j<k<n
(= })

n YN B(X X))
i=1 j=i+1
= O(n~*?logn).
Therefore, proceeding as in the first two equalities of (4.7). we obtain (4.11)
with H = 2, h = 0 and with the O(n~!(logn)™"/2) term there replaced by
O((n"Ylogn)*/?). Hence, analogous to (4.12), we now have

|£2(D)] = o(nlgn(t/ay/m)™) + O((n ™ logn)*/?). (4.13)

Choose ¢ sufficiently small so that |1, (t/ov/n)| < 1 —12/(3n) for all |t| < ev/n
and n > ng (sufficiently large). Hence, for |t| < ey/n and n 2> ng,

|1/)n(t/0\/5)|_’" < exp{-mt*/(3n)} = exp{~(3 + o(1)) log n};

so (4.13) implies that |fa(t)] = O((n™" log n)*/?) for n? < |t| < e1/n. Hence (4.5)
follows.

Proof of (4.6) under the assumptions of Therorem 1 when Condition
(D) holds. For nlogn > |t| > n(r=1/7(logn)~!, we shall apply Lemma 1 with
m ~ (logn)?. Instead of (4.8), we use here

Wn,n =n—1/22An(Xi)+n”3/ZZ Z B(Xi, X;)+n~5/? Z y(Xi, X5, Xi).
i=1 i=1 j=i+l m+1<i<i<k<n

(4.14)

Making use of (2.1), Lemma 1 and arguments similar to (4.7) and (4.9), we obtain,

for n("=1/7(logn)~? < |t| < nlogn,

fn(t) = E{[1+U_,;_§—/§E Z ’Y(Xi’X.‘i’Xk)

i=1 i<j<k<n
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20~2n5 (Z E X,,XJ,Xk)> 2} exp (io—th,n)} + o(n~(1+9))

izl i<j<k<n

- E{Qm,n(t,xm_z,xm_l,...,Xm+4)exp(itvi/m,n/a)}+o(n—<1+9>) (4.15)

for some 6 > 0 and some nonrandom function Qm,n of the indicated arguments,
where the last equality follows by symmetry, e.g.,

{Z Z Y(Xi, X5, Xx)e lth,"/q}

i=l i<j<k<n

B ( 7;1 )E{’Y(Xm_%Xm—l,Xm)eithm/a}

+ (0= m)( 7 )B{1(Xmos Xon, Ky )P}
+ m( n-—2-m )E{7(Xm>Xm+1,Xm+2)eitwm’"/a}-

Since Ev*(X1, X2, X3) < 0o, these symmetry and combinatorial arguments also
yield
{EQhn(t, Xm—2,- -, Xm44)}/* = O((mn?|t]/n®/2)2). (4.16)

From (4.15) it follows that
fn(®)] < B{lQmn(t: Xm—2, - Xmra) I ECV /0| X oo, X )|} + 0(n 1), (4.17)

By Condition (D), >m7 Z]—m 2 8(Xi, X;) = T oo (27 0o (X N em—2

9,(X5)). Let @ = {51 len™ Tiem—2 90(X5)| < (t/0v/n) 7%}, where 0 <6 < 1
is the same as that given in Condition (D), and let Q2 denote the complement of

Qy. Since (t/v/n)~% > n=¢/2(logn)~% and E|g,(X)|" < oo with r > 5,

P(Q;) < {Zlch Z g,, > U—5n1-5/2(10gn)—6}
j=m-—2
= O(n~((=¥4/2m =1 (logn)™?), (4.18)

by the tail probability bounds (3.2)-(3.4) of Chow and Lai (1975). Since E| Y} 77
Sme —z+1 B(X:, X;)I° < Cm® for some constant C by Lemma 1, it follows from
(4. 14) and arguments similar to (4.7) that

IE(eith.n/UIXm_z, . ,X'n)

E(exp{aijﬁ[gsAn(Xi)-Fi(Zgu )(V -1 nzgu(Xj))J

v=1 j=m-—

<
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m~-3 m-~3
. an3/2 Z Z 6XzaX }'Xm 2,..., )

i=1 j=i+1
4 1 it m-3 m-3 { it m-3
< E[{1+ ——< BXi,X-)}exp{ [ A (X
; 2\ ond/2 = 50 ( 2 Vn ; (X:)
< = . Cm®|t]®
+ Z (Zgu )( T -1 2gV(Xj)>:|}lX'm“2’ ’Xn:| W
j=m—
_ m—3 it m m-5 . t4 m m—35
- ¢n +0_n3/2( 2 >¢n £n+ +240'4TL6{< 2 )¢n C‘nZ
(5 )erocas ot (7 )em i Gua |+ Clmitin =20, (419)
where

bn = E(exp{i:;gig)-i-ai;_[ (X)

+§QV(X) (cyn'l z": 9 (X; ))] }’ Zn: 9. (X ) (4.20)

j=m-2 j=m-=2

and &r,...,(n2, -, (n s are bounded random variables, e.g., |{,| < E|B(X1, X2)|,
1¢n 2| < EBY( X1, X2), |¢nsl < (E)B(X1,X2)])%. In view of Condition (D), there
exists 0 < 7 < 1 such that |¢,| < 5 on Q, for all sufficiently large n (with n("=1)/"
(logn)~! < [t] < nlogn), noting that Sup|¢<niogn|tlEl/(X)]/n3/? = o(1). There-
fore it follows from (4.19) that

E(|E@E™Wm /7| X, s, X)) = {O(n™) + O((m|t|n=3/2)3)}4/3.  (4.21)
From (4.17), it follows by Holder’s inequality that

1/4
] < {BQhn(t. Xmoz, s Xmsa) | {BUag)
o 3/4
+ E(|B(WVmn /9| X s, ... ,X,,)|4/319n)} . (4.22)

Since m ~ (logn)?,|t| < nlogn and %((1 -6/2)r—-1) > 43(171 — 1) = 2, combin-
ing (4.22) with (4.16), (4.18) and (4.21) yields |fn(t)| = o(n~'~?) uniformly in
nlogn > [t| > n"~/7 for sufficiently small 6 > 0.

Proof of (4.6) under the assumptions of Theorem 1 when Condition
(C) holds. Let

2 if E|7(X17X2’X3)|=07
4K(r + 1)/{(K - 8)r} if E|y(X1,X2,X3)| > 0.

¢ (4.23)
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Define Wi, as in (4.14), where m is so chosen that m — 3 = 2M is even and
Mt2 ~ n2+2q/1{(10g n)2+40/j(. (4.24)
Since nlogn > |t| > n("~U/"(logn)~!, (4.24) implies that
n2q/1\'(logn)40/1( <M< n2q/K+2/r(10gn)4+40/K. (425)

From (4.23) and the assumption that K(r — 2) > 4r if E]y(X;, X2, X3)| = 0 and
K(r —2) > 32r — 40 if Ely(X1, X2, X3)| > 0, it follows that 2¢/K + 2/r < 1.
Moreover, for the case Ely(X;, X3, X3)| > 0, we obtain by Lemma 1 and (4.24)
that

lt,BE,n-5/2 Z Z ')’(Xi, Xj,Xk),3 — O(n3(1+q/K)—9/2(10gn)3+60/1()’
i=1l i<j<k<n
noting that 9/2 — 3(1 + ¢/K) > 1 by (4.23) since K > (32r — 40)/(r — 2). Hence
(4.15) still holds for sufficiently small § > 0 and with Q,,, satisfying (4.16).
Moreover, in the case E|y(X1, X2, X3)| = 0 (i.e., (X1, X2, X3) = 0 a.s.), (4.15)

trivially holds with Qm, , =1.
Recalling that m — 3 = 2M, we obtain from (4.14), (4.15) and (4.16) (in

which we use EQZ . < (EQ%, )*/?) by an argument similar to (3.4) of BGZ that

n(®)F + o(n™27%)
2(B{Qmn(t Xm-2s- s X ) B ™ o X s X))

(o 2(35 Emen)
m—4 m-3

m-—3 n
+ n—3/2 Z Z ,B(X,-,Xj)+n_3/2 Z E IB(X'ivXj)}’Xm—-Z,'-'vX'n)

=1 j=i+41 i=1l j=m-=2

IA

IA

2{Ean,n(t, Xonas .. ,Xm+4)}E

2

4,4 2 it <
= O(M*t*/n )E<exp{av,ﬁ ;(An(Xf) — An(Y))
it 2M-1 2M
=5 2 Zl(mxi,xn—ﬁm,l’j))
i=1 j=it+
it 2M n
+ mz Z (ﬂ(X“XJ)—,B(Y,,YJ))}>,
i=1 j=2M+1

IA

it
O(M*t*/n?)E <'E exp {m Z(ﬁ(X,-,X)

n—2M
) , (4.26)

- ,B(}/iaX)),le}/l)"'aX2MaY2M}
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where Y, Y1,... Y, areiid. random variables that are independent of X, X 1o
Xn and such that Y has the same distribution as X. Let n' = 2M +|(n—2M)/2],
where [z] denotes the integer part of z. Since n — 2M > 2[(n — 2M)/2] =
2(n' — 2M), it follows from (4.26) that

[fa®)]? + o(n™27%9)

O(A/‘:lzt4)E<lE(exp {&% jé(ﬁ(Xi,X)

2(n’—21\/[))
nl

M4t it 2M
= O( TI',2 )E(exp{m;—s/zz Z <B(Xi,Xj)

i=2 j=2M+1

IA

- ﬁm,X»}]Xl,Yl, . ,XzM,Ym>

- B(X:,Y;) - B(Y:, X;) +5m’m)}>

) 2M n
= O(M*t*/n®)E exp {itn—3/2 >y v(xi,n;xj,}g)}, (4.27)
i=1 j=2M+1
where v(z,y; X,Y) = {B(z, X) - B(z,Y) — B(y, X) + B(y,Y)}/o. Moreover, the
factor O(M*t*/n?) in (4.26) and (4.27) can be replaced by 1 if (X1, X3, X3) = 0

a.s.
Since Condition (C) holds, we can use exactly the same argument as that in
BGZ, pages 1473-1477, to show that

2M
Bep{itn™P Y, 3 oYX, %)
’ i=1 j=2M+1

n'—2M
} + O(n'q(logn)_zo + M'K/z), (4.28)

analogous to the upper bound at the top of page 1477 of BGZ. Since n’ — 2M ~
n/2, it follows from (4.24), (4.25), (4.27) and (4.28) that

|fa(®) + o(n=27%)
< {1 +O<M4t4>I{E|'y(X1 ,xz,xa)l>0}}{e"p <_ l%g(lz(logrm)—# O(n™(log n)—20)}

n2
= o(n"%(logn)~%), (4.29)

noting that M*t*/n? = O(n?t84/K+4/7(1og n)12+160/K) and that in the case
Ely (X1,X2,X3)] >0, ¢g—(2+8¢g/K +4/r) = ¢(K —8)/K —2 —4/r = 2
by (4.23) while 160/K < 160(r — 2)/(32r — 40) < 160/32 = 5. (For the case
v(X1,X2,X3) = 0 as., g(= 2) is the same as that used in BGZ.) From (4.29),
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£ (8)] = o(n~(log n)~3/2) uniformly in n("~1/"(logn)~! < |t| < nlogn, proving
(4.6).

Proof of Theorem 2. We shall apply (4.1) with T = nlogn (or T = dn for some
d > 0), Fo(z) = P{U? — R, < 6nz|H,} and Gn(2) = ®(2) — n~/%¢(2) Pi(z).
We can proceed in the same way as in the proof of (4.4) above to show that
Jitj<ne 8|71 fn(t) = gn(t)|dt = Op(n~1) in this case, replacing E by E(-|H,) and
o(n=t), 0(n=?) by 0,(n7?), O,(n7?), etc. From (3.3) it follows that

/ &2 (z)dH,(z) — 0? = / (62 (z) — o*(z))dH . (z) + / a*(z)dH,(z) — o

_ an(2) = a(2) 2 (@n(@) = @)\ g (o
= [ 2@+ @) D2 o @i (D) ek @)

+ %g(aﬁ(xi) —o?) = o,,(%), (4.30)
since [ o?(z)dH,(z) = n"t T, a?(X;) = Op(1). Similarly,
/&i(z)dﬁn(x) = a3 + Op(n™'/?),
[[ 6 @6n@nla. v)a(@)a () = b+ Op(n ).
To prove [no<itj<n=1/(logn)=1 [t~ f.(t)|dt = op(n~!), we make use of the

following result of Abramovitch and Singh (1985, page 129) on the empirical
characteristic function 9(t) = [ e**(®)dH, (z):

1,/;(t/\/ﬁa) - w(t/\/r_w)’ — 0 a.s. for any a > 0. (4.31)

sup
[t|]<ne

Let 9 (t) = [ exp{ita(c) + it(an(z) - a(m)+n‘1fin(m))ﬂ}dﬁn(:c). Since [ |An(z)]
dH,(z) = O,(1) by (3.1) and since [ |Gn(z) — a(z)|dHn(z) = Op(n~1/2) by an
argument similar to (4.30), it follows that

balt/5/R0) = $(t/ Vo) o 0. (4.32)

sup
t|<nir=1)/r

Combining (4.31) and (4.32) yields ¢ (t/\/no) = ¥(t//no) + op(1), uniformly
in |t| < n{"~1)/" and we can therefore repeat the same proof as that of (4.5).

To prove [, (——1)/+(10g n)-1<t|<n logn |t fo(t)|dt = op(n~!) when Condition (C)
holds, define the linear operator L by (Lf)(y) = [ Bn(y, a:)f(:z:)dﬂn(x), in analogy
with the linear operator L in Condition (C). Let W = (L f,)(X7) and define

7 = (B, (W;W) /By, (W) Eg, (WP P2)

1<u,wv<K,
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where £ denotes expectation under the distribution H,. Let V denote the
correlatlon matrix of the random variables W, = f,(X;). By (3.3) and an ar-
gument similar to that used in (4.30), Apin(V) = Amin(V) + O ,(n~1/2), where
Amin(-) denotes the minimum eigenvalue of a symmetric matrix. Ordering the
absolute values of the eigenvalues A; of L as A1l > |X2] > -+, it then fol-
lows that [Ag|? > K~ 1{Amn(V) + O o(n"12)}, (cf. (4.6) of BGZ). Moreover,
E(lﬂn(Xl,X2)] |H,) = Op(1) by (3. 3) and Condition (C). Hence we can use the
arguments of BGZ to complete the proof, after some modifications similar to

those introduced in the proof of (4.6) under Condition (C).
Finally suppose that Condition (D) holds. For d > 0, let

Bna = sup utt)) < n7 log )=+,

n(r=1)/"(log n)=1<|t| <dn
It will be shown that given any € > 0, there exists d. > 0 such that
P(Anpq4,)21—€ forall large n. (4.33)

By (4.1), on the event A, 4.,

sup |Fa(z) = Gn(z)] < 771 / 8172 Fa(t) — gn()ldt
[t <=2/ (log n)~1
n~1(logn)~3 + 8(den) ! sup |G (2)] (4.34)

for all large n. Since the first term on the right hand side of (4.34) has been shown
to be Op(n~1), (4.33) and (4.34) imply the desired conclusion sup, n|F,(z) —
Gn(2)| = Op(1).

In view of Condition (D), there exists 0 < 7 < 1 such that

sup |¥(1,781,...,78K)| < n for all large |7, (4.35)
[saf+-+|sx|<|r]—¢

where ¥(7,u1,...,ux) = [exp{ira(z) +1i K u,9,(z)}dH(z) is the character-
istic function of (a(X), g1(X),...,9x(X)). The empirical characteristic function

U(7,u1,...,ux) = [exp{ira(z) + i °K | u,g,(x)}dH,(z) satisfies

\il('r,ul,...,uK) - \Il('r,ul,...,uj()' — 0 a.s. (4.36)

sup
T2+u§+~-~+u3\, <ne

for any a > 0, (cf. Abramovitch and Singh (1985)). Let

G (T Um—2s- s Yn) = /exp (ir{dn(x) + 17" An( Z Br(z,y;) })df[n(x).

j=m-=2
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By (3.3) and (3.1),

sup (z,9;) -
*€S(H),y1€S(H),...,.yn €S(H zz: J B( .%)!
+/Ién( ) — a(z)|dHn(z “l/lAn )dH . (z) = 0,(n~1/2).

Since n™! T,y B(z,4;) = TIC, gu(@)(en™ Ti, 9,(y5)), it then follows
that there exists for any ¢ > 0 sufficiently small d, > 0 such that for all large n,

~

¢n(77 Ym—-2,--- 7yn) )

P{ sup
|7|<dev/n/o,ym—2€ES(H),...,yn €S(H)

—‘if(r,rcln'l > 91(ys), - TernTh Y gx(yj))‘ <1 —n)/3} >1-¢/3. (4.37)

j=m-2 j=m=2

Combining (4.37) with (4.35) and (4.36) yields

P{ sup Bt/ Yty < n+(1—n>/2} >1-¢/2 (4.38)

|i|Sdeﬂ,(ym-2,-~,yn )esn,t

for all large n, where Sp; = {(ym=2,..-,¥Un) : y; € S(H), S&  len? > i=m—29v

(y5)| < (t/oy/n)~}. To obtain (4.33) from (4.38), we can proceed as in the proof

of (4.6) under Condition (D), replacing the ¢, defined in (4.20) by bn(t/o/m, .o,
LX)
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