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This supplementary material includes the proofs of the theories and detailed simulation results.

S1 Proofs

The proofs for the theories in Section 2 of the paper are given below.

Lemma 1. Let Ay = {w>c¢,7>c¢}, Ao ={0<w<cTm>c}, A3 = {w>c,0<7 <},
Ay ={w>c,0<7<¢}, A5 ={0<w < ¢, 7> e}, and c1,ca be two constants satisfying

0 < c1,09 < ¢ such that ¢ + c3 < c¢*. For isotropic spectral densities, the condition

/ /w,T||>c { : (%JZ;))(;,JE)(M 2 }2 dwdr < oo

holds if

Jlo (G

holds where .A = .Al UAQ UAg UA4 U .A5.
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Proof. For simplicity of notation, let

filw,7) — fo)(waT)}Q_

f() (W,T

h(w,T):{

For any sets B; and By with By C By, we have [[; h(w,7)dwdr < [[; h(w,7)dwdr since
h(w,7) > 0. As ||Jw, 7|| = Vw? + 72, it follows that ||w, 7| > ¢ is equivalent to w? + 72 > 2.
For any w,T > 0, it can be verified that {w? + 72 > ¢} C A for all ¢; and ¢, satisfying

0 < cp,c < cand ¢+ ¢ < ¢® Hence, we have

//”w>ch(w,7) dwdr < //Ah(w,f) dwdr.

Finally, since f is isotropic, it can be verified from Prudnikov et al.| (1986, Chapter 3)

and (Gradshteyn and Ryzhik (2007, Chapter 4) that

//Ah(w,T)dwdT://Awd_lh(w,T)dwdT.

Proof of Theorem 1

We begin with the sufficiency parts of (a) and (b). It can be seen that fy (w, 7) |lw, 7>
is bounded away from zero and infinity. Let ¢ € (0, 1]. The sufficiency part of Theorem 1(a)
can be obtained by simply putting ¢ = 1. When ¢ = 1, by direct calculation,

B 02Q2y—d52u—1r (1/)2
T )Ty

2 2
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If v /2" = 1 /e

fi(w,7) = fo(w,7T)
fo(w,7)

N (a8 + Biw? + 0fr? + egw?r?)”

Yo (28? + FPw? + 272 + lw 7'2)”

e (88 B o)

_ 0 0 50 _1
2 1%
of 57 ﬁ
Y 1P1 1 2, 17_2 1 wr?
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a v a? Y

’( 0250 »30 +—27 +w272) _ ( 1251 /31 —l——27' L 72)
< £t €3 4 &1 et 1
< (w2r2)”

sy ﬁo : a%ﬁ% ﬂ% 04% Y
1 — 1 . S1.1
'(53w272 + e372 + 53w2 + g2w3r2 + g372 * £3w?2 + ( )

Using the approximation (1 +%)”" =1+ vy + O (y*) as y — 0, (S1.1) can be written as

222 2 2 2 2
vag s 1/04151 v v vag vay O (47—
2, 9.9 2+ 22_22+ 22_22+(WT)
gqwiT €1w T EGT eiT E5w ejw

as w, T — 00. Assume lim, ;o (w/7) = k < 00, there exists a constant k* > 0 such that

(S1.2)

k* (w? + 72) < min (e2e2w?T?, edeiw?, e3eir?) as w, T — 0o. Then, from ([S1.2),

292 2 22 2 2 2 2
vag B vaifi v v vay vay O (w474
5995 23] T\ 2e 22T 22_22+(WT)
e3w?r 2wt e3r e2r 3w 2w

lv (510‘0 0 — 500‘151” lv (5%53 - 535%” v (5%043 - 5(2)04%”
e3edw?T?, g3eir? edeiw?
v (|5%O‘(2)50 6004151| + |5%50 - 5051| + |510‘0 50041|) L0 (w 4, — 4) _
k* (w? + 712)

]
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Therefore, by Lemma [I]

[ (s,

A, T) = fo(w,m)?
: [[ (e
fl w T) fO(va) ?
: Z//A T e K
2 5 _
< {V(|51O‘050 50a1ﬂ1|—|—|g£§—5%ﬂf|+|g%a%—53a%|)} % Z//A—(w;}j_ ;>2d7'dw.

7j=1 J

(S1.3)

Direct integration shows that all [, w®!(w?+ )% drdw,j = 1,...,5 are finite for d < 2.
J

Hence, (S1.3) is finite for d < 2.

For the necessity part of (a), if o2a2’ 482~ # 022 ~BH 7! let

e ==

B
Then, we have o202 482~ = ¢2a?~?32"~! and therefore, 02 M} (o, By) and o2 M} (ay, 1)
define two equivalent measures. It remains to show that o2 M} (ag, By) and o2 M} (a, Bo)
define two orthogonal measures since Gaussian measures are either equivalent or orthogonal
(Ibragimov and Rozanov, 1978, Thm 1, p. 77). This can be seen following the lines in the
proof of Theorem 1 in |Zhang) (2004, p. 260). This completes the proof of parts (a) and (b).

For part (c), when e = 0, by direct calculation,

UQOéZV_dBQV_IF (V)
%)

’y:

For the sufficiency part, with the techniques used in proving part (a), assume [5y/cg =
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Bi/ay = r and 020y B2 = o2, it can be shown that
fi(w, ) — fo(w,T) o 01041V dﬁmj 1( %53*5 w? +0‘07' )V 1
f(WT) - 22Vd2u1 2 2 2\V
0 & ) (aif? ‘1“61“} + air?)

otad By o (50 W +T>
O_any dﬁgu 1/ 2u (51 w2+7—>

(Bo‘i_r +7— 1'

%)’
(B2 + r2w? + 712
’( B2+ 12w+ 1 —(ﬁ%+r2w2+72)y|
22+ 12)

¥
2)"
(r
52 52 v
= ‘(T“) (T“)

v (% — 57) +0 ((w2 —|—72)_2>

r2w? + 72

IA

as w,T — 00

WO bl +0 ((w2 + 7'2)_2> .

r2w? + 72

Hence, it can be checked that the integral in (2.3) is finite for d < 2 using similar techniques
as in the proof of Theorem 1.

For the necessity part, we first assume r; = ro = r but o2a; 8% # 20,827, ie
o227l £ 5232v=471 then the covariograms under P is 02M, (y|3;) for y = v/r?u?® + h2.
Hence, by Theorem 3 of Zhang] (2004)), Py and P, are orthogonal since o237~ %1 # o283+,

Next, we assume o2a; B2 = o2ayB2 " but r; # ro. It is intended to show that
Py which is defined by 02M? (ay, 3;) and Py which is defined by o2 M? (ay, By) are orthog-

onal. Let P, be the Gaussian measure defined by ogMB (v, r1a) such that ro = 1 and

)21/—1 dﬁQu 1 —d p2v—1

o2ay® (riog = ol = olay“Bg’". From the sufficiency part, we can immedi-
ately conclude that P, = P;. Hence, it suffices to show that P, and F, are orthogonal. Note

that the covariograms under Py and P, are 02M? (v, o) and o2 (ro/r1)* 4 MO (ag, m1x0)
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respectively. By Lemma 1 of [Ibragimov and Rozanov| (1978, p. 72), two probability measures
are equivalent if and only if they are also equivalent on any linear combinations of the random
variables generated. Define
n;
vi= Y agrX (sij, t) (S1.4)
k=1

with a;, = 0if t;, # to for some ¢, € Dy C R and n; > 0. Note that under this construction,

wiy = |tix — tyr] = 0 and it can be seen that Eo (1) = (To/rl)%fd*l Eq (1) where E;

denotes the expectation under probability measure 7. Therefore

oo

3 [Es (i) — Eo ($t0w)]? = o0

ii'=1

By Theorem 7 of [Stein| (1999, p. 129), P, and P, are orthogonal implying that Py and P
are orthogonal.

Finally, if 7, # o and o2a; 921 # ooy dﬂz” ! we can find a measure P, defined by

2170 2 —d w—1 _ 9 —d -1 2v—d—1 2—d—1
o5 M) (a1, m9cr1) such that o507 (roaq) = alay® (roc)™ 7, ie., olag = ol :
then P, = Py. Because 0207 % (roa)” ™" # o2a78% 1, there exists a positive finite constant

- 21 v—1
¢ # 1 such that 0207? (reay)® ™" = co?a7B% ! or 02 = ¢ (ry/ro)* " o2

Defining ; as in 1D it can be seen that Eq (¢;10) = ¢ (7‘1/7“0)2”71 E; (¢;1)y) and hence

o

D (B (irhsr) — By ()] =

ii'=1

implying that P, and P; are orthogonal (Stein, 1999, Thm. 7, p. 129). Therefore, Py and P,

are orthogonal. O]

Proof of Corollary 1

Based on Theorem 1, i.e., the existence of equivalent Gaussian measures, Corollary 1
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follows immediately from Corollary 1 of Zhang (2004)). O

Proof of Theorem 2
Define ¢ = 072, since o and /3 are fixed, ignoring the terms without ¢, write the log-

likelihood (2.4) as

U (¢) = —% (KT log% +oX, T} len>

and it is readily seen that the second derivative of ¢, (¢) with respect to ¢ is £ (¢) =
—KT/(2¢?) < 0. The concavity of £, (¢) together with Theorem 1 guarantee the result
A2 21/ dﬁ2u 1

— 0202?32~ holds almost surely as K, T' — oo under Py, following Theorem

3 of Zhang| (2004). O

Lemma 2. Under the conditions in Theorem 1 hold and ¢ = 1, if 0 < a, < o < 00 and

0< ﬂa < 511 < 00, then Cib,ﬂb 2 CCIYa,ﬁa

Proof. The difference

1
1 1 _ T 2v—d 21/ 1 -1 21/ d 21/ 1 -1
COéb,ﬂb T SaaBa T KTX { ) ab Bv aa 5a} Xn

1

is non-negative if a;”~ dﬁz” lI‘ab 5

2v—d Q2v—-1—1 : . . . .
—ap" B L, 5. 1s non-negative definite, which is the
case if

ag_QV/B;_QVFaawBE - ag_zyﬁg_zyrabvﬁb (815)

is non-negative definite (Horn and Johnson, |1990, Chapter 7). The latter can be proven
through Fourier transform. Indeed, it remains to show that the matrix formed by the differ-

ences

n (h7 U|O{a, Qyp, Bav 61)) = ag_QVﬁi_m/Myl (ha U|Oéa, Ba) - O‘g_m/ﬁl}_QVMz} (hv u|&b7 Bb)
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is a non-negative function. By direct calculation, the Fourier transform of 7 is

1 z w TU
( )d+1 /]R;d/ Tt ) (h u’aaaabaﬁaaﬂb) dhdu

- DR fr () () () )

v 2

which is always non-negative since o, < ap and 5, < S. O

Proof of Theorem 3

From the setting, it is guaranteed that ay < & < ay and (G < B < Py. By Lemma

au,Bu

, we have (,, 5 < (! 5 < ! . From Theorem 2, the left hand side and right hand side

2 1/ dﬁZu 1

of the inequality both converge to ofa almost surely as K,T — oo. Therefore,

2v—d 2v—1
Ca 5 odag 5"~ almost surely. O

Proof of Theorem 4

Since f1/a; = fo/an = r, the covariogram (1.5) reduces to

291—v+45t ~
i - (o)’ 2 K

rv-%

_ap (ayx), (51.6)

where i = 0,1 and x = vh? 4 r2u?, which is in the form of (1.1). In light of Theorem 3 of
Zhang| (2004)), if 62 was obtained from maximizing the likelihood function using (S1.6) as the

covariance function, then

~2 2u—d—1 2 2u—d—1
g,0q — onen
2u—d—1 2u—d—1
R B Bo
s 2&%1/ d—1 <_) N SQSV d—1 <_>
ﬂl 50

— & TdBQV d—1 - 0_0 dﬂ2u d—1
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which completes the proof. O

Proof of Theorem 5
Let f, .2 the probability density function of X, observed in the region D, under the
probability measure P, ,2, where P, ;> is the mean-zero Gaussian measure with the Matérn

covariogram o?M?(ay, ras). Write

2 2v—1_2v—d—1
2 OgTo @

g, = .
T r2v—1 2v—d—1

The Radon-Nikodym derivative of P, ,2 with respect to Provo,?o iS foro2/ fn’m,ggo. Let p,(r,0?%)
be the logarithm of the Radon-Nikodym derivative such that p,(r,0%) = £, (r,0%) =y (10, 07, ).
As shown in (Gikhman and Skorokhod (1974, Thm. 1, p. 442) and [Zhang| (2004)), if P, ;2 =
PTO,(T%O? then p, converges to a limit, p, say with PTO,UgO—probability 1. Otherwise, if P, 2
and P”Ov”?o are orthogonal, then p, — —oo. By Theorem 4, Py = r0,02, where Fj is the
probability measure defined by o2 M2 (ayg, roy).

For any 7, o2 is defined by (KT)™'X T4, ray X, according to (2.6). From Theorem 4,

lim,, o0 pu(r, 02) — p > —o0 if 7 = ry. Furthermore, from Theorem 1(c), lim,, o pp (7, 0%) —

2

2) and therefore 7, — ry almost

—o0 if 7 # 9. Hence, 1¢ is the unique maximizer of ¢,(r, &

surely. Hence, (0, ;. = 62(F,)"85" " — 62(ro)*83"~*"". Thus, from Theorem 4, (3, . —
2,.d Q2v—d—1
0070”0 : O

Lemma 3. Under the conditions in Theorem 1 and ¢ = 0, if 0 < a, < ap < 00 and 74,7

are estimated from (2.12), then ngb > Cga,ra for some large enough sample size.
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Proof. Similar to the proof of Lemma [2] it can be verified that

0 _ CO
ap,Th Qa,Ta

1 2w—d—1 Wd—1 fr—
= KTX'I {Tlcal (rbab) Y ]‘_‘abl,rbab - TZZ (Taaa) Y Focal,raaa} Xn
Hence, it suffices to show that the matrix
_ 1—2v+d — 1—2v+d
Tq I (TCLO‘G) * Faa,raaa -1 I (rbab) * Fabﬂ’bab (81'7)

is non-negative definite. The Fourier transform of (S1.7)) is

P-4 2 (rg0)

7T(d+1)/2 Tg (Taaa)QV—d—l (agrlglag + T(%O%WQ + OZZTQ)V

- Otzyid (Tthb)QV_l
rd (rpc) ™ 4! (aZriad + riaiw? + a272)”

-y o ) o

rid+1)/2 (a2r2a2 4+ r202w? 4+ a272)”  (a@ria? + ricdw? + air?)”

d+1

_ - _er_) (a2r +r2w® +72) " = (agry + rpw® + 77) " (S1.8)
= @z [\%fa T e ' ‘

By Theorem 5, since ry, 7, — 19 almost surely as K, T — oco. With a, < oy, (S1.8) converges

to
I(v— 4t ) D
% [(0427“3 +rgw? +7°) " = (aprg + rgw’ +77) } > ().

Proof of Theorem 6
By Lemma [3| and Theorem 5, the result in Theorem 6 can be proven in a similar fashion

as the proof of Theorem 3. We omit the proof here.
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S2 Detailed Simulation Results

This section is devoted to supplement the simulation results provided in Section 3 of the
paper. In particular, summary statistics (quartiles, mean and standard deviation) of the

estimated parameters under the 11 scenarios are provided.

Table 1: Simulation results. Summary statistics of estimated c, 3, 0% and ¢ under scenarios 1 to 4 for different
values of K (and T'). Under these scenarios, € = 1 (the separable case).
K =25 K =236 K =49

& ] 52 ¢ & ] &2 ¢ & ] &2 ¢
Scenario 1: (a, 8) = (0.3,3.0)
Q1 — — 0.964 2.343 — — 0.975 2.368 — — 0.979  2.380
Q2 — — 1.001 2.434 — — 1.001 2.433 — — 0.999 2.428
Q3 — — 1.037  2.520 — — 1.026  2.494 — — 1.019 2475
Mean — — 1.001  2.433 — — 1.002 2434 — — 0.999 2.427
SD — — 0.053 0.130 — — 0.040 0.097 — — 0.031 0.076
Scenario 2: (a, 8) = (0.4,2.0)
Q1 — — 1.732  2.217 — — 1.795  2.297 — — 1.838 2.353
Q2 — — 1.802 2.307 — — 1.840 2.355 — — 1.866  2.389
Qs — — 1.883 2.410 — — 1.890 2.419 — — 1.893 2.423
Mean — — 1.805 2.310 — — 1.841 2.357 — — 1.866 2.388
SD — — 0.108 0.138 — — 0.072  0.092 — — 0.041  0.052
Scenario 3: (o, §) = (1.0,1.0)
Q1 — — 3.307  3.307 — — 3.125  3.125 — — 2.903 2.903
Q2 — — 3.563  3.563 — — 3.295  3.295 — — 2972 2972
Q3 — — 3.855  3.855 — — 3.476  3.476 — — 3.057  3.057
Mean — — 3.591  3.591 — — 3.312  3.312 — — 2.981 2.981
SD — — 0.397  0.397 — — 0.260  0.260 — — 0.119 0.119

Scenario 4: (&, ) obtained from (2.7) and (2.9)
Q1 0.254 2.635 0.217 2306 0.265 2629 0.199 2361 0.250 2.642 0.195 2.359
Q2 0.349 3.231 0.609 2.606 0.369 3.194 0.589 2.542 0.342 3.224 0.670 2.517
Q3 0.481 4.188 1.837 3.247 0.501 3.979 1.625 2.921 0470 4.073 1.923 2.821
Mean 0.393 3.525 2.108 3.082 0.413 3.445 2.003 2.883 0.387 3.442 2.158 2.695
SD 0.198 1.291 4.716 1.423 0.216 1.209 6.014 1.310 0.195 1.132 5.016 0.558
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Table 2: Simulation results. Summary statistics of estimated o, 3, 0% and ¢ under scenarios 5 to 7 for different
values of K (and T'). Under these scenarios, ¢ = 0 (the non-separable case).

K =25 K =36 K =49
& B &2 ¢ & B &2 ¢ a&a B &2 ¢

Scenario 5: (a, 8) = (0.3,3.0)

Q1 — 0.966 289.8 — — 0977 293.0 — 0.980 293.9

Q2 — 1.003 301.0 — — 1.002 300.5 — 0999 299.6

Qs — 1.045 3134 — — 1.027 308.1 — 1.022 306.6

Mean — 1.004 301.2 — — 1.002 300.7 — 1.001 300.3

SD — 0.068 1741 — — 0.040 12.06 — 0.031 9.336
Scenario 6: (a, ) = (0.1,1.0)

Q1 — 2.849 2849 — — 2917 291.7 — 2946 294.6

Q2 — 2982 2982 — — 2995 2995 — 2993 299.3

Q3 — 3.093 3093 — — 3.064 3064 — 3.049 304.9

Mean — 2977 2977 —  — 2996 299.6 — 2998 299.8

SD — 0.173 1725 — — 0.110 11.00 — 0.080 8.011
Scenario 7: (o, f) = (1.0,1.0)

Q1 — 2223 2223 — — 2377 2377 — 2,501 2,501

Q2 — 2.389 2389 — — 2497 2497 — 2,594 2.594

Qs — 2.565 2.565 — — 2.618 2.618 — 2.686 2.686

Mean — 2410 2410 — — 2,506 2.506 — 2,596  2.596

SD — 0.263 0.263 — — 0.187 0.187 — 0.140 0.140

Table 3: Simulation
different values of K

results. Summary statistics of estimated «,r, 02 and ¢ under scenarios 8 to 11 for
(and T). Under these scenarios, e = 0 (the non-separable case).

K =25 K =36 K =49
é 7 52 ¢ & 7 52 ¢ & 7 52 ¢
Scenario 8: a = 0.3
Q1 — 9.335 0.957 246.0 — 9.646 0.976 271.3 — 9.705 0.979 277.2
Q2 — 10.01 0.994 300.1 — 10.03 1.000 305.7 — 9.996 1.000 299.0
Qs — 10.77 1.037 366.9 — 10.48 1.030 341.2 — 10.30 1.024 324.6
Mean — 10.07 0.999 312.8 — 10.05 1.003 308.5 — 9.998 1.002 301.7
SD — 0.993 0.060 88.85 — 0.645 0.040 57.78 — 0.451 0.032 37.38
Scenario 9: o= 0.5
Q1 — 9.318 0.582 2444 — 9.490 0.587 259.8 — 9.701 0.590 276.5
Q2 — 9.909 0.605 301.0 — 9.945 0.603 297.7 — 9.961 0.603 299.3
Qs — 10.62 0.632 359.9 — 10.34 0.619 333.6 — 10.26 0.615 322.9
Mean — 9.992 0.607 310.0 — 9.950 0.603 300.6 — 9.991 0.603 302.1
SD — 0.981 0.037 90.45 — 0.653 0.024 56.79 — 0.439 0.019 37.78
Scenario 10: a = 1.0
Q1 — 8.621 0.310 213.7 — 9.154 0.304 242.5 — 9.531 0.302 267.0
Q2 — 9.312 0.323 261.0 — 9.624 0.312 278.3 — 9.801 0.308 289.5
Q3 — 10.02 0.339 316.6 — 10.06 0.322 316.1 — 10.10 0.314 3174
Mean — 9.369 0.324 273.7 — 9.628 0.313 282.7 — 9.811 0.309 292.9
SD — 1.051 0.023 86.43 — 0.670 0.014 55.31 — 0.451 0.010 37.61
Scenario 11: & obtained from (2.7) and 7 from (2.12)
Q1 0.244 9.346 0.574 246.6 0.222 9.553 0.546 265.6 0.239 9.705 0.583 275.6
Q2 0.356 10.01 0.834 301.7 0.370 10.02 0.825 302.0 0.354 9.975 0.841 298.9
Qs 0.534 10.63 1.233 362.6 0.553 10.47 1.354 341.4 0.523 10.27 1.268 324.1
Mean 0.418 10.02 1.007 311.4 0.418 10.02 1.063 3059 0.413 9.992 1.015 301.9
SD 0.251 0.994 0.633 89.06 0.250 0.641 0.762 55.33 0.246 0.434 0.653 37.04
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