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Abstract: In data fusion, data owners seek to combine datasets with disjoint obser-

vations and distinct variables to estimate relationships among the variables. One

approach is to concatenate the files, specify models relating the variables not jointly

observed, and use the models to generate multiple imputations of the missing data.

We show that the standard multiple imputation estimator of the sampling variance

can have positive bias in such contexts. We present an approach for correcting

this problem based on Bayesian finite population inference. We also present an

approach for data fusion when some values are confidential and cannot be shared.
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1. Introduction

In many settings, researchers, policymakers, and other data analysts require

variables that are not found in the same dataset. Mounting new surveys to obtain

records with all variables measured can be an expensive endeavor. Therefore,

many analysts in this situation seek to combine data from different sources, for

example administrative records and survey data. We consider a special case of

such data integration contexts: the analyst seeks to combine two data files that

have disjoint records and some distinct variables. This is known as data fusion

or statistical matching.

Data fusion arises in a variety of settings. It is used in marketing science to

combine data from separate surveys, for example product purchase and media

viewing data (Kamakura and Wedel (1997); van der Putten, Kok, and Gupta

(2002); Gilula, McCulloch, and Rossi (2006)). It is used by economists to fa-

cilitate policy microsimulation modeling (Moriarity and Scheuren (2003)). It

is employed by national statistical agencies including, for example, the Italian

National Statistical Institute (D’Orazio, Di Zio, and Scanu (2002)) and Statis-

tics Canada (Rässler (2002, pp.60-63)). For applications in other areas, see

Kadane (2001, reprinted from a 1978 manuscript), Rodgers (1984), Moriarity

and Scheuren (2001), and D’Orazio, Di Zio, and Scanu (2006).

http://dx.doi.org/10.5705/ss.2010.140
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Data fusion can be treated as a missing data problem. For example, Ru-

bin (1986) suggests that the data owners concatenate the files, specify models

relating the variables not jointly observed, and use the models to generate mul-

tiple imputations of the missing data in the concatenated file. The data owners

can repeat the multiple imputation analysis for several specifications of the joint

distribution to assess sensitivity of conclusions to those specifications. Rubin

(1986) recommends that agencies perform at least two multiple imputations per

specification to enable ascertainment of sampling variability.

In this article, we focus on the validity of the standard multiple imputation

variance estimator for assessing sampling variability in data fusion given specifi-

cation of the imputation models. Using simulations, we show that the standard

multiple imputation variance estimator can have positive bias in these contexts;

in fact, the bias can be orders of magnitude in size. We then present an approach

for correcting this problem that is based on Bayesian finite population inference.

The idea is as follows: (i) obtain or generate a large population that includes the

records in the concatenated file, (ii) consider any unknown values for records in

the constructed population as missing, and (iii) repeatedly complete the miss-

ing data in the population by imputing from models that are coherent with the

observed marginal and assumed joint distributions. The analyst computes the

quantity of interest in each of the completed populations, and combines these

quantities with simple rules to obtain variance and interval estimates. We show

via simulation that this leads to proper estimation of sampling variability and

hence, for correctly specified data fusion models, well-calibrated inferences.

As an extension of this idea, we present a multiple imputation approach for

data fusion when two data owners consider some values to be confidential, so

that they are not willing to share the sensitive values in their databases with

each other. The approach builds on the idea of partially synthetic data (Rubin

(1993)); Little (1993); Reiter (2003); Abowd and Woodcock (2004); Reiter and

Drechsler (2010)). First, to protect confidentiality, each owner replaces sensitive

values in its data with r imputations drawn from models fit with its own data.

Second, the owners share and concatenate the protected datasets to create r

partially synthetic replicates. Third, the owners use Bayesian finite population

inference on each concatenated dataset to obtain point and variance estimates.

These estimates are combined using simple formulas derived in the appendix of

this article. These formulas differ from standard multiple imputation (Rubin

(1987)) and from standard partial synthesis (Reiter (2003)), because they are

designed specifically to enable Bayesian finite population inferences in the data

fusion context.

The remainder of the article is organized as follows. Section 2 reviews stan-

dard multiple imputation approaches for data fusion, and illustrates the potential



BAYESIAN FINITE POPULATION IMPUTATION FOR DATA FUSION 797

for biased estimation of sampling variances. Section 3 presents the Bayesian fi-

nite population imputation approach and shows that it leads to valid inference.

Section 4 extends this approach to multiple imputation for confidential data fu-

sion. Section 5 concludes with remarks about implementation of these proposals.

Throughout the rest of the article, we refer to all data owners and analysts—who

may be economists, marketers, statistical organizations, etc.—as agencies.

2. Data Fusion and Multiple Imputation

To fix the data fusion setting, suppose that there are two datasets, D1 =

(X1, Y1) owned by Agency 1 and D2 = (X2, Z2) owned by Agency 2. Here, X, Y ,

or Z can be multivariate. None of the n1 records inD1 are inD2, and the variables

in Y1 and Z2 do not overlap. Hence, Y2 is not observed for the n2 records in D2,

and Z1 is not observed for the n1 records in D1. The same variables comprise X1

and X2. As an illustration of this setting, X1 and X2 could include demographic

variables available for all individuals, Y1 could include wealth measures collected

only by Agency 1, and Z2 could include health measures collected only by Agency

2. Let D = (X,Y1, Z2) be the concatenated file, where X = (X1, X2) is the

concatenation of X1 and X2.

2.1. Data fusion by multiple imputation

Data fusion can be treated as a missing data problem, where the complete

dataset has (X,Y, Z) for all records in D1 and D2. At first glance, dealing with

the missing data in the concatenated file may seem hopeless: there is no infor-

mation about the joint distribution f(Y, Z|X) in D. However, the agency can

posit specifications of this joint distribution and perform analyses under those as-

sumptions. For example, suppose that, possibly after suitable transformations,

f(Y, Z|X) is presumed to be a conditional bivariate normal distribution. The

range of admissible values for cov(Y, Z|X) is limited because the variance ma-

trix must be positive definite. The agency can select several plausible values of

cov(Y,Z|X) from the admissible region, either manually or by drawing from a

prior distribution, and perform the desired analyses under each selected covari-

ance specification (Moriarity and Scheuren (2003); Rässler (2003)). The agency

also may have auxiliary information about the unknown elements of the covari-

ance matrix, for example from previous studies or from population data, that

further constrains the admissible region; see D’Orazio, Di Zio, and Scanu (2006)

for several examples of such constraints involving normal and multinomial data.

Viewing data fusion as a missing data problem suggests using missing data

solutions for analyzing the concatenated file. In particular, the agency can use

multiple imputation for data fusion, as we now describe. For any specification

of f(Y, Z|X), the agency creates D(l) = (X,Y (l), Z(l)), where Y (l) = (Y1, Y
(l)
2 ),
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Z(l) = (Z
(l)
1 , Z2), and Y

(l)
2 and Z

(l)
1 are imputed values based on draws from the

predictive distributions of Y and Z implied by f(Y, Z|X). To enable estimation
of sampling variability given f(Y, Z|X), the agency creates several completed
datasets, (D(1), . . . , D(m)), each containing independent draws of the missing Y2
and Z1. For l = 1, . . . ,m, let q(l) and u(l) be respectively the estimate of some
population quantity Q and the estimate of the variance of q(l) in D(l). Analysts
use q̄m =

∑m
l=1 q

(l)/m to estimate Q, and use Tm = (1+1/m)bm+ ūm to estimate
var(q̄m), where bm =

∑m
l=1(q

(l) − q̄m)2/(m − 1) and ūm =
∑m

l=1 u
(l)/m. For

large samples, inferences for Q are obtained from the t-distribution, (q̄m −Q) ∼
tνm(0, Tm), where the degrees of freedom is νm = (m−1)(1+ūm/((1+1/m)bm))2.

Multiple imputation for data fusion is appealing. The agency can use the
completed datasets for a variety of inferences. For example, it is straightforward
to estimate the coefficients in the regression of X on (Y,Z), or any other regres-
sion for that matter, with completed datasets. The agency easily can ascertain
the sampling uncertainty associated with these estimates: it need only combine
point and variance estimates from the multiple datasets. Finally, the agency can
share the datasets with others, which is an important benefit for government
organizations and researchers charged with disseminating data.

2.3. Bias in Tm in data fusion

Unfortunately, Tm can be badly biased in data fusion settings, as we now
illustrate via simulation. Let (X,Y, Z) have a multivariate normal distribution
with means equal to zero, variances equal to one, cov(X,Y ) = 0.3, cov(X,Z) =
0.8, and cov(Y, Z) = 0.4. The partial correlation of Y and Z given X is approx-
imately ρY Z|X = 0.2795. To construct D, we simulate n = 900 values from this
distribution. Let D1 contain the values of (X,Y ) for the first 500 records, and
let D2 contain the the values of (X,Z) for the next 400 records. Hence, Y and
Z are never jointly observed.

We created multiply-imputed datasets using the Bayesian imputation ap-
proach of Rässler (2003). This approach enables imputation from theoretically
correct models. Hence, any biases in Tm stem from inappropriateness of the
multiple imputation combining rules rather than incorrect imputation models.

Let βY |X and σ2
Y |X be, respectively, the true coefficient and residual variance

in the regression of Y on X. Define βZ|X and σ2
Z|X analogously. For i = 1, 2,

let Wi = (1, Xi), i.e., a column of ones is appended to Xi for use in a regression.
We use non-informative prior distributions for all parameters. The imputation
strategy proceeded as follows.

2.1 Simulate values of σ2
Y |X and βY |X from standard Bayesian posterior distri-

butions estimated with a linear regression of Y1 on X1. Let σ
(l)2
Y |X and β

(l)
Y |X

be the drawn values.
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Table 1. Illustration of the potential bias in Tm and conservative 95% con-
fidence interval coverage rates when using standard multiple imputation for
data fusion.

Estimand var(q̄10) Avg. T10 95% CI Cov.
βY Z|X 0.0007 0.0056 100%
βY X|Z 0.0024 0.0057 99.7%
βXY |Z 0.0004 0.0010 99.7%
βXZ|Y 0.0008 0.0009 96.3%
µY 0.0019 0.0020 94.9%
µZ 0.0017 0.0017 94.2%

2.2 Simulate values of σ2
Z|X and βZ|X from standard Bayesian posterior distribu-

tions estimated with a linear regression of Z2 on X2. Let σ
(l)2
Z|X and β

(l)
Z|X be

the drawn values.

2.3 Compute the conditional covariance σ
(l)
Y Z|X = ρY Z|Xσ

(l)
Y |Xσ

(l)
Z|X using the

posited ρY Z|X .

2.4 Impute Y2 using N(W2β
(l)
Y |X+(Z2−W2β

(l)
Z|X)σ

(l)
Y Z|X/σ

(l)2
Z|X , σ

(l)2
Y |X−σ

(l)2
Y Z|X/σ

(l)2
Z|X).

Let Y
(l)
2 be the imputed values.

2.5 Impute Z1 using N(W1β
(l)
Z|X+(Y1−W1β

(l)
Y |X)σ

(l)
Y Z|X/σ

(l)2
Y |X , σ

(l)2
Z|X−σ

(l)2
Y Z|X/σ

(l)2
Y |X).

Let Z
(l)
1 be the imputed values.

We add Y
(l)
2 and Z

(l)
1 to D to create D(l). This five step process was repeated

m = 10 times resulting in (D(1), . . . , D(A.6)), which were then used for analysis.

In the simulation, we evaluated inferences for six estimands, including the means

of Y (µY ) and Z (µZ), the coefficients of X (βY X|Z) and Z (βY Z|X) in the

regression of Y on X and Z, and the coefficients of Y (βXY |Z) and Z (βXZ|Y ) in

the regression of X on Y and Z. Imputations in the simulations used the correct

value of ρXY |Z to illuminate the bias in Tm.

Table 1 summarizes the properties of the standard multiple imputation infer-

ences obtained from 1,000 simulations. The averages of q̄10 are within simulation

error of the true values and so are not reported. For the means, the multiple

imputation inferences have good properties: Tm is approximately unbiased and

coverage rates are near the nominal 95%. For βXZ|Y , TM appears to have a

slightly positive bias, but the resulting inferences are reasonable. However, the

multiple imputation inferences for the remaining three regression coefficients are

unreliable. For these estimands, Tm has large positive bias, resulting in coverages

rates near 100%. This is particularly troubling since estimation of relationships

involving Y and Z is often the purpose of data fusion. We note that simulations

in Rässler (2004) also exhibit conservative coverage.
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Why is Tm unreliable for data fusion? The reason is that analysts who

compute ūm and bm in the standard way do not properly account for the in-

formative prior distribution for ρY Z|X . To illustrate this, let m = ∞ for sim-

plicity. Given a particular value of ρY Z|X , the analyst’s posterior distribution

of interest is f(Q|D, ρY Z|X). Assuming that the posterior distribution of Q is

approximately normal—as is usual in multiple imputation contexts—the ana-

lyst must estimate V ar(Q|D, ρY Z|X). As in Rubin (1987), this variance can

be decomposed into E(V ar(Q|D∗, ρY Z|X)) + V ar(E(Q|D∗, ρY Z|X)), where D∗

represents the completed data. The first component is ūρ = lim
∑m

l=1 u
(l)
ρ /m

as m → ∞, where u
(l)
ρ = V ar(Q|D(l), ρY Z|X). The second component is bρ =

lim
∑m

l=1(q
(l)
ρ −q̄ρ)

2/(m−1), where q
(l)
ρ = E(Q|D(l), ρY Z|X) and q̄ρ = limm

l=1 q
(l)
ρ /m

as m → ∞. In standard multiple imputation, however, Tm is not based on ūρ and

bρ; rather, it uses ū∞ = lim
∑m

l=1 u
(l)/m as m → ∞ and b∞ = lim

∑m
l=1(q

(l) −
q̄m)2/(m − 1) as m → ∞. These latter two quantities are computed without

considering ρY Z|X , i.e., u(l) = V ar(Q|D(l)) and q(l) = E(Q|D(l)). In gen-

eral, ūρ ̸= ū∞, and bρ ̸= b∞, which results in bias in Tm. For a simple

but instructive example, let ρY Z|X be the estimand Q of interest. We have

q̄∞ = ρY Z|X , so that point estimation from standard multiple imputation is cor-

rect and has no sampling error. However, except in trivial cases, ū∞ > 0 and

b∞ > 0, so that T∞ ̸= V ar(q̄∞|D, ρY Z|X) = 0. In contrast, ūρ = bρ = 0, since

E(V ar(ρY Z|X |D(l), ρY Z|X) = 0 and V ar(E(ρY Z|X |D(l), ρY Z|X) = 0. We note

that when ū∞ ≈ ūρ and b∞ ≈ bρ, Tm should be an approximately valid estimate

of variance.

Table 1 suggests that the relative magnitude of the bias in Tm increases with

the influence of ρY Z|X on the estimand. Among the six estimands, βY Z|X is

most strongly affected by ρY Z|X , and its associated Tm is positively biased by a

factor of 8.0 (.0056/.0007). Next in the order are βY X|Z and βXY |Z since, with

ρXY = .3 and ρXZ = .8, the ρXY |Z changes more dramatically with ρY Z|X than

ρXZ|Y does. For these quantities, the associated Tm are positively biased by

factors of about 2.5. Next is βXZ|Y , which has a minor reliance on ρY Z|X and

only small bias in Tm. Finally, µY and µX are independent of ρY Z|X , and their

associated Tm are approximately unbiased.

To examine the nature of the bias further, we repeated the simulation under

different scenarios. We first set ρY Z|X = 0 to represent conditional independence

between Y and Z, which is implicitly assumed in many data fusion applications

(D’Orazio, Di Zio, and Scanu (2006)). For βY Z|X , the positive bias in Tm jumps

to a factor of 20; for βY X|Z and βXY |Z , the factors are 2.8 and 2.2, respectively.

We then set ρY Z|X = 0.9 to represent a high partial correlation between Y and

Z. For the three regression coefficients, Tm continued to have positive bias, but
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the magnitudes were greatly decreased. Bias factors for the three regression

coefficients ranged from roughly 1.1 to 1.4. Thus, as the strength of ρY Z|X
increases, it appears that there is reduced potential for bias in Tm.

Finally, to illustrate that these bias trends can be present even in seemingly

innocuous scenarios, we performed a new simulation assuming joint independence

of X, Y , and Z. We again used steps 2.1 – 2.5 for multiple imputation with

m = 10. For βY Z|X , Tm was positively biased by a factor of about 20; for the

other estimands, Tm was approximately unbiased. These results are in accordance

with the trends in Table 1. The bias factor was large for βY Z|X , which is depends

heavily on ρY Z|X . The bias factors were essentially zero for the other estimands,

which do not depend on ρY Z|X because of independence. We also repeated this

simulation using ρY Z|X = 0.9. All bias factors were close to one. These results

confirm what was seen previously: the relative bias in Tm decreases with the

strength of ρY Z|X .

3. Bayesian Finite Population Imputation

An alternative would be to replace the multiple imputation approximation

with an exact Bayesian inference, as in Gilula, McCulloch, and Rossi (2006).

Exact Bayesian inferences properly account for information in prior distributions.

However, some agencies prefer the simplicity of combining point estimates to

deriving posterior distributions in the presence of missing data, particularly when

the integrated data could be used for a variety of analyses. To facilitate these

preferences, we approximate the exact Bayesian inference by treating data fusion

inference as a problem in Bayesian finite population inference (Gelman et al.

(2004, Chap. 7)). As we will see, this enables derivation of simple combining

rules that can enable valid inferences.

Suppose that the n records in the concatenated data, D, are a subset of a

much larger population, P , of N records. Further, suppose that a finite popu-

lation analogue of the parameter of interest can be described. For example, for

the coefficients in the regression of Y on (X,Z), the corresponding finite pop-

ulation quantity is (W ′W )−1W ′Y , where W is an N × p + 1 matrix containing

a vector of ones and the values of the p variables in (X,Z). Finite population

analogues exist for many common estimands, including summary statistics and

logistic regression coefficients. Let Q generically represent the finite population

representation of the quantity of interest.

Following the logic of Bayesian finite population inference, the analyst im-

putes the missing values for the N − n records not in D, as well as any missing

values in D, e.g., Y2 and Z1. The result is an entire completed population, P (l).

The analyst then computes the value of Q in P (l); call this Q(l). For example, if Q

is the population mean of Y , the analyst takes the sum of the n observed values of



802 JEROME P. REITER

Y1 and the N−n imputed values of Y . Each Q(l) is a draw from the posterior dis-

tribution of Q under the posited models for (X,Y, Z), so that the analyst can gen-

erate many Q(l) to summarize the posterior distribution of Q. When the posterior

distribution of Q given V ar(Q|D) is normal, the analyst can generate a modest

number of draws, say m = 10 draws, and use Q − Q̄ ∼ tm−1(0, (1 + 1/m)Wm),

where Q̄ =
∑

Q(l)/m and Wm =
∑

(Q(l) − Q̄)2/(m− 1).

For many data fusion contexts, D1 and D2 are not probability samples from

a well-defined target population. In such cases, the agency can generate a hypo-

thetical population on which to implement Bayesian finite population inference.

The agency should set N much larger than n to minimize the impact of finite

population correction factors on variance estimation. This process proceeds as

follows. First, the agency generates Y
(l)
2 and Z

(l)
1 using the data fusion models

and assumed distribution for f(Y,Z|X). Second, the agency generates X for the

N − n records not in D using a model for X, which can be estimated from the

marginal distribution of (X1, X2). Alternatively, the agency could use a Bayesian

bootstrap (Rubin (1981)) from the completed data. Third, the agency generates

values of Y for the N − n records using a model for f(Y |X), which can be esti-

mated with D1. Finally, the agency generates values of Z for the N − n records

using the implied data fusion model for f(Z|X,Y ). The result is one completed

population, P (l).

For data fusion contexts in which D1 and D2 are random samples from a

target population, the target population is a natural candidate for P . In general,

the records not in D1 and D2 are missing all of (Y, Z) and most variables in

X, except possibly for design variables like stratum or cluster indicators. The

agency needs to impute plausible values for all the missing variables to generate

m completed populations. The agency should take the design information into

account when imputing; for example, include indicators for strata in imputation

models (Reiter, Raghunathan, and Kinney (2006)), or use Bayesian bootstraps

within strata when generating X.

We now illustrate the validity of the finite population imputation approach

for data fusion inferences. We use the same simulation design as in Section 2.

We again use the data fusion methods of Rässler (2003) to facilitate evaluation

of the approach. However, rather than implement standard multiple imputation,

we constructed hypothetical populations with 100,900 records, i.e., we repeatedly

generated 100,000 additional records, as follows.

3.1 Complete D using the Steps 2.1 – 2.5 from Section 2, assuming ρY Z|X =

0.2795, to obtain D(l).

3.2 Simulate X for the 100,000 records excluded from D by drawing from the

posterior predictive distribution, f(X|X1, X2), based on noninformative prior
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Table 2. Illustration of valid inferences when using finite population impu-
tation for data fusion.

Estimand var(q̄10) Avg. W10 95% CI Cov.
βY Z|X 0.0005 0.0005 94.4%
βY X|Z 0.0025 0.0025 94.2%
βXY |Z 0.0004 0.0004 95.7%
βXZ|Y 0.0009 0.0009 95.3%
µY 0.0023 0.0022 94.9%
µZ 0.0017 0.0018 96.2%

distributions on all parameters (which include the mean and variance of X

in this simulation). Let X
(l)
exc be the drawn values of X for these records. Let

W
(l)
exc = (1, X

(l)
exc).

3.3 Simulate Y for the 100,000 records by drawing from the posterior predictive

distribution, f(Y |D1,W
(l)
exc), based on noninformative prior distributions; this

is estimated using D1. The parameters are the same as those drawn in Step

2.1. Let Y
(l)
exc be the drawn values of Y for these records.

3.4 Simulate Z for the 100,000 records as in Step 2.5 of Section 2. Specifically,

draw fromN(W
(l)
excβ

(l)
Z|X+(Y

(l)
exc−W

(l)
excβ

(l)
Y |X)σ

(l)
Y Z|X/σ

(l)2
Y |X , σ

(l)2
Z|X−σ

(l)2
Y Z|X/σ

(l)2
Y |X).

Here the parameters are the same as those used in Step 2.5.

We repeated Steps 3.1 – 3.4 m = 10 times, so that Q − Q̄ ∼ t9(0, 1.1W10).

Similar steps can be implemented with other imputation models and data fusion

techniques based on matching, as we discuss in Section 5.

Table 2 summarizes the properties of the inferences for 1,000 independent

runs of the simulation design that produced the results in Table 1. The averages

of q̄10 are within simulation error of the true values and so are not reported.

For all estimands, W10 is approximately unbiased, and coverage rates are near

the nominal 95% level. The same qualitative results were obtained for other

simulation designs discussed in Section 2. Thus, the Bayesian finite population

imputation approach avoids the large biases that can arise when using the stan-

dard multiple imputation variance estimator. Yet, it retains a desirable feature

of multiple imputation: straightforward estimation of uncertainty for a variety

of estimands by combining point estimates across datasets.

4. Confidential Data Fusion

When two or more agencies coordinate a data fusion, the agencies may not

be willing to share some of their data values with each other. For example,

two national statistical institutes may have collected their data under pledges of

confidentiality that they are legally bound to keep. In this section, we describe
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how multiple imputation can be used to preserve confidentiality while enabling
valid data fusion inference. For further discussion of integration of confidential
data in contexts other than data fusion, see Kohnen and Reiter (2009) and Reiter
(2009).

Let D1 = (D1S , D1C) and D2 = (D2S , D2C), where the subscript S corre-
sponds to values that are not confidential and can be shared between agencies
without disclosure limitation, and subscript C corresponds to confidential values
that require disclosure limitation methods prior to sharing. To begin the proce-
dure, each agency generates new data for its DiC , where i = 1 or i = 2, by simu-
lating replacement values from the posterior predictive distribution, f(DiC |Di).
The posterior distributions should respect any mechanisms used to select the
values to synthesize. For example, if all incomes above $250,000 are to be syn-
thesized, the synthesis models for income should condition on this fact; see Re-
iter (2003) for further discussion of this issue. We assume that each agency uses
non-informative prior distributions. Each agency creates r partially synthetic
datasets, D

(l)
1 = (D1S , D

(l)
1C) and D

(l)
2 = (D2S , D

(l)
2C), where l = 1, . . . , r.

Each agency should evaluate the disclosure risks associated with sharing
their partially synthetic copies. Approaches for evaluating identification and
attribute disclosure risks with partially synthetic data are described by Reiter
(2005), Reiter and Mitra (2009), and Drechsler and Reiter (2008).

After sharing the partially synthetic data, the agencies concatenate the
datasets—this is done arbitrarily, since the replications are done independently—
to create r versions of the complete data. Let D

(l)
syn = (D

(l)
1 , D

(l)
2 ), where l =

1, . . . , r. Each agency is now free to pursue its own analysis of the concatenated
datasets. We note that agencies need not specify f(Y, Z|X) to share each D

(l)
syn,

so that they only have to create r datasets once for use with any f(Y, Z|X) that
they wish to consider.

To make inferences, the agency implements the Bayesian finite population
imputation approach described in Section 3 for each D

(l)
syn. Recall that the

agency simulates m draws of Q for a given dataset; hence, there are M = mr
total completed populations. Let q(l,j) be the jth draw of Q for D

(l)
syn; let

q̄
(l)
m =

∑m
j=1 q

(l,j)/m; and, let w
(l)
m =

∑m
j=1(q

(l,j) − q̄
(l)
m )2/(m − 1). The following

quantities are then needed for inferences:

q̄M =

r∑
l=1

1

r
q̄(l)m (4.1)

w̄M =
r∑

l=1

1

r
w̄(l)
m (4.2)

bM =

r∑
l=1

(q̄
(l)
m − q̄M )2

r − 1
. (4.3)
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Table 3. Illustration of valid inferences when using finite population impu-
tation for confidential data fusion (r = 5,m = 10).

Estimand var(q̄50) Avg. T50 95% CI Cov.
βY Z|X 0.0006 0.0006 93.2%
βY X|Z 0.0024 0.0025 95.1%
βXY |Z 0.0004 0.0004 95.3%
βXZ|Y 0.0011 0.0010 93.2%
µY 0.0021 0.0020 94.1%
µZ 0.0019 0.0020 95.1%

The analyst uses q̄M as the point estimate of Q and TM = w̄M + bM/r as the

variance estimate. For inference, the analyst uses a t-distribution, Q − q̄M ∼
tvM (0, TM ), with degrees of freedom given by

vM = (r − 1)(1 +
rw̄M

bM
)2. (4.4)

Derivations of these inferential methods are presented in the appendix.

We illustrate the validity of these inferential methods using the simulation

design of Section 3 and m = 10. We replace all of Z2 with r = 5 partially syn-

thetic datasets generated from f(Z|D2) before concatenating the files. Table 3

summarizes the properties of T50 and the interval estimation procedure for 1,000

simulation runs. The averages of q̄50 are within simulation error of the true val-

ues and so are not reported. The simulated averages of T50 are approximately

unbiased for the corresponding variances of q̄50, and the coverage rates are ap-

proximately equal to the nominal 95% level. Hence, the inferential methods for

confidential data fusion can enable valid estimation of sampling variances and

intervals.

5. Concluding Remarks

The simulations used the true partial correlations to demonstrate clearly

that standard multiple imputation combining rules do not result in valid variance

estimates in multiple imputation for data fusion. In genuine settings, however,

the true partial correlation is unknown. To account for this uncertainty—which

often is larger than the sampling and imputation variability—agencies can follow

one of two general approaches. This first is akin to the approach described

in Rubin (1986): select a modest number of representative and scientifically

meaningful values of the partial correlations, run the Bayesian finite population

imputation procedure for each specification to get inferences, and interpret the

set of inferences as a sensitivity analysis. The second approach is more Bayesian

in spirit: specify and repeatedly sample from prior distributions for the partial
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correlations, run the Bayesian finite population imputation procedure for each

specification withm ≥ 1 to obtain at least one draw of the quantity of interest per

specification, and mix all the draws. The mixed draws approximate the posterior

distribution of the quantity of interest.

The Bayesian finite population imputation approach relies on generating

(Xexc, Yexc, Zexc) for many more records than are in the concatenated data D.

The resulting inferences will be sensitive to the choice of imputation models. In

contrast, standard multiple imputation for data fusion requires imputation only

for the missing Y2 and Z1, so that D contains comparatively larger fractions of

observed values than are present in the completed populations from Bayesian

finite population imputation. Thus, when comparing the Bayesian finite impu-

tation approach to standard multiple imputation for data fusion, it is legitimate

to ask the question: are potentially correct variance estimates worth the extra

reliance on the imputations? The answers to this question depend on the type

of analysis, as we now discuss.

For analyses involving variables that are marginally or jointly observed in just

one of the datasets, e.g., the mean of Z or the regression of Z on X, analysts can

avoid reliance on the imputation models by using only the relevant observed data,

e.g., use only D2 to estimate the regression of Z2 on X2. If the analyst instead

estimates such quantities using the fused data, the point estimates for standard

multiple imputation and Bayesian finite population imputation will be the same

in expectation when the imputations are from correct models. All bets are off

when the imputations are not from correct models: the mean squared error for

either approach could dominate depending on how implausible the imputations

are, although one generally expects the standard multiple imputation approach to

be the lesser affected. This suggests that agencies disseminating fused data should

include indicators of each record’s data source, so as to enable secondary analysts

to utilize single-source estimates either directly or to check the reasonableness of

point estimates from the fused data.

Typically, the main point of data fusion is to estimate quantities involving

relationships from the concatenated data. For such estimands, all the informa-

tion in the fused data comes from the agency’s joint imputation model. Unlike

multiple imputation for missing data, in the fusion context there is essentially no

observed information to anchor estimates of these associations should the impu-

tation model be incorrect. Accordingly, for parameters involving variables from

both agencies’ datasets, point estimates from both standard multiple imputation

and Bayesian finite population imputation are fully sensitive to the joint model

specification.

To reduce reliance on parametric models, agencies can perform data fusion

using predictive mean matching (Little (1988)), as suggested by Rubin (1986).



BAYESIAN FINITE POPULATION IMPUTATION FOR DATA FUSION 807

This approach substitutes observed values from Y1 for missing Y2 and observed

values from Z2 for missing Z1, where substitutions are selected based on predic-

tions from the agency’s joint model for (Y, Z|X); see Rubin (1986) for details.

Data fusion by predictive mean matching does not immunize the standard mul-

tiple imputation variance estimator from the potential biases demonstrated in

Section 2, which were evident even though the true models were used for impu-

tation.

The Bayesian finite population imputation approach also can be adapted to

work with predictive mean matching. In particular, the agency can construct

completed populations by using (i) the matching methods of Rubin (1986) to

complete D, (ii) a Bayesian bootstrap on the completed D to generate Xexc, (iii)

predictive mean matching to generate Yexc given Xexc based on a regression of

Y1 on X1, and (iv) Rubin’s (1986) predictive mean matching method to generate

Zexc given (Xexc, Yexc). Semi-parametric methods like predictive mean match-

ing are especially appealing for Bayesian finite population imputation, since the

validity of the results depends on large amounts of simulated data.

Turning to confidential data fusion, agencies have to decide on r, the number

of first-stage datasets. The choice of r involves trade offs between inferential

accuracy, disclosure risks, and computational convenience: relatively large values

of r result in smaller variances, greater disclosure risks, and greater computation.

When only modest amounts of data, e.g., 25% or less, need to be synthesized for

adequate protection, agencies can create small numbers of synthetic first-stage

datasets, e.g., set r = 3, since little efficiency gains are expected as r increases.

When large amounts of data need to be synthesized to protect confidentiality,

agencies should make r as large as they are willing to bear, since efficiency gains

can be substantial. Agencies can reduce computational burdens by using parallel

computing to generate the first-stage partially synthetic datasets, as well as to

create the hypothetical populations after sharing.

Confidential data fusion requires the agencies to synthesize their own data in

ways that preserve salient features of the distributions yet protect confidentiality.

Practically, this means that some confidential data fusion inferences are degraded

compared to those based on the original data, since it is impossible to preserve

all features of the original data unless the agencies share them outright—which

would not protect confidentiality. Such degradations are arguably unavoidable

when agencies seek to share confidential data in the fusion context. In a sense,

however, the most appropriate comparison of data fusion based on synthetic data

is not with data fusion based on the original data, as the latter is not possible

with confidential data. Rather, it is with data fusion based on otherwise altered

data—for which currently there are no principled methods of obtaining valid

inferences—or perhaps with no data fusion at all. The extra step of synthesizing

part of their data is the price agencies have to pay to protect confidentiality.
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For any approach to data fusion, the characteristics of the assumed distribu-

tion and external information limit the range of admissible specifications for the

unknown f(Y, Z|X). In confidential data fusion, each synthetic dataset could

admit different ranges. In such cases, one approach is to let the admissible range

contain only those specifications that are coherent with all shared D
(l)
syn. A sec-

ond approach is to perform inference for a given specification of f(Y,Z|X) using

only those D
(l)
syn that are coherent with f(Y, Z|X). Evaluating the trade-offs of

these two approaches is an area for future research.
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Appendix: Derivation of Inferences for Confidential Data Fusion

The analyst of the concatenated partially synthetic datasets seeks to estimate

f(Q|Dsyn), where Dsyn = (D
(1)
syn, . . . , D

(r)
syn). For each D

(l)
syn, let Q

(l)
∞ and W

(l)
∞ be

the point estimate of Q and its posterior variance that would be computed with

m = ∞ draws from D
(l)
syn. Let Q̄r = (1/r)

∑r
l=1Q

(l)
∞ , and let Q̄∞ = lim Q̄r and

B = lim
∑r

l=1(Q
(l)−Q̄∞)2/(r−1) both as r → ∞. Let Q∗ = {Q(l)

∞ : l = 1, . . . , r},
and let W ∗ = {W (l)

∞ : l = 1, . . . , r}. Then, f(Q|Dsyn) can be written as

f(Q|Dsyn) =

∫
f(Q|D,Q∗, B,W ∗, Dsyn)f(D|Q∗, B,W ∗, Dsyn)

×f(Q∗|B,W ∗, Dsyn)f(B,W ∗|Dsyn)dDdQ∗dBdW ∗. (A.1)

As in other applications of synthetic data, we find each component of this inte-

gral by assuming that the analyst’s distributions are identical to those used for

creating Dsyn. We also assume that the sample sizes are large enough to permit

normal approximations for these distributions. Thus, we require only the first

two moments for each distribution, which can be derived using standard large

sample Bayesian arguments. Diffuse priors are assumed for all parameters.

To begin, given D, the synthetic data are irrelevant for inferences, so that

f(Q|D,Q∗, B,W ∗, Dsyn) = N(Qobs, Vobs). (A.2)

Here, Qobs and Vobs are the mean and variance of the posterior distribution of Q

that would be obtained by performing the finite population imputation procedure

with the original data D and an infinite number of draws.

Next, since all we require for inference are the first two moments, it is suf-

ficient to consider f(D|Q∗, B,W ∗, Dsyn) = f(Qobs, Vobs|Q∗, B,W ∗, Dsyn). We
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presume the sampling distributions, (Q
(l)
∞ |Qobs, B) ∼ N(Qobs, B), for all l. This

is reasonable when the replacement values are generated from predictive distri-

butions based on the original data. With noninformative prior distributions, it

follows that

f(Qobs|Vobs, Q
∗, B,W ∗, Dsyn) = N(Q̄r,

B

r
). (A.3)

We also presume that Vobs ≈ W
(l)
∞ for any l. By extension, this implies W

(l)
∞ ≈

W̄∞ for any l. These assumptions are akin to those made about the complete-data

variance in standard multiple imputation. Presuming Vobs ≈ W
(l)
∞ is reasonable

here since these are complete-data variance estimators computed in the same way,

i.e., the analyst uses the same Bayesian finite population imputation scheme for

each D(l) that he or she would use for D, and the variability in posterior variances

tends to be smaller than the variability in posterior means (Rubin (1987, p.89)).

Hence, we set Vobs = W̄∞.

We next consider f(Q
(l)
∞ |B,W ∗, Dsyn). In eachD

(l)
syn, each draw ofQ from the

Bayesian finite population imputation procedure is an estimate of Q
(l)
∞ . Hence,

we have

f(Q(l)
∞ |B,W ∗, D(l)

syn) ∼ N(q̄(l)m ,
1

m
W (l)

∞ ), (A.4)

where q̄
(l)
m is the average of the m draws of Q computed with D(l). As a result,

we have

f(Q̄r|B,W ∗, Dsyn) = N(q̄M ,
1

rm
W̄∞). (A.5)

Thus, given B and W ∗, from (A.2), (A.3), and (A.5), we have

f(Q|B,W ∗, Dsyn) = N(q̄M , W̄∞ +
B

r
+

1

rm
W̄∞). (A.6)

We now turn to the distributions of the remaining variance components. For

f(W̄∞|Dsyn), from the posterior normality of Q we have

(m− 1)w
(l)
m

W
(l)
∞

∣∣∣D(l)
syn ∼ χ2

m−1, (A.7)

so that, assuming W
(l)
∞ = W

(j)
∞ for all (l, j), we have

r(m− 1)w̄M

W̄∞

∣∣∣Dsyn ∼ χ2
r(m−1). (A.8)

For f(B|W ∗, Dsyn), we apply Bayesian analysis of variance to (A.3) and

(A.4), so that
(r − 1)bM
B + W̄∞/m

∣∣∣Dsyn ∼ χ2
r−1. (A.9)
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We now need to average (A.6) over the distributions in (A.8) and (A.9).

As an approximation to this integral, for large m and r we can substitute the

approximate expectations for W̄∞ and B, namely w̄M and bM , into (A.6), so that

f(Q|Dsyn) ≈ N(q̄, w̄M +
bM
r
). (A.10)

For data fusion contexts with large M and modest r, we use a t-distribution with

degrees of freedom given by (4.4). This degrees of freedom can be derived by

matching the first and second moments of TM/(W̄∞ + B/r + (1/rm)W̄∞) to a

chi-squared distribution with vM degrees of freedom.
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Rässler, S. (2003). A non-iterative Bayesian approach to statistical matching. Statist. Neer-

landica 57, 58-74.

Rässler, S. (2004). Data fusion: Identification problems, validity, and multiple imputation. Aus-

tral. J. Statist. 33, 153-171.

Reiter, J. P. (2003). Inference for partially synthetic, public use microdata sets. Survey Method-

ology 29, 181-189.

Reiter, J. P. (2005). Using CART to generate partially synthetic, public use microdata. J. Of-

ficial Statist. 21, 441–462.

Reiter, J. P. (2009). Using multiple imputation to integrate and disseminate confidential micro-

data. Internat. Statist. Rev. 77, 179-195.

Reiter, J. P. and Drechsler, J. (2010). Releasing multiply-imputed, synthetic data generated in

two stages to protect confidentiality. Statist. Sinica 20, 405-422.

Reiter, J. P. and Mitra, R. (2009). Estimating risks of identification disclosure in partially

synthetic data. J. Privacy and Confidentiality 1, 99-110.

Reiter, J. P., Raghunathan, T. E. and Kinney, S. K. (2006). The importance of modeling the

survey design in multiple imputation for missing data. Survey Methodology 32, 143-150.

Rodgers, W. L. (1984). An evaluation of statistical matching. J. Bus. Econom. Statist. 2, 91–

102.

Rubin, D. B. (1981). The Bayesian bootstrap. Ann. Statist. 9, 130-134.

Rubin, D. B. (1986). Statistical matching using file concatenation with adjusted weights and

multiple imputations. J. Bus. Econom. Statist. 4, 87-94.

Rubin, D. B. (1987). Multiple Imputation for Nonresponse in Surveys. Wiley, New York.

Rubin, D. B. (1993). Discussion: Statistical disclosure limitation. J. Official Statist. 9, 462-468.

van der Putten, P., Kok, J. N. and Gupta, A. (2002). Why the information explosion can be

bad for data mining, and how data fusion provides a way out. In Proceedings of the Second

SIAM International Conference on Data Mining, (Edited by R. L. Grossman, J. Han,

V. Kumar, H. Mannila, and R. Motwant), SIAM: Arlington, VA.

Department of Statistical Science, Box 90251, Duke University, Durham, NC 27708-0251.

E-mail: jerry@stat.duke.edu

(Received June 2010; accepted March 2011)

jerry@stat.duke.edu

	1. Introduction
	2. Data Fusion and Multiple Imputation
	2.1. Data fusion by multiple imputation
	2.3. Bias in Tm in data fusion

	3. Bayesian Finite Population Imputation
	4. Confidential Data Fusion
	5. Concluding Remarks
	Appendix: Derivation of Inferences for Confidential Data Fusion

