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Abstract: We address the consistency property of cross validation (CV) for classifi-

cation. Sufficient conditions are obtained on the data splitting ratio to ensure that

the better classifier between two candidates will be favored by CV with probability

approaching 1. Interestingly, it turns out that for comparing two general learning

methods, the ratio of the training sample size and the evaluation size does not have

to approach 0 for consistency in selection, as is required for comparing parametric

regression models (Shao (1993)). In fact, the ratio may be allowed to converge to

infinity or any positive constant, depending on the situation. In addition, we also

discuss confidence intervals and sequential instability in selection for comparing

classifiers.
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1. Introduction

The beginning of the information age has prompted new challenges to statis-

tical learning. For example, in gene expression data analysis for medical diagnose

of patients, one is faced with the difficulty of building a classifier with thousands

or more variables as input but only a small number of training cases. With a

high input dimension and/or a relatively small sample size, statistical behavior

of a learning method becomes complicated and often difficult to characterize.

Obviously, understanding the relative performance of the various choices of

learning methods is important. Besides theoretical investigations of their risk

properties (such as rate of convergence), numerical comparisons have been re-

ported in the literature. For an empirical comparison of classifiers, the observa-

tions are often split into a training set and a test (or evaluation) set, and the

process is usually replicated in a certain way to reduce variability in data split-

ting. Then usually the candidate with the lowest test error rate is favored. How

reliable is such a comparison? Is it consistent in selection in the sense that the

better or best classifier will be selected with probability going to 1? How does

the data splitting ratio influence the consistency property?
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In this work, we intend to address these and some related questions on com-

paring classifiers. We set up the framework as follows.

Let (X1, Y1), . . . , (Xn, Yn) be i.i.d. observations having the same distribution

as (X,Y ), where X is the explanatory variable taking values in X and Y is the

response variable taking one of two values in {0, 1}. Let f(x) be the conditional

probability function: f(x) = P (Y = 1|X = x). For convenience, let Zn denote

(Xi, Yi)
n
i=1.

A classifier δ(x) = δ(x;Zn) is a rule to declare membership status of Y based

on the observed data Zn and the new X value. Mathematically speaking, δ is

a measurable mapping from X × [X × {0, 1}]n to {0, 1}. We are interested in

comparing the performances of different classifiers.

As is well known, the Bayes rule δ∗(x) = I{f(x)≥1/2} minimizes the error

probability P (δ(X) 6= Y ) over all δ mapping from X to {0, 1}. Since f is unknown,

the Bayes rule is not a formal classifier and one has to rely on the data to estimate

δ∗ one way or the other. Let PE(δ;n) = P (δ(X;Zn) 6= Y ) be the probability of

error of a classifier δ at sample size n. Since the Bayes rule minimizes the error

probability at each x, it is proper to assess the performance of a classifier δ relative

to it. Thus we consider the probability error regret PER(δ;n) = PE(δ;n)−PE ∗,

where PE∗ denotes the error probability of the Bayes rule.

In this work, we are mainly interested in the situation where the candi-

date classifiers are general (parametric or nonparametric) and are not necessarily

closely related to each (as in e.g., the situation of the classifiers being based on

nested parametric models, or from empirical risk minimization over classes of

sets with increasing VC dimensions).

Of course, the topic of comparing classifiers is not new. In the literature,

results on classifier selection and classification error rate estimation have been

obtained. In the theoretical direction, Devroye (1988) derived error probability

bounds for classifier selection based on data splitting, and obtained interesting

consistency (in terms of error probability convergence) and an asymptotic opti-

mality property. Various methods have been proposed for error rate estimation

for a classifier, including parametric methods, bootstrap, cross validation and

jackknife. See Efron (1983, 1986), McLachlan (1992, Chap. 10) and Devroye,

Györfi and Lugosi (1996, Chap. 8) for results and references. More recently,

Efron and Tibshirani (1997) proposed the .632+ bootstrap method to improve

on cross validation for error rate estimation. Other results related to classifier

comparison using cross validation or related methods include, e.g., Kohavi (1995)

and Dietterich (1998).

When classifiers are compared, consistency in selection is a desirable property

and one which, to our knowledge, has not been obtained in generality. Although

good estimates of error rates of individual classifiers can be used to judge whether
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two classifiers are different in accuracy, this may be a sub-optimal practice for

comparing classifiers.

The organization of the rest of the paper is as follows. In Section 2, we in-

vestigate the consistency (in selection) property of cross validation methods and

give sufficient conditions on the data splitting ratio. In Section 3, we consider

confidence intervals for the difference of the conditional error probabilities. Sec-

tion 4 addresses the issue of sequential instability in selection. The proofs of the

theoretical results are given in Section 5.

2. Consistency in Selection

Popular classifiers include parametric and nonparametric methods, such as

LDA by Fisher, logistic regression, classification trees, nearest neighbor, support

vector machines, neural networks, empirical risk minimization, as well as plug-

in methods based on estimation of the probability function f(x) (see Devroye,

Györfi and Lugosi (1996) and Hastie, Tibshirani and Friedman (2001)). These

methods perform well under different conditions and they may have different

rates of convergence in terms of PER. Under strong assumptions on the behavior

of f when it takes values close to 1/2, rates of convergence faster than 1/
√

n are

possible. For example, Tsybakov (2004) showed that the minimax rate of PER,

under a condition on f and a metric entropy assumption on the class containing

f , is n−(1+γ)/[2(1+γ)+ργ−γ], where ρ is an index of the order of the metric entropy

and γ > 0 is a margin parameter. Note that, for 0 < ρ < 1, the rate is always

faster than n−1/2 (but slower than 1/n).

With the many methods available, one naturally wants to find the best clas-

sifier for the current data. Assuming that one classifier is asymptotically the

best, how can we identify it with probability approaching one?

We focus on the data splitting approach. It is well-known that for this ap-

proach, due to data splitting, the training size is necessarily smaller than the

actual sample size, and thus the comparison of the classifiers is in fact comparing

the classifiers at a reduced sample size, which may introduce a bias. However,

this approach is still valuable for several reasons. One is that it is possible

to assess whether the comparison of the classifiers at a reduced sample size is

reasonably close to the targeted sample size via a certain sequential instability as-

sessment (see Section 4). Another is that the data splitting approach is basically

distribution-assumption free (except that the observations are i.i.d.) and thus is

more reliable when there is no compelling evidence to justify parametric mod-

els. Criteria for comparing learning methods based on the whole sample without

data splitting typically are derived with heavy use of distributional information.

For example, in AIC (Akaike (1973)) or BIC (Schwarz (1978)), one needs the

likelihood function, which is not available for non-model-based classifiers (e.g.,
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nearest neighbor rules). In addition, one can readily have performance bounds

for this approach.

Consider two candidate classifiers δ1 and δ2. We split the data into two

parts with n1 and n2 observations respectively: Z1 = (Xi, Yi)
n1

i=1 and Z2 =

(Xi, Yi)
n
i=n1+1. Apply δ1 and δ2 on Z1 to get δ1(x;Z1) and δ2(x;Z1), respectively.

Let Ŷ1,i and Ŷ2,i (n1+1 ≤ i ≤ n) be the predictions by δ1 and δ2 at Xn1+1, . . . , Xn,

respectively.

Let TE(δj) =
∑n

i=n1+1 I
{Yi 6=Ŷj,i}

be the test error for each classifier δj . We

select the one that minimizes TE(δj), j = 1, 2. When there is a tie, any tie-

breaking method can be used.

The issue of consistency in selection for comparing general procedures was

considered in regression in Yang (2005b). It turns out that for classification, there

are two drastic differences due to aspects of classification that are not present in

usual regression with a continuous response. One is that the requirement on the

splitting ratio can be much more stringent compared to the regression case to

handle fast rates of convergence of PER mentioned earlier, and the other is that

the disagreement rate of the two competing classifiers (not just the error rates)

plays a role.

2.1. When does consistency hold?

For defining consistency in selection, the candidate classifiers need to

be orderable in accuracy. For a classifier δ, let CPER(δ;n) = P (δ(X;Zn) 6=
Y |Zn) − PE∗ be the conditional probability error regret. Obviously, PER(δ;n)

= E(CPER(δ;n)).

Definition 1. δ1 is said to be asymptotically better than δ2 if for every 0 <

ε < 1, there exists a constant cε > 0 such that when n is large enough, we have

P (CPER(δ2;n)/CPER(δ1;n) ≥ 1 + cε) ≥ 1 − ε.

The definition basically says that the loss of δ2 (i.e., CPER(δ2;n)) is larger

with high probability, possibly by a tiny bit, than that of δ1. The loss of the

asymptotically better one does not have to converge at a faster rate than that of

the other classifier. For a toy example, suppose that the true probability function

is f(x) ≡ 1/3, that δ1 randomly assigns label 0 with probability 1 − 1/n, and

δ2 randomly assigns label 0 with probability 1 − 2/n. Then δ1 is asymptotically

better than δ2 by definition, but their convergence rates are the same. Let rn be

a sequence of non-increasing positive numbers.

Definition 2. δ is said to converge exactly at rate rn in probability if CPER

(δ;n) = Op(rn) and for every 0 < ε < 1, there exists a constant dε > 0 such that

when n is large enough, we have P (CPER(δ;n) ≥ dεrn) ≥ 1 − ε.
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The word “exact” in the definition emphasizes that CPER does not converge

faster on a set with probability bounded away from zero.

Assume that CPER(δ1;n1), CPER(δ2;n1), and P (Ŷ2,n1+1 6= Ŷ1,n1+1|Z1)

converge exactly at rates pn1
, qn1

and sn1
respectively. We allow sn to not

converge to zero.

Theorem 1. Under the condition that one of δ1 and δ2 is asymptotically better

than the other, we have that the classifier selection rule that minimizes TE(δj)

is consistent as long as n1 → ∞ and n2 max(p2
n1

, q2
n1

)/sn1
→ ∞.

Remarks.

1. In the context of regression, Yang (2005b) obtained a similar result for com-

paring regression estimators. There are substantial differences. One is that

the quantity sn1
did not appear in the regression case. This is an important

term, because it indicates the potentially large difference between the uncer-

tainty in estimating error rates of the individual classifiers and the uncertainty

in estimating the difference of the error rates (see Section 3). Another is that

for regression, the rate of convergence is usually not faster than n−1/2 and thus

the most stringent requirement on the largeness of n2 is that n2/n1 → ∞. For

classification, however, the error rate can be between n−1/2 and n−1, as shown

in Mammen and Tsybakov (1999) and Shen et al. (2003). As a result, we may

need to choose n2 so that n2/n
2
1 → ∞.

2. The property of consistency in selection is different from achieving the best

possible performance in classification accuracy. The core issue is that, due

to uncertainty in selecting the best classifier, the risk of the selected classi-

fier from a consistent selection rule is not necessarily the best in rate. Yang

(2005a) showed that the goals of consistency in selection and optimal regres-

sion estimation (in a minimax sense) cannot be achieved simultaneously in a

regression context. See Section 2.5 for more discussions.

3. When there are k candidate classifiers (k ≥ 3), assuming there is one that is

asymptotically best, a sufficient condition for consistency in selection is that

n1 → ∞ and that n2 max(p2
n1

, q2
n1

)/sn1
→ ∞ holds for comparing the best

candidate with each of the other candidate classifiers.

When the input dimension is high, the classification problem usually becomes

more difficult due to the curse of dimensionality, and the rate of convergence can

be very slow. Suppose that max(pn, qn) is of order n−β for some 0 < β < 1, and

suppose that sn is of order n−η for some 0 ≤ η ≤ β. Then the requirement on

data splitting ratio is n2/n
2β−η
1 → ∞ (and of course n1 → ∞). Clearly when

2β−η < 1, it suffices to have n1 = O(n2) (e.g., half-half splitting). Actually, when

the rates of convergence of δ1 and δ2 are very different, it may even be enough

to distinguish the classifiers with n2 = o(n1). This is in a dramatic contrast
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with Shao’s result (1993) for linear regression, where the requirement is always

n2/n1 → ∞.

When it is hard to assess P (Ŷ1,n1+1 6= Ŷ2,n1+1|Z1), an obvious upper bound

is 1.

Corollary 1. Under the same conditions as in Theorem 1, if pn and qn go to

zero no faster than 1/n, then a sufficient condition for ensuring consistency in

selection is n2/n
2
1 → ∞.

The stringent requirement on the splitting ratio in Corollary 1 can be sub-

stantially weakened when sn1
converges to zero. It is even possible that sn1

and

max(pn1
, qn1

) are of the same order, for which case the sufficient condition on the

splitting ratio in Theorem 1 becomes n2 max(pn1
, qn1

) → ∞. Under the condi-

tions in the theorem, the requirement of n2 max(p2
n1

, q2
n1

)/sn1
→ ∞ is equivalent

to n2 max(pn1
, qn1

)Rn → ∞ in probability, where

Rn =

∣∣∣P (Ŷ2,n1+1 6= Yi|Z1) − P (Ŷ1,n1+1 6= Yi|Z1)
∣∣∣

P (Ŷ1,n1+1 6= Ŷ2,n1+1|Z1)
.

Note that Rn is always between 0 and 1. We call it the essential error probability

difference. For classification, it is possible that two learning methods both have

very small PER, yet they disagree with each other often. For an extreme example,

take f(x) = 1/2, and δ1 and δ2 are just independent random assignments of

the labels with equal probability. Then both have PER equal zero, yet they

disagree with each other with probability 1/2, and Rn = 0. From the theorem

and above, Rn plays an important role in the requirement of data splitting ratio

for consistency.

Note that in the supervised learning literature, when data splitting is used

to compare procedures empirically, a popular guideline is to have 1/4 or so ob-

servations for evaluation (see Hastie et al. (2001)). Does this provide enough

power to differentiate the classifiers? Based on our result, the answer is that

it depends. When the classifiers are parametrically accurate (i.e., with PER of

order n−1/2) or better, this choice would not work even asymptotically. In appli-

cations, particularly challenging high-dimensional cases, classifiers typically have

rates slower than n−1/2. Then n1 and n2 of the same order would be sufficient

(which includes the choice of 1/4) for evaluation. When the sample size is not

very large and the competing classifiers are quite accurate, the larger choice of

1/3 or even 1/2 can perform better.

2.2. Selection based on CV

To utilize the data in a balanced way in applications, one usually takes a

cross-validation method instead of a single data splitting (see, e.g., Lachenbruch
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and Mickey (1968), Allen (1974), Stone (1974) and Geisser (1975)). There are

several versions of CV in the literature, including a sample of all possible split-
tings (this is called repeated learning-testing, see, e.g., Burman (1989) or Zhang

(1993)), or dividing the data into r sub-groups and making predictions for one
group at a time based on estimation using the rest of the sub-groups (this is

called r-fold CV, see, Breiman, Friedman, Olshen and Stone (1984)). Compared

to a single data splitting, these CV methods typically reduce the variability in
selection.

Theorem 1 can be extended to these CV methods. We consider the repeated

learning-testing version. Let M be an integer. We randomly permute the data
M times. After each permutation, we use the first n1 observations for training

the classifiers and use the last n2 for evaluation. Let π1, . . . , πM denote the
permutations and let τπj

= 1 if δ1 is selected based on the j-th permutation,

τπj
= 0 otherwise. Then the final selection by voting is: select δ1 if and only if∑M

j=1 τπj
≥ M/2.

Corollary 2. Under the same conditions as in Theorem 1, the CV selection

method is consistent.

Note that for Corollary 2, it does not matter how many permutations are

done for voting. Of course, in practice, a reasonable number of permutations is

helpful to reduce the chance of accidental selection of a classifier simply due to
the randomness of data splitting. The conclusion also applies to multi-fold cross

validation and other versions of CV methods.

2.3. Examples

Here we consider three examples. Two toy examples are used to illustrate the

influence of the essential error probability difference, a feature of classification.

Example 1. Suppose f(x) ≡ 1/2. Then the silly rule that always classifies a case
as class 1 (or 0) is a Bayes rule. Consider a classifier which randomly assigns a

label with probability 1/2 and another classifier which randomly assigns a case as

class 1 with probability 1/2−εn for some small εn. Then, because P (Ŷ2,i 6= Ŷ1,i|Z1)
is of order 1, the essential error probability difference Rn is of order |εn|. Then we

need n2ε
2
n1

→ ∞ for consistency. When one estimates the parameter P (Y = 1)

by (1/n)
∑n

i=1 Yi, then εn is of order Op(n
−1/2). Consequently, for this situation,

we need to choose n2/n1 → ∞ to ensure consistency in selection.

Example 2. For two classifiers δ1 and δ2, let Bin = {x : δi(x;Zn) = 1}. Sup-

pose that δ2 is more conservative than δ1 in assigning label 1 in the sense that
B2n ⊂ B1n. Suppose that f(x) ≥ 1/2 on An = B1n\B2n. Then CPER(δ2;n) −
CPER(δ1;n) = P (An|Z1). For this case, the essential error probability differ-

ence is of order 1. Consequently, for consistency in selection, it suffices to have



642 YUHONG YANG

n2P (An1
|Z1) → ∞. For a case with P (An1

|Z1) of order n
−1/2
1 , we need only that

n2
2/n1 → ∞, which is much less stringent than required in Example 1.

Example 3. Let X be [0, 1]d, with a moderate or large d. Consider the logistic

regression model on the conditional probability function

f(x) = f(x; θ) =
exp (θ0 + θ1x1 + · · · + θdxd)

1 + exp (θ0 + θ1x1 + · · · + θdxd)
.

Suppose that X has Lebesgue density p(x) > 0 on [0, 1]d. Let θ̂ be the MLE

of θ and let the estimator of f be f(x; θ̂). The resulting plug-in classifier is

δ1(x) = I
{f(x;θ̂)≥1/2}

. Under this model, if θi 6= 0 for at least one 1 ≤ i ≤ d, and

if f is not always above or below 1/2 on [0, 1]d (to avoid triviality), then the

classifier δ1 has PER of order O(1/n). To protect from model mis-specification,

we consider a classifier based on the more relaxed assumption that f is in a

Sobolev class with unknown order of interaction and smoothness, as follows.

For r ≥ 1, l = (l1, . . . , lr) with nonnegative integer components li, define

|l| =
∑r

i=1 li. Let zr = (z1, . . . , zr) ∈ [0, 1]r . Let Dl denote the differentiation

operator Dl = ∂|l|/∂zl1
1 · · · ∂zlr

r . For an integer α, define the Sobolev norm to

be ‖ g ‖W α,r
2

=‖ g ‖2 +
∑

|l|=α

∫
[0,1]r |Dlg|2dzr. Let W α,r

2 (C) denote the set of all

functions g on [0, 1]r with ‖ g ‖W α,r
2

≤ C. Then consider the following function

classes on [0, 1]d of different interaction orders and smoothness:

S1(α;C) = {∑d
i=1 gi(xi) : gi ∈ W α,1

2 (C), 1 ≤ i ≤ d},

S2(α;C) = {∑1≤i<j≤d gi,j(xi, xj) : gi,j ∈ W α,2
2 (C), 1 ≤ i < j ≤ d},

...

Sd(α;C) = W α,d
2 (C),

with α ≥ 1 and C > 0. From Yang (1999a), the minimax rate of convergence of

PER over Sr(α;C) is n−α/(2α+r), which does not depend on the input dimension

d, but rather on the true interaction order as in Stone (1985).

Since r and α are unknown, Yang (1999b) considered tensor-product spline

models of different interaction orders and used a penalized maximum likelihood

criterion to choose the spline order, the number of knots and the interaction

order jointly. The resulting plug-in classifier was shown to adaptively achieve

the minimax rate n−α/(2α+r) whenever f is in Sr(α;C) over 1 ≤ r ≤ d and

α ≥ 1. Note that the minimax rates for the Sobolev classes are all slower than

n−1/2. Indeed, when f is not parametrically simple around f = 1/2 (as is the

case for logistic regression, or expressed by a margin assumption by Mammen

and Tsybakov (1999)), one cannot expect a faster rate of convergence than n−1/2.
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From above, when the logistic regression model holds, δ1 is better. When it

does not, but f is in one of the Sobolev classes and is not a monotone function in

any linear combination of the input variables, δ1 does not converge at all in PER.

For this example, pn = n−1 and qn = n−α/(2α+r) when the logistic regression

model holds, and pn = 1 and qn = n−α/(2α+r) otherwise. In both cases, there is

not good control over sn1
. Thus for consistently selecting the better classifier, by

Theorem 1, we need the data splitting ratio to satisfy n2n
−2α/(2α+r)
1 → ∞ and

n1 → ∞. Since α and r are unknown, it suffices to take n2 and n1 of the same

order.

2.4. Cross validation paradox

Suppose a statistician’s original data splitting scheme works for consistency

in selection. Now suppose that the same amount of (or more) independent and

identically distributed data is given to the statistician. Obviously with more data,

he can make the estimation accuracy better for each candidate procedure, and can

also make the evaluation component more reliable. Thus he decides to add half of

the new data to the estimation part and the remaining half to the evaluation part.

He naturally thinks that with improvement in both the training and evaluation

components, the comparison of the candidate classification procedures becomes

more reliable.

But this may not be the case at all! With the original data splitting ratio,

the performance difference of the two learning methods is large enough relative

to the evaluation size. But when the estimation size is increased, e.g., by half of

the original sample size, since the estimation accuracy is improved for both of

the classifiers, their difference may no longer be distinguishable with the same

order of evaluation size (albeit increased). This is quite clear from the previous

subsection.

The surprising requirement of the evaluation part in CV to be dominat-

ing in size (i.e., n2/n1 → ∞) for differentiating nested parametric models was

discovered by Shao (1993) in the context of linear regression.

A simulation study

We present a simulation result to demonstrate the cross validation paradox.

We compare two different uses of Fisher’s linear discrimination analysis (LDA)

method in R with library MASS (by Venables and Ripley).

At the sample size n = 100, for 40 observations with Y = 1, we generate three

independent random variables X1, X2, X3, all standard normal; for the remaining

60 observations with Y = 0, we generate the three predictors also independent,

but with N(0.4, 1), N(0.3, 1) and N(0, 1) distributions, respectively. Then X3 is

not useful for classifying Y. We compare LDA based on only X1 and X2 with
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LDA based on all of the three predictors. Obviously, the first one is expected to

give a better classifier.

We split the 100 observations in ratio 30/70 (70 for evaluation) for comparing

the two classifiers by CV. With 100 such random splittings of the data, the first

classifier is declared winner if it performs no worse than the other on the evalu-

ation set, on average. One thousand replications of this are used to approximate

the probability that the first classifier is preferred by the CV method. Then sup-

pose that we have two hundred additional observations with 80 at Y = 1 and 120

at Y = 0, and the predictors are generated in the same way as above. We ran-

domly select 100 of the additional observations and add them to the estimation

set, add the remaining 100 to the evaluation set, do estimation and prediction,

repeat this 100 times to reduce the effect of splitting bias, and approximate the

probability of selecting the first classifier again by Monte Carlo. We continue

doing this until the total sample size is 900. The Monte Carlo approximations of

the true probabilities that the better use of LDA is the winner in the CV com-

parison are all based on 1,000 independent replications. The results are in Table

1. The ratios in the parentheses of the first row are the corresponding splitting

ratios for the full data.

Table 1. More observations can harm CV selection of the better classifier.

n=100 (30/70) 300 (130/170) 500 (230/270) 700 (330/370) 900 (430/470)

Sel. Prob. 0.835 0.825 0.803 0.768 0.772

Clearly, with more observations added to both the original estimation and

evaluation sets, the ability to detect the better classifier by CV is actually de-

creased. The reason, again, is that the equal splitting of the additional obser-

vations for adding to the estimation and evaluation sets makes the decreased

difference (in accuracy) between the two classifiers trained on the estimation set

less distinguishable with not enough increase of the evaluation size. In contrast,

if we maintain the ratio of 30/70, the probabilities of selecting the better classi-

fier are significantly improved over that from the equal splitting of the additional

observations, as shown in Table 2. Furthermore, if we increase the proportion

of the evaluation set as the sample size increases, the CV comparison of the two

classifiers does an even better job when we have more observations, as seen in

Table 3. Note that the fractions of the evaluation size at the five sample sizes

are 70%, 75%, 80%, 85% and 90%, respectively. The probability of selecting the

better classifier reaches 97.5%.

Table 2. Probability of selecting the better classifier: constant splitting ratio.

n = 100 (30/70) 300 (90/210) 500 (150/350) 700 (210/490) 900 (270/630)

Sel. Prob. 0.835 0.892 0.868 0.882 0.880
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Table 3. Probability of selecting the better classifier: increasing fraction for evaluation.

n = 100 (30/70) 300 (75/225) 500 (100/400) 700 (105/595) 900 (90/810)

Sel. Prob. 0.835 0.912 0.922 0.936 0.976

In summary, more is not necessarily better for cross validation comparison

of learning methods!

2.5. Risk of the selected classifier

It is useful to emphasize that a distinction should be made between differ-

ent uses of CV. One is for choosing a tuning parameter, where the concern is

mostly on the final classifier. Another is for comparing classifiers, where one is

mainly interested in finding the best classifier. For the former, deleting a small

proportion of cases is not necessarily inappropriate, and even delete-one can be

sufficient (see, e.g., Li (1987) and Shao (1997) in a regression context). For the

latter, however, under relatively few situations, we can have n2 of a smaller order

than n1.

For a better understanding of the difference between selecting the better

classifier and pursuing accuracy in classification with selection, we give a simple

risk bound below. For simplicity, consider a single data splitting as in Theorem 1.

Theorem 2. Let δ̂ be the selected classifier. Then

PER(δ̂;n)≤ min
j=1,2

PER(δj ;n1)+
4 log n2 + 3

3n2
+

√
2 log n2

n2

√
P

(
Ŷ1,n1+1 6= Ŷ2,n1+1

)
.

First note that for a typical classification problem, PER(δ;n) converges

at the same rate as PER(δ;n1) as long as n1 is of the same order as n. Con-

sider three scenarios: minj=1,2 PER(δj ;n) converges at the parametric rate n−1/2

(S1); minj=1,2 PER(δj ;n) converges no faster than n−1/2(log n)1/2 (S2); minj=1,2

PER(δj ;n) converges faster than n−1/2 (S3). Note that fast rate (S3) scenarios

have been given in the literature (see, Mammen and Tsybakov (1999), Shen et

al. (2003), Tsybakov (2004)), they are obtained under margin assumptions; the

slower rate of (S2) is a typical minimax rate without the margin assumption (see

Yang (1999a)).

If we have consistency in selection with n2 max(p2
n1

, q2
n1

)/sn1
→ ∞, then

max(p2
n1

, q2
n1

) is of larger order than sn1
/n2. Ignoring a possible logarithmic term,

the two additional terms in the risk bound in Theorem 1 may or may not affect

the rate of convergence. In the best situation, the risk of the selected classifier

converges as fast as minj=1,2 PER(δj ;n1). When n1 is forced to be of a smaller

order than n for consistency in selection (as is possibly needed for S1 and S3),

this rate is sub-optimal (compared to minj=1,2 PER(δj ;n)).
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Now consider a proper splitting for optimal risk rate. From the risk bound,

if the classifiers converge at the parametric rate or more slowly (S1 and S2), for

the final selected classifier to converge optimally or near optimally (i.e., ignoring

a logarithmic factor), it is sufficient to take n1 and n2 of the same order. (The

risk bound is sometimes also optimal for S3 in order, and can even be as small

as log n/n if P (Ŷ1,n1+1 6= Ŷ2,n1+1) = O(n−1), which occurs e.g., when δ1 and δ2

are both based on correct parametric models but one with extra parameters.) In

contrast, for consistency in selection, from Theorem 1, we must require that one

of the two classifiers be asymptotically better than the other, and taking n2 of

the same order as n is not sufficient for consistency in selection for S1 and S3.

In real applications, once a classifier is selected, one typically re-trains the

classifier using the full data, though theoretical properties are hard to obtain.

Also, the difference between a single splitting and multiple splittings (CV) can

show up in terms of the risk property of the selected procedure. For example, in

regression, it is known that delete-1 CV shares an asymptotic efficiency property

of AIC in nonparametric estimation with linear approximation models, while

one cannot expect this property to hold with a single (n − 1) : 1 splitting of the

data for training and evaluation. In contrast, for consistency in selection, there

does not seem to be a major difference between a single splitting and multiple

splittings. Corollary 2 shows that when a single splitting works, CV also works.

None of the results in the literature seem to provide evidence to suggest that for

finding the better classifier, multiple splitting can rescue an inconsistent single

splitting based method.

3. Confidence Interval for Comparing Classifiers

How much confidence do we have in the observed error rate difference of

two classifiers through a data splitting approach? In this section, via a central

limit theorem, we give an asymptotic confidence interval for the error probability

difference. Normal approximation based confidence intervals for error probability

have been considered in the literature. However, when a confidence interval (CI)

is sought for the difference of the error probabilities, the issue becomes more

complicated. In fact, the normal approximation may be invalid if the splitting

ratio is not appropriate.

3.1. A single data splitting

For n1 + 1 ≤ i ≤ n, let

Wi =





0, if Ŷ1,i = Ŷ2,i,

−1, if Ŷ1,i = Yi 6= Ŷ2,i,

1, if Ŷ2,i = Yi 6= Ŷ1,i.
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Obviously, given Z1, Wn1+1, . . . ,Wn are i.i.d. with mean −∆n1
, where ∆n1

=

P (Ŷ1,n1+1 = Yn1+1 6= Ŷ2,n1+1|Z1) − P (Ŷ2,n1+1 = Yn1+1 6= Ŷ1,n1+1|Z1). One

would then apply the Central Limit Theorem for W = 1/n2
∑n

i=n1+1 Wi, which

estimates the conditional error probability difference −∆n1
. However, the normal

approximation can be misleading because −∆n1
is not a fixed quantity but often

converges to zero as n → ∞. The issue becomes one of conditions under which

we can use the normal approximation to build a CI. Let v be the variance of

Wn1+1 conditional on Z1.

Theorem 3. Suppose n2P (Ŷ1,n1+1 6= Ŷ2,n1+1|Z1) → ∞ in probability, then

sup
−∞<x<∞

∣∣∣∣P
(∑n

i=n1+1 (Wi − EWi)√
n2v

≤ x

)
− 1√

2π

∫ x

−∞
e−

y2

2 dy

∣∣∣∣
→ 0 in probability.

Remarks.

1. For a confidence interval for the error probability of a given classifier, as long

as the Bayes error probability is not zero, a central limit theorem typically

does apply, and thus the normal approximation based CI is fine (as long as

n2 is large enough).

2. It is possible that the CI based on the normal approximation of W does not

contain zero, yet n2P (Ŷ1,n1+1 6= Ŷ2,n1+1|Z1) is small. For such a case, one

may erroneously claim that one classifier is better than the other when one

actually does not have the declared confidence.

Theorem 3 enables the construction of an asymptotic confidence interval for

the conditional error probability difference. Let sdW = ((n2−1)−1
∑n

i=n1+1(Wi−
W )2)1/2 be the standard deviation of the Wi’s. Under the condition that n2

P (Ŷ1,n1+1 6= Ŷ2,n1+1|Z1) → ∞ in probability, it is easy to show that sdW is a

consistent estimator of
√

v in the sense that sdW /
√

v → 1 in probability. Thus,

given confidence level 1 − α, an asymptotic confidence interval for the difference

of the conditional error probability between the two classifiers, CPE(δ1;n1) −
CPE(δ2;n1), is W ± zα/2sdW/

√
n2, where zα/2 is the 1 − α/2 quantile of the

standard normal distribution.

The condition that n2P (Ŷ1,n1+1 6= Ŷ2,n1+1|Z1) is large enough for the nor-

mal approximation to be accurate can be assessed by examining D =
∑n

i=n1+1

I{Ŷ1,i 6=Ŷ2,i}
, which is an unbiased estimator of n2P (Ŷ1,n1+1 6= Ŷ2,n1+1|Z1) given

Z1. Based on a simple analysis using the Berry-Essen bound (see the proof of

Theorem 3), to guarantee the normal approximation error to be less than 25%,

D needs to be as large as 482. Obviously this is based on an upper bound and

thus is conservative. In addition, multiple data splittings may significantly help
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reduce the variability in classifier comparison. Nonetheless, claiming one classi-

fier is better than another via cross validation with D as small as 4 (even if the

permutation standard error is very small, see Section 3.3), as in some empirical

results with small sample sizes in the literature, seems highly questionable. A

larger threshold, say 10, would be more reasonable.

3.2. Comparing classifiers based on CIs for the individual error rates

or a CI for the error probability difference?

In the empirical comparisons of classifiers in statistical applications, typically

the confidence intervals (or standard errors) of the error rates of the candidate

classifiers are given. Although these intervals do provide information on compar-

ing classifiers, when the sample size is not very large, their use is a suboptimal

practice due to the loss of power in differentiating the classifiers in terms of accu-

racy. Indeed, as is expected, working with the differences Wi can be much more

reliable.

For n1 + 1 ≤ i ≤ n, let Gi = I
{Yi 6=Ŷ1,i}

and Hi = I
{Yi 6=Ŷ2,i}

. Then a

1 − α asymptotic confidence interval for the error probability CPE(δ;n1) =

P (δ(X;Z1) 6= Y |Z1) is

1

n2

n∑

i=n1+1

Gi ± zα/2

√
v̂1√
n2

and for δ2 is
1

n2

n∑

i=n1+1

Hi ± zα/2

√
v̂2√
n2

,

where v̂1 and v̂2 are the sample variances of Gi and Hi, respectively. Without

enough knowledge on the relationship between Gi and Hi, by the Bonferroni

method, observing that n2
−1

∑n
i=n1+1 Gi − n−1

2

∑n
i=n1+1 Hi = W, we declare

the classifiers to be different in accuracy when |W | > zα/4(
√

v̂1 +
√

v̂2)/
√

n2.

This has an asymptotic type I error at most α. In contrast, one may use the

difference-based CI W ± zα/2

√
v̂/

√
n2, where v̂ = sd2

w. When |W | > zα/2

√
v̂/n2,

we declare the classifiers to be different. This has an asymptotic type I error

α. The comparison of this method and the earlier one then amounts to the

comparison of zα/4(
√

v̂1 +
√

v̂2) and zα/2

√
v̂.

It is easily shown that (
√

v̂1 +
√

v̂2)/
√

v̂ can approach ∞ in probability. As

an example, suppose Y takes values 0 or 1 with roughly equal probability. If

Gi = Hi for almost all i, but G is not close to zero or 1, then the aforementioned

variance estimate ratio is very large (and can be arbitrarily large), in which

case the use of the two CI is much worse than the single CI method. More

generally, v̂1 and v̂2 typically do not converge to zero in probability. Thus if
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P (Ŷ1,n1+1 6= Ŷ2,n1+1|Z1) → 0 in probability, then the variance ratio converges to

∞ in probability. Note also that the ratio (
√

v̂1 +
√

v̂2)/
√

v̂ can easily be shown

to be always lower bounded by 1. This confirms the simple fact that the two

CI method should not be used for comparing classifiers due to its low power.

This is particularly relevant, for example, for classification problems (e.g., cancer

classification) based on gene expression data, where the sample size is typically

small (sometimes even less than 50).

Obviously, we are not criticizing the construction of CI’s for the error prob-

abilities of the candidate classifiers, which is useful in its own right.

3.3. CI based on cross validation

In Section 3.1, the construction of the confidence interval is quite simple (al-

though the validity of normal approximation should not be taken for granted),

but the result depends on the outcome of data splitting. When multiple split-

tings are used in CV, the theoretical issues involved in constructing a rigorous

confidence interval become complicated and, to the best of our knowledge, little

theoretical advancement has been made.

From a practical perspective, a natural thing to try is the following. One

modifies the CI in Section 3.1 in terms of the center and the variance estimate:

the modified CI for the error rate difference is W ± zα/2

√
ṽ/

√
n2, where for the

center, one replaces W by the average over the multiple splittings, denoted by W,

and ṽ is a modified variance estimate. The previous CI in Section 3.1 is for the

conditional error probability difference given Z1. Due to multiple splittings and

averaging, it seems that W might be more appropriate for the unconditional error

probability difference, though obviously the overall expectation is unchanged by

the averaging, i.e., EW = EW . This averaging, however, makes the variance

of W very hard to analyze. There are other ways one might consider replacing

sdW/
√

n2.

One way is the following. After each splitting of the data, one obtains the

difference of the error rates of the competing classifiers. Let W
j
, 1 ≤ j ≤ N,

denote the difference based on the jth splitting of the data, where N is the total

number of data splitting. Then one finds the standard error of W :

sesplit,W =

√√√√ 1
N−1

∑N
j=1

(
W

j − W
)2

N
.

A similar formula for estimating the error rate of a classifier is often used in the

literature as the standard error of the estimate. This would be correct if the W
j

were independent for different j, which of course they are not. Nonetheless, the
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formula is partially meaningful. It captures the part of the uncertainty of the av-

erage error rate W due to randomness in splitting of the data. Adding error bars

from these standard errors in a graph of error rates (or difference) of competing

learning methods may seem to provide useful information. However, this is not

appropriate. The splitting standard error, whether done by random splitting

or by a mutli-fold CV fashion, conveys only the reliability of using a subset of

all possible data splittings with the same ratio for training and evaluation. Note

that the splitting standard error gets smaller as the number of splitting increases.

This error bar diminishes when computation over all possible splittings is feasible

(in which case the splitting standard error is theoretically zero). With sesplit,W

small for a large number of data splitting, any difference, no matter how small

it is, would become significant. In general, it seems there is little relationship

between the splitting standard error sesplit,W and the actual standard error of

the estimate W . Despite explanations and warnings given in the literature (e.g.,

Efron and Tibshirani (1997) and Dietterich (1998)), the splitting standard er-

ror has still been mistakenly interpreted as the real standard error in statistical

applications.

With a single splitting, let sdW,1 be the standard deviation of Wn1+1, . . . ,Wn.

It estimates the conditional standard deviation of Wn1+1 given the estimation

part of the data. The standard error of W as an estimate of the conditional

mean of Wn1+1 (again given Z1) is seW = sdW,1/
√

n2. One may average this over

the N splittings of the data to get seW .

A simulation study

We conduct a simple simulation for numerical understanding. We compare

two learning methods: Fisher’s linear discrimination analysis (LDA) and the

support vector machine (SVM).

Consider three independent predictors, all standard normal. The conditional

probability function is

f(x) =
exp(1 + 0.2x1 + 0.2x2 + 3x3)

1 + exp(1 + 0.2x1 + 0.2x2 + 3x3)
,

with the probability of Y = 1 being roughly 0.6. We took the sample size to be

100. The simulation was conduced in R with libraries MASS (by Venables and

Ripley) and e1071 (by Dimitriadou et al.). We chose the default settings of the

controlling parameters for both methods (note that our interest here was not on

optimizing the tuning parameters). Four values of n2 were considered: 75, 50,

25 and 10. The number of random data splitting was 200, and 200 replications

of the whole process were done to simulate the theoretical means and standard
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deviations of interest. The error rate difference refers to the error rate of the
LDA minus that of SVM.

The results are in Table 4. For the last two columns, the numbers in the
parentheses are the corresponding standard deviations. Note that if one uses all
100 observations to train the two classifiers, based on additional simulations the
mean of W is −0.0155 and the standard deviation of W is 0.011 (of course, these
(simulated) theoretical values are not available in applications).

Table 4. Comparing standard error estimates.

EW EW sd
(
W

)
sd

(
W

)
Esdsplit,W Esesplit,W EseW EseW

n2 = 75 -0.042 -0.044 0.050 0.011 0.053 0.0037
0.039

(0.003)

0.039

(0.010)

n2 = 50 -0.023 -0.025 0.052 0.014 0.044 0.0030
0.038

(0.014)

0.040

(0.004)

n2 = 25 -0.019 -0.019 0.053 0.017 0.052 0.0030
0.047
(0.028)

0.048
(0.010)

n2 = 10 -0.018 -0.017 0.076 0.021 0.079 0.0056
0.054
(0.060)

0.057
(0.017)

From the table, not surprisingly, given n2, the simulated values of EW and
EW are very close (they should be the same) but their standard deviations are
very different (as expected), with the single splitting standard deviation about
two times larger. This clearly supports the common practice of doing multiple
data splitting. Regarding the choice of n2, observe that EW decreases as n2

decreases, and in the meantime, sd(W ) increases, which strongly suggests that
for this example, for the comparison of the two learning methods, the choice of
n2 large (50 or 75) is better than small.

The table also shows that the splitting standard deviation and standard error
(sdsplit,W or sesplit,W ) are inappropriate as uncertainty measures of W. The other
estimates, seW and seW , are quite similar to each other. They are still much
larger than the actual standard deviation of W , but are better than the splitting
standard deviation or the splitting standard error.

To summarize, this example demonstrates:
1. Multiple data splittings and averaging help to improve the accuracy of the

estimates of the classification error rates and their difference.
2. The splitting standard deviation or splitting standard error are definitely not

suitable for describing the uncertainty in comparing classifiers.
3. Although conservative, seW (or seW ) at least yields a valid confidence interval

for comparing classifiers.

In general, without additional assumptions, CV is probably one of the most
reliable methods for comparing classifiers, although it may reduce the effective
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sample size. For the case of bootstrap-based error rate estimation, Efron and

Tibshirani (1997) derived standard error formulas that were demonstrated to

perform well.

4. Instability of CV selection in splitting ratio

Recall that for consistency in selection, with a single splitting or CV, n2 needs

to be suitably large. A major concern for this approach is whether the accuracy

comparison at a significantly reduced sample size can tell the truth at the full

sample size. To that end, we can investigate the agreement of CV at different

splitting ratios. If the comparisons at various choices of splitting ratios (in a

proper range) actually tell the same story, then we have more confidence on the

relative performance of the classifiers. In contrast, if the comparison is sensitive

to the choice of the splitting ratio, it indicates that the relative performance of

the classifiers is perhaps in a transition zone, and thus one should be careful

about the outcome of the comparisons.

Consider the following sequential instability in selection for assessing the

tendency of selecting a different classifier due to sample size reduction. For each

choice of n1, let λn1
be the fraction of times δ1 is selected over the different

data splittings in cross validation. Then we plot (or table) λn1
versus n1 (or

n1/n) to gain a graphical understanding of the effect of n1. If the λn1
values are

stable over a range of small n1, then the data reduction in CV does not seem

to be a serious problem. In contrast, if λn1
changes quickly around small n1, it

indicates that we may be in an unstable sample size zone in terms of the relative

performance of the classifiers and thus should not be overly confident about our

comparison result. Note that this approach provides additional information that

is not available with a fixed choice of n1.

Example 4. Follow the same set-up as in Section 3.3. We randomly generated

a data set of 100 observations. We obtained λn1
for 6 choices of n1 based on 500

random splittings of the data. The results are in Table 5.

Table 5. Sequential instability in selection.

n1 = 50 60 70 80 90 95

λn1
83.4% 82.6% 81.6% 80.0% 82.4% 92.2%

For this data set, there is little sequential instability in selection. Clearly

LDA is strongly preferred, and there should be little concern on sample size

reduction in CV.

5. Proofs
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Proof of Theorem 1. Without loss of generality, assume that δ1 is asymptot-

ically better than δ2. Let ∆ = −E(Wn1+1|Z1) be the conditional expectation of

−Wn1+1 given the first part of the data. It is the difference of the conditional

error probability of the two classifiers. Indeed,

−∆ = P
(
Ŷ2,n1+1 = Yn1+1 6= Ŷ1,n1+1|Z1

)
− P

(
Ŷ1,n1+1 = Yn1+1 6= Ŷ2,n1+1|Z1

)

= P
(
Ŷ2,n1+1 = Yn1+1|Z1

)
− P

(
Ŷ2,n1+1 = Yn1+1 = Ŷ1,n1+1|Z1

)

−
(
P

(
Ŷ1,n1+1 = Yn1+1|Z1

)
− P

(
Ŷ1,n1+1 = Yn1+1 = Ŷ2,n1+1|Z1

))

= P
(
Ŷ2,n1+1 = Yn1+1|Z1

)
− P

(
Ŷ1,n1+1 = Yn1+1|Z1

)

= P
(
Ŷ1,n1+1 6= Yn1+1|Z1

)
− P

(
Ŷ2,n1+1 6= Yn1+1|Z1

)
.

Under the condition that δ1 is asymptotically better than δ2, we know that for

an arbitrary ε > 0, there exists n0 such that when n1 ≥ n0, with probability

at least 1 − ε, CPER(δ2;n1) − CPER(δ1;n1) ≥ cεCPER(δ1;n1) ≥ 0. Let A be

the exceptional event. Then, conditional on the first part of the data, on Ac the

mis-selection probability satisfies

P (TE(δ1) > TE(δ2)|Z1) = P
( n∑

i=n1+1

I{Yi 6=Ŷ1,i}
>

n∑

i=n1+1

I{Yi 6=Ŷ2,i}
|Z1

)

= P
( n∑

i=n1+1

Wi > 0|Z1

)

= P
( n∑

i=n1+1

(Wi − EWi) > n2∆|Z1

)

≤ exp
(
− n2∆

2

2V + 4
3∆

)
,

where the inequality follows from the Bernstein’s inequality (see, e.g., Pollard

(1984)), and V is the conditional variance of Wn1+1 given Z1. Note that V ≤ E

(W 2
n1+1|Z1) = P (Ŷ1,n1+1 6= Ŷ2,n1+1). Consequently, on Ac, we have

P (TE(δ1) > TE(δ2)|Z1) ≤ exp
(
− n2∆

2

2P
(
Ŷ1,n1+1 6= Ŷ2,n1+1|Z1

)
+ 4

3∆

)
.

Since the upper bound is no larger than 1, a sufficient condition for P (TE(δ1) >

TE(δ2)) → 0 is that P (A) → 0 and the exponent in the right hand side of

the above inequality converges to −∞ in probability. That P (A) → 0 follows
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from the assumption in the theorem if n1 → ∞. The second condition is equiv-

alent to n2∆ → ∞ in probability and n2∆Rn → ∞ in probability. Since the

essential error probability difference Rn = ∆/P (Ŷ1,n1+1 6= Ŷ2,n1+1|Z1) is always

between 0 and 1, the last two conditions reduce to n2∆Rn → ∞ in probabil-

ity. Under the assumption that δ1 is asymptotically better than δ2, and that

CPER(δ1;n1), CPER(δ2;n1), and P (Ŷ2,n1+1 6= Ŷ1,n1+1|Z1) converge exactly at

rates pn1
, qn1

, sn1
respectively. This is equivalent to n2q

2
n1

/sn1
→ ∞ and com-

pletes the proof of Theorem 1.

Proof of Corollary 2. Without loss of generality, assume that δ1 is asymptoti-

cally better than δ2. Since the observations are i.i.d., the random variables τπ0
, τπj

(1 ≤ j ≤ M) are identically distributed, where π0 denotes the original order of

observations. Then E(M−1
∑M

j=1 τπj
) = Eτπ0

= P (TE(δ1) ≤ TE(δ2)). From

Theorem 1, we know P (TE(δ1) ≤ TE(δ2)) → 1, and thus E(M−1
∑M

j=1 τπj
) → 1.

Together with the fact that M−1
∑M

j=1 τπj
is between zero and 1, we must have

M−1
∑M

j=1 τπj
→ 1 in probability. Consequently, P (

∑M
j=1 τπj

≥ M/2) → 1. This

completes the proof of Corollary 2.

Proof of Theorem 2. From the proof of Theorem 1, when ∆ > 0, we have

P (TE(δ1) − TE(δ2) ≥ 0|Z1) ≤ exp
(
− n2∆

2

2V + 4
3∆

)
.

Let ∆2/(V+2∆/3) = tn. Taking the positive root, we get ∆ = tn/3+
√

t2n/9+V tn
≤ 2tn/3 +

√
V tn. We take n2tn/2 = log n2, i.e., tn = 2 log n2/n2. Then when

∆ ≥ 2tn/3 +
√

V tn,

P
(
TE(δ1) − TE(δ2) ≥ 0|Z1

)

≤ P
( n∑

i=n1+1

(Wi − EWi) ≥
(2n2tn

3
+ n2

√
V tn

)
|Z1

)

≤ P
( n∑

i=n1+1

(Wi − EWi) ≥
(n2tn

3
+ n2

√
t2n
9

+ V tn

)
|Z1

)

≤ exp
(
− n2tn

2

)
= n−1

2 .

Let δ∗ be the classifier (trained on Z1) that minimizes the error probability at

sample size n1 over the two candidate classifiers. Let S denote the event that

∆ ≥ 4 log n2/(3n2) +
√

V tn, where ∆ is now the conditional error probability

difference between the other classifier and δ∗ given Z1. Let δB denote a Bayes
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classifier. Then

PER(δ̂;n)

= E
(
P

(
δ̂(X) 6= Y |Zn

))
− PE∗

= E
(
P

(
δ∗(X) 6= Y, δ∗ = δ̂, S|Zn

))
+ E

(
P

(
δ̂(X) 6= Y, δ∗ 6= δ̂, S|Zn

))

+E
(
P

(
δ∗(X) 6= Y, δ∗ = δ̂, Sc|Zn

))
+E

(
P

(
δ̂(X) 6= Y, δ∗ 6= δ̂, Sc|Zn

))
−PE∗

≤ E
(
P (δ∗(X) 6=Y |Zn) I

{δ∗=̂δ}

)
+n−1

2 +E
(
P

(
δ̂(X) 6= Y |Zn

)
I
{δ∗ 6=δ̂}∩Sc

)
−PE∗

≤ E
(
[P (δ∗(X) 6= Y |Zn) − P (δB(X) 6= Y )] I

{δ∗=δ̂}

)
+ n−1

2

+E
([

P
(
δ̂(X) 6= Y |Zn

)
− P (δB(X) 6= Y )

]
I
{δ∗ 6=δ̂}∩Sc

)

≤ E
(
[P (δ∗(X) 6= Y |Zn) − P (δB(X) 6= Y )] I

{δ∗=δ̂}

)
+ n−1

2

+E
(
[P (δ∗(X) 6= Y |Zn)−P (δB(X) 6= Y )] I

{δ∗6=̂δ}∩Sc

)
+E

(
4 log n2

3n2
+

√
V tn

)

≤ PER(δ∗;n1) + n−1
2 +

4 log n2

3n2
+ E

√
2 log n2

n2
V

≤ min
j=1,2

PER(δj ;n1) +
4 log n2 + 3

3n2
+

√
2 log n2

n2

√
EV .

The conclusion follows. This completes the proof of Theorem 2.

Proof of Theorem 3. We apply Berry Esseen Theorem (see, e.g., Stroock

(1993)). For our case of comparing two classifiers, conditional on Z1, Wn1+1, . . .,

Wn are i.i.d., and obviously since |Wi − EWi| ≤ 2, we have the upper bound

sup
−∞<x<∞

∣∣∣∣P
(∑n

i=n1+1 (Wi − EWi)√
n2v

≤ x

)
− 1√

2π

∫ x

−∞
e−

y2

2 dy

∣∣∣∣

≤ c√
n2

E|Wi − EWi|3
(
E (Wi − EWi)

2
) 3

2

.

Let P (Wi = 1) = p, P (Wi = −1) = q, and P (Wi = 0) = 1 − p − q. Then

E|Wi − EWi|3 = p|1 − (p − q)|3 + q| − 1 − (p − q)|3 + (1 − p − q) |(p − q)|3

= p (1−(p−q))3+q (1+(p−q))3+(1−p−q) |(p − q)|3

= (p + q) − 3(1−p−q)(p − q)2 − (p − q)4 + (1−p−q) |(p − q)|3

≤ (p + q) + |(p − q)|3

≤ 2(p + q),
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and

E|Wi − EWi|2 = p|1 − (p − q)|2 + q| − 1 − (p − q)|2 + (1 − p − q) |(p − q)|2

= (p + q) − (p − q)2

≥ (p + q) (1 − |p − q|) .

Therefore

E|Wi − EWi|3
(
E (Wi − EWi)

2
) 3

2

≤ 2(p + q)

(p + q)
3

2 (1 − |p − q|)
3

2

=
2

(p + q)
1

2 (1 − |p − q|)
3

2

.

Consequently, we need
√

n2P (Ŷ1,n1+1 6= Ŷ2,n1+1|Z1) → ∞ in probability for the

bound in (1) to converge in probability to zero.

For the bound in (1) to be smaller than 25%, based on the above calculation,

we might ask that 6 · 2/
√

n2P (Ŷ1,n1+1 6= Ŷ2,n1+1|Z1) ≤ 0.25. With P (Ŷ1,n1+1 6=
Ŷ2,n1+1|Z1) estimated by the number of disagreements between the two classifiers

on the test data (denoted by D), this becomes D ≥ 482 and completes the proof

of Theorem 3.

Acknowledgement

This work was supported by US NSF CAREER grant # 0094323. The

author wishes to thank a referee and the Editor for helpful comments.

References

Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle.

In Proc. 2nd Int. Symp. Info. Theory (Edited by B. N. Petrov and F. Csaki), 267-281.

Akademia Kiado, Budapest.

Allen, D. M. (1974). The relationship between variable selection and data augmentation and a

method for prediction. Technometrics 16, 125-127.

Breiman, L. Friedman, J. H., Olshen, R. A. and Stone, C. J. (1984). Classification and Re-

gression Trees. Wadsworth Statistics/Probability Series. Wadsworth Advanced Books and

Software, Belmont, CA.

Burman, P. (1989). A comparative study of ordinary cross-validation, ν-fold cross-validation

and the repeated learning-testing methods. Biometrika 76, 503-514.

Devroye, L. (1988). Automatic pattern recognition: a study of the probability of error. IEEE

Trans. Pattern Anal. Mach. Intell. 10, 530-543.

Devroye, L., Györfi, L. and Lugosi, G. (1996). A Probabilistic Theory of Pattern Recognition.

Springer-Verlag, New York.

Dietterich, T. G. (1998). Approximate statistical tests for comparing supervised classification

learning algorithms. Neural Computation 10, 1895-1924.

Efron, B. (1983). Estimating the error rate of a prediction rule: Improvement on cross-

validation. J. Amer. Statist. Assoc. 78, 316-331.



COMPARING CLASSIFICATION 657

Efron, B. (1986). How biased is the apparent error rate of a prediction rule? J. Amer. Statist.

Assoc. 81, 461-470.

Efron, B. and Tibshirani, R. (1997). Improvements on cross-validation: The .632+ bootstrap

method. J. Amer. Statist. Assoc. 92, 548-560.

Geisser, S. (1975). The predictive sample reuse method with applications. J. Amer. Statist.

Assoc. 70, 320-328.

Hastie, T., Tibshirani, R. and Friedman, J. H. (2001). The Elements of Statistical Learning:

Data Mining, Inference, and Prediction. Springer-Verlag, New York.

Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and

model selection. In Proceedings of the 14th International Joint Conference on Artificial

Intelligence (Edited by C. S. Mellish), 1137-1143. Morgan Kaufmann Publishers, Inc.

Lachenbruch, P. A. and Mickey, M. R. (1968). Estimation of error rates in discriminant analysis.

Technometrics 10, 1-11.

Li, K. C. (1987). Asymptotic optimality for Cp, CL, cross-validation and generalized cross-

validation: discrete index set. Ann. Statist. 15, 958-975.

Mammen, E. and Tsybakov, A. B. (1999). Smooth discrimination analysis. Ann. Statist. 27,

1808-1829.

McLachlan, G. J. (1992). Discriminant Analysis and Statistical Pattern Recognition. John

Wiley, New York.

Pollard, D. (1984). Convergence of Stochastic Processes. Springer, New York.

Schwarz, G. (1978). Estimating the dimension of a model. Ann. Statistics 6, 461-464.

Shao, J. (1993). Linear model selection by cross-validation. J. Amer. Statist. Assoc. 88,

486-494.

Shao, J. (1997). An asymptotic theory for linear model selection (with discussion). Statist.

Sinica 7, 221-242.

Shen, X., Tseng, G. C., Zhang, X. and Wong, W.H. (2003). On ψ-Learning. J. Amer. Statist.

Assoc. 98, 724-734.

Stone, C. J. (1985). Additive regression and other nonparametric models. Ann. Statist. 13,

689-705.

Stone, M. (1974). Cross-validation choice and assessment of statistical predictions. J. Roy.

Statist. Soc. Ser. B 36, 111-147.

Stroock, D. W. (1993). Probability Theory: An Analytic View. Cambridge University Press.

Cambridge, UK.

Tsybakov, A. B. (2004). Optimal aggregation of classifiers in statistical learning. Ann. Statist.

32, 135-166.

Yang, Y. (1999a). Minimax nonparametric classification − Part I: rates of convergence. IEEE

Trans. Inform. Theory 45, 2271-2284.

Yang, Y. (1999b). Minimax nonparametric classification—Part II: model selection for adapta-

tion. IEEE Trans. Inform. Theory 45, 2285-2292.

Yang, Y. (2005a). Can the strengths of AIC and BIC be shared?–A conflict between model

identification and regression estimation. Biometrika 92 937-950.

Yang, Y. (2005b). Consistency of cross validation for comparing regression procedures. Sub-

mitted.

Zhang, P. (1993). Model selection via multifold cross validation. Ann. Statist. 21, 299-313.

School of Statistics, University of Minnesota, 224 Church Street S.E., Minneapolis, MN 55455,

U.S.A.

E-mail: yyang@stat.umn.edu

(Received June 2005; accepted September 2005)


	1. Introduction
	2. Consistency in Selection
	2.1. When does consistency hold?
	2.2. Selection based on CV
	2.3. Examples
	2.4. Cross validation paradox
	2.5. Risk of the selected classifier

	3. Confidence Interval for Comparing Classifiers
	3.1. A single data splitting
	3.2. Comparing classifiers based on CIs for the individual error
	3.3. CI based on cross validation

	4. Instability of CV selection in splitting ratio
	5. Proofs

