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S1 Proof of Theorem 1
Let A = B — B, and define

Q(Z;; A) = pr (yi — (B+ A, Z;)) — p- (y: — (B, Zy)) -
By the optimality of ]§, we have

- (S1.1)

Since p.(-) is convex, we have

1 n n

=~ QZiA) = (—— ) (1= H{y — (B, Zi) <0})Zi, A)
i=1

n <
=1

> —min {[[Eflop/e, [[Ello/(1 = @)} (af|Alls + (1 = @) [|Al]),

(S1.2)
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where we define E = 13" (7 — I{y; — (B,Z;) < 0})Z;, and in the last
step we used Lemma [I}

Following the proof of Lemma[2], and using Markov’s inequality, we can

easily obtain [|E||,, < C\/(di + d3)/n and ||E||» < C+/logp/n, with proba-

bility approaching one. Thus we have A > 2min {||E||,,/a, ||El/s/(1 — )},

which combined with (S1.2)) yields
1 O A
EE:QQAA)Z—gkﬂAM+%1—aWAm% (SL.3)
i=1

Recalling that we define A” to be the projection of A on M and

A=A — A" we also have

Ri(B+A)=R;(B+ A"+ A
>Ry (B+ A") — Ry (A)

=R (B) + Ri (A") = Ri (A"),

where the last equality used the decomposability property since B € M,
and A” € M. Thus we have R;(B) — R (B + A) < Ry (A') — Ry (A").
Similarly, we can show Ry(B) — R2(B + A) < Ro(As) — Ra(Agr). Com-

bined with (S1.1J), (S1.3)), we proved that A € C, that is, A satisfies

AR1I(A") + (1 — a)Ra(Ags) < 3(aRi(A)) + (1 — )Ra(Ag)).  (S1.4)
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By Lemma , assumption C3, (S1.1)), and that A € C, we get

ANANNBE c||Aume{<aﬁ SRRV W R VRSN, /_losp'}

< AMaRi(A) + (1 - a)Ra(A)) < ANaR1(A) + (1 — a)Ra(As))

< OMavr+ (1 —a)Vs)[|Alp.
This implies [|A|lp < CA(ay/T + (1 — a)y/s). O
Lemma 1. For any A,B € R"*% gnd o € [0,1], we have
(A, B) < min{|[Bllop/c, [[Blloc/(1 — @)} (af|Alls + (1 — )| A1),
where ||B||yp is the operator norm and |B||c = max;; |Bjk|.

Proof. Using (A, B) < |A|,||B|l, and (A, B) < ||A||;||B||cc we have

1Bllop

(A,B) < min{a||A||* ,(1_a)||AH1HBHoo}

11—«

(07
| IBllop 1Bl
< i { B BB A a0 - appan)

Lemma 2. If z; = vec(Z;) is sub-Gaussian, then ¥y > 0,

Elexp{y]| Y €iZilop}] < 204+

and
Elexp{7]| ) €iZill-c}] < 2pe™",

where €; € {—1,1} are independent Rademacher variables.
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Proof. Let E be any matrix of size d; x dy. Let {w;,i = 1,...,M;} be
a 1/4-covering of the unit sphere in R® and {v;,i = 1,..., Ms} be a 1/4
covering of the unit sphere in R%, with M; < 20% and M, < 20% (the
bound for M;, My is due to Lemma 2.5 of van der Geer (2000)). Thus, for
any u,v with [jul| = ||v|| = 1 there exists u;, v, in the covering such that

|lu—wl <1/4 and ||[v —v;|| < 1/4 and then

T T T T 1 1 T
u Ev=u EWvV-v;)+(u—w) Ev;+u, Ev; < ZHEHop—l—Z||E||Op+ui Ev;.
Thus we have

1Ello, = sup u' Ev < —HEHOp+maxu Ev;,

[[ul|=[lv]l=1 WiV
which implies

IE|lop < 2maxu, Ev;.

u;,vj

Then we have

Elexp{~|| Z eiZiHOp]

2017 max Elexp{2yu; (Z &Zi)vi}]

u;,Vi

IN

%

= 200+ maXHE exp{27u] (6;Z;)vi.}]

u;,vi

S 20d1+d2 eC’y n’

where the last step used assumption C2 and note that ¢;Z; is also sub-

Gaussian and ujT(eiZi)Vk = (v ® u;) "vec(e;Z;).
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The second part is easier. We have

Elexp{y max | Z zij€il Y]
= E[mjaxexp{’ﬂ Zziﬁi’}]
< pmax Elexp{~| Z zijéil}]

< 2p max E[exp{v(z zij€i) H,

]

where the last step used the fact that for any symmetric random variable
z, B[] < ele* + e7*] = 2E[e?]. Using z; is sub-Gaussian and thus z;;¢; is
also sub-Gaussian, we get Elexp{7(3, zi;&:)}] = (¢“7)" which proved the

lemma. O

Lemma 3. Under the assumptions of Theorem 1, with probability approach-

g one, we have

1 n
- Q(Z;; A) — EQ(Zi; A
e n; (Zi; A) ( )|

1A p<t
S~ {(aﬁm—aw [+ dy (v + (1= a)v5) /Zogp}_
Q n 1—« n
Proof. Let
Aty= sup |* Q(Zi;A>—EQ<zi;A>'
AE(C nz—l
| A<t
1
= sup — |G,Q(Z;; A)l,
Acc \/ﬁ
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where G,Q = /n (P,Q — PQ) is the empirical process.

By the Lipschitz property of p,, we have for any A with ||A|lF < t,
Var(Q(Zs; A) — EQ(Zs; A)) < E (2:8)” < 0max ()12,

where 0yax(J) is the maximum singular value of J. Let B(t) = \/iﬁ sup AAE(C |G2Q(Z;; A)]
IANF<t
with GQ(Zi; A) = =37 | €,Q(Z;; A) and ¢; are independent Rademacher

n

variables. Then by Lemma 2.3.7 in |Van der Vaart and Wellner| (1996), we

get

2P (B(t) > M /4)
PR 2 M) < T = S e

Let W = 13" | €;Z;. Then we have, for any n > 0,

1
§exp{—177M} Eexp{nB(t)} (S1.5)
<expl-tnmb Bexpdon s 1§n: (Z:, A) (S1.6)
= exp 47] Xp n Augl?c n 4= €i\4i, .
[VANEES
<exp {—%nM} Eexp {C’n min { H“;HOP, ||1“_7||;o} (04\/7_"75 +(1- oz)\/gt)}

(S1.7)
[Wlop

«

< min {exp{—inM}EeXp{Cn (a\/FtJr(l—a)\/Et)},

1l—«

exp {—%nM} E exp {%m (a/rt + (1~ a)Vst) }}



52. CONDITION C37

2( .2 - 2 2
<min {(2O)dl+d2 exp {_177]\/[} - exp { CT} (a T+ (1 Oé) S)t } ,

4 no?
1 Cn?(a®r + (1 — a)?s)t?
2pexp{—ZnM} ~exp{ nl—ap (S1.8)
C M?*na?
<mi di+ds o
< min {(20) exp { (0 + (1= a)s)2 } ,

o { G e 5L

where (S1.5) uses Markov’s inequality, (S1.6]) uses the contraction property

of the Rademacher process (see Theorem 2.3 in Koltchinskii (2011))), (S1.7)

is obtained Lemmall]and that any A € C satisfies a|| Al +(1— )| Al <

Aaf|Alllop+ (1 =) Asllec) < Clavr|Allp+(1—a)Vsl|AllF), uses

Lemma [2| and (S1.9) is obtained by setting n =< (M”#Q for the first

a?r+(1—a)?s)t

term and 7 < ( Mn(-a ) the second term.

a2r+(1—a)2s)t?

Finally, taking M =< min {t(a*/ﬂ(l_a)‘/g) ditdy y(ay/rt(1=a)Vs) , Ing}

l—a

proves the lemma. ([l

S2 Condition C3

Lemma 4. Suppose the conditional density f,,z, satisfies fy,z,((B,Z;)) >
f > 0and [f} 7.()] < ', matrizv J = Elz;z]] is positive definite and

its minimum eigenvalue is denoted by omin(J), and the restricted nonlinear
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impact coefficient

[N

3
2

= inf

— > 0.
f Acc E(A,Z)

3L (E(AZ))
=5

1 L 1 L
We have Elp, (5~ B+, Zi))|—Elp-(yi— (B, Z:))] = 1f3075,(3) (f2odu(DIAIZ AglA]lF).
Proof. By Knight’s identity

prlu=0) = o) = —vin () + [ (F{u< s} = Hu < 0pyas.
where 1, (u) = 7 — I{u < 0}, we have

Elpr(yi — (B + A, Z;))] — Elp-(y: — (B, Zy))]
(Az,)
5 [ - B.2) < - I - (B.2) <0par
0
(Az;)
(Az)) 1
:E/ {fmzi((B,Zi))tJr 5fl’,i‘zi(<B,Zi> + 0t)t* | dt
0
>2IE A Z) = STE A, 2
L FEI(AZ)P + LB (A Z)F — SFENA,Z).
When (fE (A, Z))? < ¢, we have LfE (A, Z)> > LFE|(A, Z)[°, and

then

Elp; (yi—(B+A, Z;)) - Elp, (yi— (B, Z:))] > ~fE (A, Z)|* > — fomin(I) | A7

|
B |

(S2.10)
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On the other hand, if (iE’|<A,Zi)|2)§ > q, let § = —————~. Thus

(e2lA20[)*

1
(fE|(0A, ZZ-)|2)2 = q. Then, we get

E[p’r( Yi <B + A Z; >)] - E[p"r(yi - <B, Zz))]

v

Elpr(yi — (B + 0A,Z;))] — Elp;(yi — (B, Zy))]

v

TOPEA,Z))

P!
2qo mm( )“AHF’

IV
= D= D=

[~

where the first inequality follows from the convexity p,(0(y;—(B+A, Z;))+
(1=0)(yi — (B, Zi))) < Op-(yi = (B+ A, Z;)) + (1 = 0)p-(yi — (B, Zy)), and
the second inequality follows from the first inequality of ((S2.10]), and the

last one follows the definition of #. Therefore, we get

Elpr(yi—(B+A, Z))| = Elp, (5i—(B, Z))] = 2 f305,(3) (£o0, @) IAIE A gl AllF)

NH

O
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