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Abstract: Subset selection is a long-standing problem. One goal of a selection pro-

cedure is consistency. Consistency using Akaike’s Final Prediction Error Criterion

(FPE) as a selection procedure can be shown to be related to the cost complex-

ity parameter in FPE. However, another goal of a selection procedure is accurate

predictions. The consistency property does not necessarily guarantee this second

objective. The issue can be thought of as a bias versus variance tradeoff for the

procedure. We use the bootstrap to model this tradeoff and provide an objective

way of choosing a procedure which attempts to balance the two objectives. This

is done in the spirit of the cost complexity pruning algorithm of classification and

regression trees. The methodology is described and illustrated on simulated and

real data examples.
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1. Introduction

One of the goals of subset selection procedures for linear regression models
is consistent selection - i.e., picking the true underlying submodel with prob-
ability tending to 1 as the sample size gets large. Many procedures minimize
estimates of prediction error (PE) for fixed subsets. The Final Prediction Error
(FPE) criterion (Akaike (1970)) is one estimate that has been studied extensively.
The conditions for consistent selection can be shown to be related to the cost
complexity parameter (λ) used in FPE. While consistency seems a reasonable
objective, we also want a procedure to produce accurate estimates in terms of
quantities like mean squared model error (ME) or mean squared error of predic-
tion (PE). (Note that PE is just a direct function of ME, see Breiman (1992).)
The two objectives are not equivalent as overfitting (picking too large a subset)
and underfitting (picking too small a subset) can have very different effects on
prediction accuracy.

Rather than focus on a fixed subset, it seems more natural to focus the se-
lection procedure on a cost complexity parameter. In particular, we use FPE as
a cost complexity criterion. For a fixed cost parameter, we can assess the pre-
diction accuracy of a procedure and choose that procedure which minimizes our
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estimate of prediction error. To estimate the prediction accuracy of a procedure,
we use the bootstrap (Efron (1979)), although other methods like leave-d-out
cross-validation have also been used (Rao and Tibshirani (1997)). This cost
complexity approach is the basis of the pruning procedure in the CART work
of Breiman, Friedman, Olshen and Stone (1984). The article is organized as
follows. Section 2 gives some background to the FPE. Section 3 introduces the
new bootstrap-based approach termed BCC for bootstrap choice of cost complex-
ity. Section 4 provides simulation results and Section 5 gives some concluding
remarks and discussion.

2. Subset Selection and Prediction Error

In the linear regression setting, one assumes there is data of the form (yi,xi),
i = 1, . . . , n, where the xi is the ith value p-variate predictor vector. The pre-
dictors are related to the response by yi = x′

iβ + ei, i = 1, . . . , n, where β

is a p × 1 vector of unknown parameters some of whose elements may be 0.
The ei, i = 1, . . . , n, are assumed to be i.i.d. N(0, σ2), and the design matrix
X = (x1, . . . ,xn)′ is assumed to be full rank.

If α is any non-empty subset of the p predictors, the subset selection problem
is to select that subset α̃ of k (k ≤ p) predictors corresponding to the non-zero
elements of β. For a given p candidate predictors, there are 2p − 1 possibilities
for α so the search can become a prohibitive task.

Suppose there is a predictor for submodel α say ŷα for y and new data of
the form (ynew

i ,xnew
i ), i = 1, . . . , n, exists. Then PE for ŷα can be defined by

PEα =
1
n

n∑
i=1

EF (ynew
i − ŷi

new)2, (1)

where F is the population generating the operating or true model. Submodels
can be classified into two categories - 1) Ac - those that contain at least all of
the non-zero elements of β and 2) Aw - those that are incorrect, i.e., missing at
least one non-zero element of β.

If the predictors are considered fixed, xnew
i = xi with xnew

i independent
of yi, then the above expectation is taken with respect to the new and original
responses. Thus if a submodel α ∈ Ac the unconditional prediction error is

PEα = σ2 +
1
n

n∑
i=1

EF (x
′new
i β − x

′new
iα β̂α)2,

= σ2 +
1
n

d(α)σ2, (2)
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where β̂α is the OLS estimator for submodel α based on the original data, and
d(α) is the number of predictors in α. If α ∈ Aw the unconditional PEα is given
by

PEα = σ2 + ∆α +
1
n

d(α)σ2, (3)

where ∆α = n−1β′X′(I − Hα)Xβ with Hα = Xα(X′
αXα)−1X′

α. Further, I is an
n× n identity matrix and X, Xα are n× p and n× d(α) design matrices for the
full model and submodel α respectively.

If the predictors are random, then the new observations (ynew
i ,xnew

i ), i =
1, . . . , n, are assumed to come from the joint distribution of (y,x), but are as-
sumed independent from the original data set. The expectation in (1) is done
with respect to the distribution over the new observations and the original data
set. The form of the resulting PE definitions is similar but an extra remainder
R = o(n−1) is added on to the above two equations. The reader is referred to
Shao (1993) for a more complete discussion.

A common assumption made is to assume that for α ∈ Aw

lim inf
n→∞ ∆α > 0. (4)

This amounts to saying that a wrong model cannot have asymptotically minimal
PE. Equations (2), (3) and the above assumption (4) imply that the search for
the correct model with minimum size then amounts to finding the subset with
minimum PEα. One goal of a subset selection procedure is to provide consistent
selection defined as

lim
n→∞P (α̂ = α̃) = 1, (5)

where α̂ is a submodel chosen by some procedure. Another is to have accurate
predictions given by ME = EF (µ − µ̂)′(µ − µ̂) where µ = Xβ and µ̂ = Xα̂β̂α̂.

2.1. Subset selection using FPE

Since PEα is typically unknown, it must be estimated. The Final Prediction
Error (FPE) criterion estimates PEα as

FPEα(λ) = RSSα + λd(α)σ2 (6)

for a fixed positive value of a cost complexity parameter λ. The term σ2 is
estimated by s2, the unbiased estimate of σ2 under the full model of degree
p. The term RSSα is the residual sum of squares for submodel α given by
RSSα =

∑n
i=1(yi − x′

iβ̂α)2. The submodel picked by minimizing (6) for fixed
λ is then αλ = argminα FPEα(λ). If λ = 2, (6) is the traditional Mallow’s Cp
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statistic; if λ = log n, (6) is the Bayesian Information Criterion (BIC) (Schwarz
(1978)); if λ = log log n, (6) it is the criterion proposed by Hannan and Quinn
(1979) in the context of autoregressive model order determination.

The conditions for satisfying (5), using FPEα(λ), have been previously stud-
ied by Zhang (1993) for fixed X. Under EF e = 0, EF e2 = σ2, EF er < ∞ for
r > 2 and condition (4), we simply require that λ/n → 0, and λ → ∞ as n → ∞.
The random X case was studied by Pötscher (1991).

3. Bootstrap Choice of λ

The trouble with the asymptotic results is that they give very little guid-
ance on the behaviour of a procedure in finite samples (Bickel and Zhang (1992)).
Consistency of a selection procedure can be thought of as elimination of underfit-
ting and overfitting probabilities. These probabilities - expressed as P (αλ ∈ Aw)
and P (αλ ∈ Ac) with d(αλ) > d(α̃) respectively, both tend to 0 as n → ∞ but
at very different rates. The underfitting probability vanishes much more quickly
than the overfitting probability (Zhang (1993)). Thus in finite samples, one has
a bias (caused by underfitting) versus variance (caused by overfitting) tradeoff
captured in the prediction accuracy of the procedure. The goal of this paper is
to introduce a method that minimizes this tradeoff over a set of candidate pro-
cedures by estimating prediction accuracy using the bootstrap (Efron (1979)).
By restricting candidate procedures to be those satisfying Zhang’s (1993) con-
ditions, this provides a compromise method of choosing a procedure with good
selection and prediction accuracy. First however we provide some background to
PE estimation using the bootstrap.

3.1. Bootstrapping regression models and subsequent PE estimation

The material in this subsection can also be found in other references, in-
cluding Efron (1982) and Shao (1996), but is included here for completeness
of discussion. Under the setup of Section 2, in the fixed predictor case, the
bootstrap resamples the normalized residuals under the full model, with replace-
ment. If ri = yi − x

′
iβ̂, i = 1, . . . , n, are residuals from the estimated full model

of dimension p, then a bootstrap sample consists of e∗i , i = 1, . . . , n, sampled
with replacement from F̂n, the distribution putting mass 1/n on each of the
normalized residuals (1 − p/n)−1/2(ri − r̄), i = 1, . . . , n, where r̄ =

∑n
i=1 ri/n.

Then let y∗iα = x
′
iαβ̂α + e∗i , i = 1, . . . , n, and define the bootstrap estimator

β̂∗
α = (X

′
αXα)−1 ∑n

i=1 xiαy∗iα. The bootstrap estimate of PEα is then

P̂E
fB

α =
1
n

n∑
i=1

E∗(yi − x
′
iαβ̂∗

α)2, (7)
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where the expectation E∗ is with respect to F̂n.
In the random predictor case, the bootstrap resamples the pairs (xi, yi), i =

1, . . . , n with replacement from the empirical distribution F̂ r
n , putting mass 1/n

on each data pair. Let (x∗
i , y

∗
i ), i = 1, . . . , n be the bootstrap sample of size n

resampled from F̂ r
n . Then define the bootstrap estimated coefficient vector to be

β̂∗
α =

{
(X∗′

α X∗
α)−1 ∑n

i=1 x∗
iαy∗i if γ∗

(n) ≥ γ(n)/2
β̂α otherwise,

where X∗
α is the bootstrap analog of Xα obtained by bootstrapping pairs, and γ∗

(n)

and γ(n) are the smallest eigenvalues of (X∗′
α X∗

α)/n and (X′
αXα)/n respectively

(Shao (1996)). The bootstrap estimate of PEα in the random predictor case is
then

P̂E
rB

α =
1
n

n∑
i=1

E∗(yi − x∗′
iαβ̂∗

α)2, (8)

where the expectation is taken with respect to F̂ r
n .

Efron (1982) showed that in fact (8) leads to an underestimation of PEα of
the order n−1. He gave a less biased form making use of the bootstrap estimate
of optimism. This is an attempt at correcting the underestimation of PEα by the
apparent error rate given by n−1RSSα = n−1 ∑n

i=1(yi −x′
iαβ̂α)2. The correction

known as the optimism in RSSα is given by ωα = EF (PEα − n−1RSSα). The
natural bootstrap estimate of this is ω̂B

α = E∗(n−1Σn
i=1(yi−x

′
iαβ̂∗

α)2−n−1RSS∗
α),

with n−1RSS∗
α = 1

nΣn
i=1(y

∗
i −x∗′

iαβ̂∗
α)2. This estimator of PEα can then be written

as

P̂E
r2B

α = n−1RSSα + ω̂B
α . (9)

This estimator is almost unbiased (Shao (1996)). Some similar estimates were
provided by Bunke and Droge (1984). Bootstrap estimates of Kullback-Leibler
information are presented in Shibata (1995). Note that either bootstrapping
recipe can be used whether X is fixed or random (Shao (1996)).

3.2. Choosing λ

We generalize the above use of the bootstrap to estimate PE associated with
a cost parameter λ in FPE. For a fixed λ > 0 we can find the subset minimizing
FPEα(λ). In practice, we use a procedure like the bootstrap to find the value λ̂

producing the smallest estimated prediction error, and then for our final model
we choose the α minimizing FPEα(λ̂). The parameter λ roughly indexes model
size. This cost-complexity approach is the basis of the pruning procedure in the
CART work (Breiman, Friedman, Olshen and Stone (1984)).
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Define the true prediction error for λ as

PE(λ) =
1
n

n∑
i=1

EF (ynew
i − ŷnew

iλ )2, (10)

where ŷnew
iλ = x

′new
iαλ

β̂αλ
, i = 1, . . . , n. The subtle difference in (10) versus (1) is

that the emphasis is now being placed on the cost parameter λ and not a subset.
Our estimate, P̂E(λ)B applies the Efron-type modification in a fashion similar to
(9). Define the submodel minimizing (6) for the bootstrap data and the same λ

as α∗
λ = argminα FPEα(λ)∗. where FPEα(λ)∗ is (6) evaluated on the bootstrap

dataset. The analog of (9) is given by

P̂E(λ)B = n−1RSS(λ) + ω̂B(λ), (11)

where RSS(λ) is the residual sum of squares in the original data for the submodel
αλ, and ω̂B(λ) is the bootstrap estimate of optimism in n−1RSS(λ) given by
ω̂B(λ) = E∗(n−1 ∑n

i=1(yi− ŷ∗iλ)2−n−1RSS(λ)∗), with ŷ∗iλ = x
′
iα∗

λ
β̂∗

α∗
λ
, i = 1, . . . , n

and n−1RSS(λ)∗ = 1
n

∑n
i=1(y

∗
iαλ

− x∗′
iα∗

λ
β̂∗

α∗
λ
)2. If X is random, y∗iαλ

= y∗i , i =

1, . . . , n. If X is fixed, then x∗′
iα∗

λ
= x′

iα∗
λ

and y∗iαλ
= x

′
iαλ

β̂αλ
+ e∗i , i = 1, . . . , n

where the e∗i , i = 1, . . . , n, are the normalized residuals from the full model of
degree p. The steps of the algorithm are summarized as follows.

BCC algorithm

1. For a fixed value of λ find αλ = argminα FPEα(λ) in the orginal data and
generate B bootstrap samples. If resampling the residuals, each sample is of the
form (xiαλ

, y∗
iαλ

), i = 1, . . . , n, where y∗
iαλ

= x
′
iαλ

β̂αλ
+ e∗i , i = 1, . . . , n, where

the e∗i , i = 1, . . . , n, are normalized residuals from the full model of degree p

sampled with replacement from F̂n. If resampling pairs, the bootstrap sample
is (x∗

i , y
∗
i ), i = 1, . . . , n, sampled with replacement from F̂ r

n . The rest of the
algorithm will be provided for bootstrapping pairs.

2. For each bootstrap sample, find the submodel minimizing FPEα(λ)∗, say α∗
λ(b).

3. Evaluate the optimism in α∗
λ(b), say ω̂b(λ). Specifically, ω̂b(λ) = (n−1Σn

i=1(yi −
ŷ∗

iλ(b))2 −n−1RSSb(λ)∗), where ŷ∗
iλ(b) = x

′
iα∗

λ
(b)β̂

∗
α∗

λ
(b), i = 1, . . . , n, and

n−1RSSb(λ)∗ = n−1
∑n

i=1(y
∗
i − x

′∗
iα∗

λ
(b)β̂

∗
α∗

λ
(b))

2.

4. Average the ω̂b(λ), b = 1, . . . , B, over the B bootstrap samples to derive ω̂B(λ).

Add ω̂B(λ) to n−1RSS(λ) to obtain P̂E
B

(λ).
5. Repeat steps 1-4 for a grid of λ values.
6. Minimize P̂E(λ)B over λ giving λ̂B.
7. The selected model is then α

λ̂B
.
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The BCC algorithm requires a grid of λ values. We would like the BCC to be
consistent in the sense of (5). This provides some minimal asymptotic optimality
in terms of selection accuracy. Note that λ̂B is a random variable and hence the
conditions of Zhang (1993) do not guarantee consistency. Stronger conditions
need to be imposed as in Rao and Wu (1989). If X is fixed, then under EF e = 0,
EF e2 = σ2, EF er < ∞ for r > 2 and condition (4), we need λ̂B/n → 0 a.s. and
(log log n)−1λ̂B → ∞ a.s. when n → ∞. For X random, we can use Pötscher
(1991) and impose the additional mild conditions that x2

nα = o(nγ) for some
0 < γ < 1 and all α, where xnα correspond to the elements of the nth row
of Xα. In practice, this is simply accomplished by searching over a range like
[log n, n/ log n]. A potential drawback of this is to have poorer small sample
accuracy. A modified version of the BCC was studied in Rao and Tibshirani
(1993) where an unrestricted range was used.

3.3. P̂E(λ)B as an estimator of PE(λ)

We need to show that our bootstrap estimate of PE(λ) is indeed tracking
the true value. This is a very difficult question to answer in general and, as a
result, we choose to look at a special case as done in Breiman (1992). Consider
the special case where Xii = 1, i = 1, . . . , n, and Xij = 0, i �= j, and all βj =
0, j = 1 . . . p. Then the ordinary least square estimates can be written as β̂j =
βj +Zj, j = 1, . . . , p, where {Zj} are i.i.d. N(0, σ2). In fact, Zj = ej , j = 1, . . . , p.
The estimated coefficients in the bootstrap samples can then be written as β̂∗

j =
β̂j +Z∗

j , j = 1, . . . , p, where {Z∗
j } are i.i.d. N(0, σ2) and the {Zj} are independent

of the {Z∗
j }.

It is well known in the orthogonal design case that minimizing FPEα(λ) is
equivalent to choosing a submodel with β̂2

j ≥ λσ2, assuming σ2 known. Under
the same assumption, minimizing the corresponding criterion in the bootstrap
data is equivalent to picking those β̂∗

j such that β̂∗2
j ≥ λσ2. Take βλ and xλ

and their bootstrap versions to indicate corresponding quantities from αλ and
α∗

λ respectively. Then PE(λ) becomes

PE(λ) =
1
n

n∑
i=1

EF (ynew
i − x′

iλβ̂λ)2,

=
1
n

n∑
i=1

EF

(
enew
i −

d(αλ)∑
j=1

Zj +
p∑

j=d(αλ)+1

βj

)2
.

If we take all βj = 0, then

PE(λ) =
1
n

n∑
i=1

EF

[
enew
i −

p∑
j=1

ZjI(Z2
j ≥ λσ2)

]2
.
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The bootstrap estimate of this, following (10), is

P̂E
B

(λ) =
1
n

n∑
i=1

E∗(yi − x′
iλβ̂∗

λ)2,

=
1
n

p∑
i=1

E∗
[
βi+ei−(βi+ei+Z∗

i )I[(βi+ei+Z∗
i )2≥λσ2]

]2
+

1
n

n∑
i=p+1

e2
i

=
1
n

p∑
i=1

E∗
[
(βi+ei)I[(βi+ei+Z∗

i )2 <λσ2]−Z∗
i I[(βi+ei+Z∗

i )2≥λσ2]
]2

+
1
n

n∑
i=p+1

e2
i .

If we again take all βj = 0 then this becomes

P̂E
B

(λ)=
1
n

p∑
i=1

E∗
[
eiI[(ei+Z∗

i )2 <λσ2]−Z∗
i I[(ei+Z∗

i )2≥λσ2]
]2

+
1
n

n∑
i=p+1

e2
i .

Since the ei’s and the Z∗
i ’s are i.i.d. N(0, σ2), the ei + Z∗

i ’s are i.i.d N(0, 2σ2).
So PE(λ) decreases as λ → ∞ and identifies the best submodel as the empty

one. The (unconditional) expected value of P̂E
B

(λ) is such that the values for
λ = 0 and λ → ∞ are equivalent but identify full and empty models as best
ones respectively. But by definition (6), λ = 0 is inadmissible and hence the best
subset is also identified as the empty one. In practice we use the refined estimate
(11) instead of the above bootstrap estimate. Admittedly this illustration is a
special situation, but it does provide some insight into the behaviour of the BCC
procedure.

3.4. An all-subsets bootstrap approach

As a point of comparison in the simulations, we make reference to a re-
sult found by Shao (1996). He found that the submodel selected by minimizing
the bootstrap estimate of PEα given by (7), (8) or (9) does not provide con-
sistent selection in the sense of (5). For the random predictor case, we must
take a bootstrap sample of size m, (x∗

i , y
∗
i ), i = 1, . . . ,m where m is chosen to

satisfy m/n → 0, as m and n → ∞. In the fixed predictor case, Shao pro-
poses that instead of resampling the e∗i , i = 1, . . . , n, from F̂n, we should resam-
ple the ẽ∗i , i = 1, . . . , n, from the distribution F̃n,m putting mass n−1 on each
(n/m)1/2(1 − p/n)−1/2(ri − r̄), i = 1, . . . , n, where m is chosen in such a way so
as m → ∞, m/n → 0 as n → ∞. The issue is one of determining an appropriate
value of m which may depend on unknown model parameters. Not only is this an
issue with regard to subset selection accuracy, but also with prediction accuracy.
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An insufficient correction can lead to excess overfitting and too drastic a correc-
tion can cause undue underfitting. Shao (1996) shows that this is equivalent to
determining an appropriate λ in FPEα(λ).

4. Simulation Examples

4.1. Example 1

The first example is taken from Shao (1993). Note that for all simulations
we used B = 20 for the Monte Carlo approximations to keep computations to
a minimum. The subset selection algorithms were from the S-plus statistical
software package and, in particular, the leaps and bounds procedure was used.
All computations were done on a Sparc workstation. We will assume a true
model of the form y = x′β + e where e ∈ N(0, 1). The predictors x are assumed
to be a 5-variate vector and the total sample size is 40. The 40×5 design matrix
from Shao (1993) will be considered fixed with xi1 = 1, i = 1, . . . , n. The true
values of β are given in Table 1 with varying degrees of model complexity. The
results of the simulation are described in Table 1 based on 100 realizations. The
following selection methods were examined: full model, Mallow’s Cp, the ordinary
bootstrap over all subsets (Btm (m = n)), Shao’s corrected bootstrap (Btm) for
m = 20, 15, 10, the BIC, FPE with λ = n/ log n, and the BCC with a grid search
done over λ values in [log n, n/ log n]. We have included in our table the number
of underfit and overfit models and the true model error ME = EF (µ− µ̂)′(µ− µ̂)
where µ = Xβ and µ̂ = Xα̂β̂α̂. This is estimated by the empirical average
over the 100 realizations. Note that the same ei, i = 1, . . . , 40, were used for
all methods in a given realization. Thus the ME’s are directly comparable. We
opt for presenting ME instead of PE since ME contains the most important
information about the performance of the selection procedures. Since we know
the true model in the simulations, we can directly estimate this quantity. This is
a slight variation from the earlier presentation, but does not alter the conclusions.

The following results are apparent.
1. Methods with high correct selection probabilities (consistent) do not always

give accurate predictions. In particular, many of the analytically corrected
bootstrap methods and FPEα(λ = n/ log n) sometimes underfit badly, re-
sulting in high model error. Note that BCC and BIC perform almost the
same in this example (with BCC being slightly better in terms of selection
accuracy and model error), but poor BIC performance has been previously
noted (see Bickel and Zhang (1992) for example).

2. In the last case the full model beats all model selectors. We feel that the full
model should be included in any comparison of such procedures.

3. The BCC method performs well in terms of both correct model selection and
model error.
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4. Figure 1 shows the range of cost parameters chosen by the BCC for each of
the models. It is clear that no one value is preferred over the 100 realizations.
The range of cost parameters chosen narrows as the number of predictors in
the true model increases.

Table 1. Shao’s Example 1 (n = 40, 100 realizations) indicating overfitting,
underfitting counts, number of times true model selected, and ME for the
selection procedure. Signal to noise ratios (snr) are indicated below each
model.

True Model Procedure number overfit number underfit number correct ME

β = (2, 0, 0, 4, 0)′ full model 100 0 0 5.231

(snr = 4.24) Cp 41 0 59 3.943

BIC 17 0 83 3.031

FPEα(λ = n/ log n) 1 0 99 2.174

Btm(m = n) 70 0 30 4.279

Btm(m = 20) 53 0 47 3.349

Btm(m = 15) 43 0 57 2.964

Btm(m = 10) 42 0 58 2.740

BCC 12 0 88 2.815

β = (2, 0, 0, 4, 8)′ full model 100 0 0 5.231

(snr = 11.62) Cp 28 0 72 4.373

BIC 10 0 90 3.792

FPEα(λ = n/ log n) 0 0 100 3.309

Btm(m = n) 58 0 42 4.419

Btm(m = 20) 47 0 53 4.099

Btm(m = 15) 31 0 69 3.825

Btm(m = 10) 37 3 60 5.629

BCC 7 0 93 3.693

β = (2, 9, 0, 4, 8)′ full model 100 0 0 5.231

(snr = 14.10) Cp 18 0 82 4.734

BIC 5 0 95 4.389

FPEα(λ = n/ log n) 0 1 99 4.412

Btm(m = n) 48 0 52 4.813

Btm(m = 20) 31 0 69 4.642

Btm(m = 15) 19 5 76 5.681

Btm(m = 10) 12 34 54 17.637

BCC 5 0 95 4.389

β = (2, 9, 6, 4, 8)′ full model 0 0 100 5.231

(snr = 16.69) Cp 0 0 100 5.231

BIC 0 0 100 5.231

FPEα(λ = n/ log n) 0 6 94 6.608

Btm(m = n) 0 2 98 5.653

Btm(m = 20) 0 8 92 7.659

Btm(m = 15) 0 18 82 11.083

Btm(m = 10) 0 68 32 34.089

BCC 0 0 100 5.231

β = (1, 2, 3, 2, 3)′ full model 0 0 100 5.231

(snr = 6.72) Cp 0 68 32 5.717

BIC 0 85 15 6.238

FPEα(λ = n/ log n) 0 100 0 13.689

Btm(m = n) 0 56 44 6.392

Btm(m = 20) 0 84 16 10.232

Btm(m = 15) 0 91 9 13.516

Btm(m = 10) 0 100 0 22.600

BCC 0 85 15 6.748
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Figure 1. Boxplot of cost parameters selected by the BCC over the 100
realizations of Example 1.

4.2. Example 2 - BCC versus fixed λ methods

An example will now be examined to compare performance to fixed λ meth-
ods - i.e., those using fixed λ values that satisfy Zhang’s (1993) conditions for
consistency. The example is from Hurvich and Tsai (1990) with sample size
n = 50 and the true value of β′ = (1, 2, 3, 0.6, 0, 0, 0). The xj, j = 1, . . . , 7 are
generated once from a N(0, 1) distribution and fixed for all subsequent realiza-
tions across all methods. The ei, 1 = 1, . . . , 50, were generated from a N(0, 1)
and fixed across all methods as in Example 1. A total of 200 realizations were
run.

Table 2. Example 2 (n = 50, 200 realizations) for fixed values of λ and
the BCC applied over a range [log n, (n/ logn)]. The true model is β =
(1, 2, 3, 0.6, 0, 0, 0)′ and the signal to noise ratio is 3.48.

Method Number overfit Number underfit Number correct ME
Full Model 0 200 0 7.183
Cp 85 8 107 6.100
BIC 24 20 156 5.679
FPEα(4) 24 20 156 5.679
FPEα(5) 20 24 156 5.734
FPEα(6) 10 38 152 6.284
FPEα(7) 7 47 146 6.626
FPEα(8) 2 56 142 6.936
FPEα(9) 1 73 126 7.826
FPEα(10) 0 82 118 8.297
FPEα(11) 0 93 107 8.926
FPEα(12) 0 106 94 9.599
BCC 22 24 154 5.821
Random λ 4 60 136 7.306
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The results are given in Table 2. Once again number of overfit, underfit and
correct models are included as well as the ME. Many of the fixed λ values produce
serious underfitting which inflates the ME. The BCC does as well as “the best”
fixed λ procedure (BIC in this case) in terms of selection accuracy and ME. Note
that randomly choosing among the λ values clearly is not optimal in terms of
both accuracy and ME. Figure 2 gives the distribution of cost parameters chosen
by BCC.
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Figure 2. Boxplot of cost parameters selected by the BCC over the 200
realizations of Example 2.

4.3. Real data example

A dataset from Weisberg (1985) relates automobile accident rates in acci-
dents per million vehicle miles (Y) to 13 potential predictor variables. It is an
example of Normal regression. The dataset includes 39 sections of highways in
Minnesota in 1973. The legend for the variables is as follows.

1. Y = RATE = 1973 accident rate per million vehicle miles.
2. LEN = length of the segment in miles.
3. ADT = average daily traffic count in thousands (estimated).
4. TRKS = truck volume as a percent of total volume.
5. SLIM = speed limit (in 1973).
6. LWID = lane width in feet.
7. SHLD = width in feet of outer shoulder on the roadway.
8. ITG = number of highway-type interchanges per mile in the segment.
9. SIGS = number of signalized interchanges per mile in the segment.

10. ACPT = number of access points per mile in the segment.
11. LANE = total number of lanes of traffic in both directions.
12. FAI = 1 if federal aid highway, 0 otherwise.
13. PA = 1 if principal arterial highway, 0 otherwise.
14. MA = 1 if major arterial highway, 0 otherwise.
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Two of the segments, numbers 38 and 39 were neither federal, principal arterial,
nor major arterial, but were classified as major collectors (MC) coded here by
FAI = PA = MA = 0. Using a separate variable would have resulted in exact
collinearity.

Weisberg (1985) notes that when fitting the full model, none of the co-
variates have t-values in absolute magnitude greater than 2. Thus there does
not seem to be any obviously strong predictors in the full model. For sub-
ject matter reasons the variable LEN must be included in all candidate mod-
els, and that the three dummy variables coding it must be treated as a group.
Table 3 shows the results of using various subset selection procedures. In-
cluded are a naive all-subsets bootstrap (Btm(m = n)), Shao’s corrections with
m = n3/4, n1/2, n1/3, n1/4, Cp, BIC and BCC. Results for any of the procedures in-
volving bootstrapping have been summarized over 25 replications of the bootstrap
process (each bootstrapping process involves using B = 20 bootstrap samples).
The BIC gives slightly different conclusions than the other consistent methods
(Shao’s corrections and the BCC). BIC picks the same model as Cp (predictors
LEN,SLIM,ACPT) since the difference in cost parameters is quite small (log(39)
= 3.66 for this dataset). The BCC and the analytically corrected bootstrap tend
to pick models with predictors LEN,ACPT and LEN,LWID,ACPT respectively.
Note that with m = n1/2 we pick the model LEN,ACPT slightly more often,
and this can be attributed to some Monte Carlo variation in the bootstrapping
process (different sets of bootstrap samples used for different values of m and
then averaged to reduce variation).

Table 3. Results comparing models selected by various methods for the high-
way accident rate example. Any method superscripted with a † indicates that
the bootstrap process was repeated 25 times, and the number in parentheses
is the frequency of times this model was selected.

Method Model Selected
Bt(m = n) † LEN,SLIM,SIGS,ACPT,FAI,PA,MA (7/25)
Btm(m = n3/4)† LEN,SLIM,ACPT (9/25)
Btm(m = n1/2)† LEN,ACPT (10/25), LEN,LWID,ACPT (7/25)
Btm(m = n1/3)† LEN,LWID,ACPT (7/25)
Btm(m = n1/4)† LEN,ACPT (6/25), LEN,LWID,ACPT (7/25)
Cp LEN,SLIM,ACPT
BIC LEN,SLIM,ACPT
BCC † LEN,ACPT (8/25), LEN,LWID,ACPT (7/25)

5. Summary

This paper has presented a bootstrap-based method to balance two objec-
tives of a subset selection procedure - accurate selection and accurate predictions.
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This is done by using a cost complexity approach similar to that of the CART
work from Breiman, Friedman, Olshen and Stone (1984). The bootstrap was
used to implement the algorithm, although as previously stated, other methods
like leave-d-out cross-validation can also be used (Rao and Tibshirani (1997)).
However the bootstrap can easily be extended to more complicated problems
such as nonlinear regression models and generalized linear models (Shao (1996)).
By applying candidate selection procedures to bootstrap datasets, we can assess
the inherent instability of a procedure to slight perturbations of the data. Then
averaging predictions gives an indication of the average prediction accuracy of
the procedure. This has a flavor somewhat similar to the bagging procedure (for
bootstrap aggregation) of Breiman (1994) but with bagging, submodels them-
selves are averaged over the bootstrap datasets to produce hybrid models with
improved predictions. Extensions of the methodology to generalized linear mod-
els have also be developed. Similar extensions can also be made to generalized es-
timating equation models for longitudinal data (Liang and Zeger (1986)). These
results will be reported in a separate communication.

References

Akaike, H. (1970). Statistical predictor identification. Ann. Inst. Statist. Math. 22, 203-217.

Bickel, P. and Zhang, P. (1992). Variable selection in c regression with categorical covariates.

J. Amer. Statist. Assoc. 87, 90-97.

Breiman, L. (1992). Little bootstrap and other methods for dimensionality selection in regres-

sion - X fixed prediction error. J. Amer. Statist. Assoc. 87, 738-754.

Breiman, L. (1996). Bagging predictors. Machine Learning. To appear.

Breiman, L., Friedman, J. H., Olshen, R. A. and Stone, C. J. (1984). Classification and Regres-

sion Trees. Wadsworth Publishers, Belmont, California.

Bunke, O. and Droge, B. (1984). Bootstrap and cross-validation estimates of prediction error

for linear regression models. Ann. Statist. 12, 1400-1424.

Efron, B. (1979). Bootstrap methods: another look at the jackknife. Ann. Statist. 7, 1-26.

Efron, B. (1982). The Jackknife, Bootstrap and Other Resampling Plans. SIAM, Philadelphia.

Hannan, E. J. and Quinn, B. G. (1979). The determination of the order of autoregression. J.

Roy. Statist. Soc. Ser. B 41, 190-195.

Hurvich, C. M. and Tsai, C. L. (1990). The impact of model selection on inference in linear

regression. Amer. Statist. 44, 214-217.

Liang, K. Y. and Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models.

Biometrika 73, 13-22.

Pötscher, B. M. (1991). Model selection under nonstationarity autoregressive models and

stochastic linear regression models. Ann. Statist. 17, 1257-1274.

Rao, J. S. and Tibshirani, R. (1993). Bootstrap model selection via the cost complexity param-

eter in regression. Technical Report, Department of Statistics, University of Toronto.

Rao, J. S. and Tibshirani, R. (1997). Discussion to “An asymptotic theory for model selection”

by Jun Shao. Statist. Sinica 7, 249-252.

Rao, C. R. and Wu, Y. (1989). A strongly consistent procedure for model selection in a regres-

sion problem. Biometrika 76, 369-374.

Schwarz, G. (1978). Estimating the dimension of a model. Ann. Statist. 6, 461-464.



BOOTSTRAP CHOICE OF COST COMPLEXITY FOR BETTER SUBSET SELECTION 287

Shao, J. (1993). Linear model selection by cross-validation. J. Amer. Statist. Assoc. 88,

486-494.

Shao, J. (1996). Bootstrap model selection. J. Amer. Statist. Assoc. 91, 655-665.

Shibata, R. (1995). Bootstrap estimate of Kullback-Leibler information for model selection.

Technical report, Department of Statistics, University of California, Berkeley.

Weisberg, S. (1985). Applied Linear Regression. John Wiley, New York.

Zhang, P. (1993). On the convergence rate of model selection criteria. Comm. Statist., Part A

- Theory Methods 22, 2765-2775.

Department of Biostatistics, The Cleveland Clinc Foundation, Cleveland, Ohio, 44195, USA.

E-mail: srao@bio.ri.ccf.org

(Received July 1996; accepted March 1998)


