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Abstract: A common theme among high-dimensional linear discriminant analysis
(LDA) methods is the sparsity assumption. However, in practice, this assumption
may be violated, making sparse methods inaccurate. Motivated by this challenge,
we propose a novel high-dimensional LDA method that relaxes the sparsity as-
sumption. We assume that there exist a few sparse signals with large effects, and
a large number of dense signals with small effects. In the parameter estimation,
we combine the group Lasso penalty and the ¢ penalty to identify these signals
automatically. Our estimation involves a convex optimization problem that can be
solved straightforwardly. Theoretical and numerical results support the application
of our proposal.
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1. Introduction

Numerous works have proposed methods for applying the classical linear
discriminant analysis (LDA) to high-dimensional data, including |Cai and Liu
(2011)), |Clemmensen et al. (2011]), Witten and Tibshirani (2011), |[Fan, Feng and
Tong (2012), Mai, Zou and Yuan (2012), Xu et al. (2015), Mai, Yang and Zou
(2019), and |Yang, Lin and Li| (2022]). These methods preserve the elegance and
simplicity of the classical LDA. They have explicit probabilistic models that yield
highly interpretable final classifiers and enable researchers to understand the
results, using innovations in formulation, computation, and theory to address the
high dimensionality. These methods are shown to have impressive performance
in a wide range of applications.

However, most high-dimensional LDA methods rely on sparsity, often as-
suming that some parameters in the high-dimensional LDA model are sparse,
such as the covariance matrix, precision matrix, mean differences, or discrim-
inant coeflicients. Without additional parsimony assumptions, accurate model
estimation is virtually impossible in high dimensions (Bickel and Levina, 2004;
Fan and Fan| 2008), and thus sparsity is a powerful assumption. The sparsity also
facilitates interpretation, because only a small subset of predictors are relevant

*Corresponding author. E-mail: gmai@fsu.edu


https://doi.org/10.5705/ss.202022.0260
mailto:qmai@fsu.edu

344 WANG, REN AND MAI

for the prediction. However, it remains an open question if we can relax the
sparsity assumption. For example, |Witten and Tibshirani (2011) explicitly
enforce sparsity in their ¢; Fisher’s discriminant analysis (¢;-FDA) method, but in
the three real data sets they consider, £;-FDA produced nonsparse classifiers with
thousands of nonzero coefficients and high classification accuracy. The authors
argued that this was because sparsity is often only an approximation, in practice.
Thus, it is of interest to determine whether we can accommodate such situations
using a new high-dimensional LDA model and method.

Motivated by this challenge, we propose a novel high-dimensional LDA
method that gives a “sparse+dense” (SD) classifier. We assume that there
exists a small subset of predictors with large coefficients, while the rest have
small, but possibly nonzero coefficients. Thus, we relax the sparsity assumption
by allowing all the coefficients to be nonzero, but to some extent preserve the
interpretability that only a few variables have large effects on the final prediction.
Under this assumption, we devise an estimator that automatically identifies and
estimates the sparse and dense signals using convex optimization. Numerical and
theoretical evidence is provided to support our proposal.

Our proposal is inspired by the so-called “lava” estimator in the regression
problem described in|Chernozhukov, Hansen and Liao| (2017). The lava estimator
estimates the coefficient in a linear regression problem with a sparse+dense
structure. Although we borrow some of their techniques in our study, we
investigate the different problem of classification, where sparse+dense estimators
have not been developed, to the best of our knowledge. We also address several
challenges in LDA problems. First, in a regression, we can treat the predictors
as fixed, or at least condition on the predictors, to make an inference about
the response, but in an LDA model, we directly model the distribution of the
predictors, and have to deal with the randomness in them. Second, in a regression,
it is relatively easier to pick the parameter of interest, and then estimate it
using a variant of the least squares formula. In an LDA model, we need to
carefully determine the parametrization and formula, for efficiency. Third, in a
linear regression model, we need only estimate one parameter of the regression
coefficient, whereas in multiclass problems, we need to estimate several different
directions to separate the classes.

The rest of the article is organized as follows. We explain the proposed model
and method in Section 2. The theoretical properties of our proposal are given in
Section 3. In Section 4, we present the numerical studies. We further examine our
method on several real data sets in Section 5. We provide proofs of the lemmas
and theorems in the Supplementary Material.
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2. Methodology
2.1. Background

Consider a pair of random variables (Y,X), where the predictor X =
(X1,...,X,)T € RP and the class label Y € {1,..., K}, with K being a positive
integer. LDA assumes that (e.g., see Hastie, Tibshirani and Friedman| 2009)

X|Y =k~Nu,3%), Pr(Y =k) =m, (2.1)

where u;, € RP is the within-class mean, 3 is a p X p covariance matrix, and
is the prior probability of class k.

Our goal is to predict the label of any new sample X*. It is known that,
under the LDA model, we can minimize the classification error by using the so-
called Bayes’ rule (Friedman, Hastie and Tibshirani, 2001; Mai, Yang and Zou,
2019))

T
N 1 * Tk
Y = argmax HX — —(p1 + uk)} 0, + log ()},
k

2 ™

where the linear discriminant directions are given by
0 =""(ur— 1), k=2,...,K.

Hence, the linear discriminant directions @; are critical to the classification.
They project the p-dimensional predictor X onto a K — 1-dimensional subspace
that retains all the information for optimal classification. Consequently, many
existing sparse LDA methods assume that 6; is sparse, in the sense that the
majority of its elements are zero (Cai and Liu, 2011} |Fan, Feng and Tong), |2012;
Mai, Zou and Yuan, 2012; Mai, Yang and Zou, 2019). In particular, in a multiclass
problem where K > 2, we have multiple directions 8; to estimate, and a variable
X is unimportant for classification if and only if

6;,=0, fork=2,. . . K. (2.2)
Therefore, the sparsity assumption indicates that (2.2]) holds for most j.

2.2. The “sparse+dense” assumption

Our interest is to relax the sparsity assumption in the LDA model. To this
end, we decompose the discriminant direction as

k= B+ 0%, (2.3)

T ¢ RP is sparse, with only a few nonzero

for any k, where 6; = (6;,,...,6;,)
and relatively large elements, while 8; = (Bf;,...,0;,)" € RP have small

elements. Specifically, motivated by the sparsity assumption in (2.2), for most
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j€{l,...,p}, we have
w =0, fork=2.. K.

For ease of presentation, we also refer to d; as “sparse signals,” and to 3; as
“dense signals.”

Note that the entries in 6} are coefficients in the final classifier, and quantify
the effect of each predictor. Hence, our SD assumption implies that a few pre-
dictors dominate the classification, while most predictors have small effects. Our
SD assumption includes the sparsity assumption as a special case, because when
B% = 0, the discriminant direction is exactly sparse. However, in general, our SD
assumption is weaker than the sparsity assumption. By incorporating the dense
signals, we are essentially assuming that the directions are approximately sparse,
in which the sparse signals are most relevant for the classification. However, the
dense signals contribute to the classification as well, although with less noticeable
effects. As a result, our SD assumption allows us to perform variable selection
similarly to popular sparse methods. Even though 8; does not have to be sparse,
we can still exploit the sparsity pattern in §; to identify the most important
variables.

In addition, the dense signals are assumed to have small magnitudes. Similar
to sparsity, this is also a type of parsimony assumption that limits the parameter
space. Such an assumption is important because, in high dimensions, it is
challenging to estimate the classifier accurately without appropriate parsimony
assumptions. As discussed later, this assumption enables helpful regularization
techniques in the estimation. Note that, although the dense signals have small
entries individually, jointly, they can significantly improve the classification re-
sults.

Our SD assumption in is imposed on the discriminant direction 6},
because 6} is often viewed as the most “direct” parameter for classification. In
the literature on sparse LDA methods, researchers sometimes instead assume that
the covariance matrix, precision matrix, and the mean differences are sparse (e.g.,
Shao et al., 2011 Xu et al.| |2015). In our context, we choose not to make the
SD assumption on these parameters, for two reasons. First, the assumption on
the discriminant direction is easy to interpret. Second, the discriminant direction
has O(p) parameters, whereas the covariance and precision matrices have O(p?)
parameters, and are much more difficult to estimate than the discriminant
directions.

Note that our definitions of sparse and dense signals may have identifiability
issues. However, as discussed in Section 2.3, we are estimating unique target
parameters when we employ regularization.
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2.3. Estimation

To estimate our model, we first rewrite 6; as the solution to the following
optimization problem, as suggested by [Mai, Yang and Zou| (2019)):

K
65,...,0%) = argminz {;HkTEOk — (py, — Ih)Tek}‘ (2.4)
OkER? g

Equation cannot be used in the estimation, because it involves the
unknown parameters ¥ and p,. More importantly, it does not enforce our SD
assumption. We solve these two problems as follows.

To start with, suppose that we observe the data set {Y;, X;}" ,, and let C;
be the set of indices of the n; samples in class k. We find

= —3 X, (25)

$o LSS X ) (X — )T (2.6)

as estimates for u;, and X, respectively. These are also the standard estimates
for a low-dimensional LDA (Hastie, Tibshirani and Friedman) 2009), and popular
estimates in many sparse LDA methods (e.g., |Cai and Liu, [2011}; |Fan, Feng and
Tong, 2012)).

Now, we turn to the more interesting problem of imposing the SD assumption.
We use the parametrization in and regularize B; and §;. For the sparse
signals 6}, we use the group lasso penalty (Yuan and Lin|, 2006|) to honor the
sparsity assumption in . For the dense signals, we use the ridge penalty
(Hoerl and Kennard), [1970; Hastie, Tibshirani and Friedman| [2009; Weisberg),
2005). In other words, we consider the penalized problem

(Br, 01, k=2,...,K) =

K

argmin ) {;(Bk +8:) 2B+ 8k) — (e — 1) (Br + 5k)}

ﬁkERPﬁkeRPkZZ

P K
FAD 4D
2

j=1 k=

D> By (2.7)

j=1 k=2

where A1, A2 > 0 are tuning parameters. After we obtain Bk and 5k, we estimate
the discriminant direction 8} by 0, = Bk + &y

We name this method SD-LDA, where SD refers to the “sparse” and “dense”
signals that we target. SD-LDA provides a nonsparse but interpretable classifier,
because only a few variables have large effects. When the sparsity assumption
does hold, SD-LDA is as powerful as existing sparse methods. However, in the
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SD problems of our primary interest, SD-LDA continues to be suitable.
It is easy to see that (B, 0x, k =2,..., K) produced by (2.7) approximate

B8l k=2,....K) =
K

argmin Z {;(,@k +6:) "2 (B + 1) — (i — )" (Br + 5k)}

BreRP, 6, eRP ;7o

K

K 4
ST+ d Y B (2.8)
2

k= j=1 k=2

P

+A Z

Jj=1

Note that, compared with , in , we use the true parameters 3 and py.
Hence, for any fixed pair of tuning parameters (A, A2), (5,1,6,1,]@ =2,...,K)
are parameters. With the corresponding penalties, ,8,1 is dense, while 5,1 is
sparse. Moreover, unlike §; and 3;, defined intuitively in Section 2.2, (,3,1, 6,:, k=
2,..., K) do not have identifiability issues, because is strictly convex and has
a unique minimizer. Admittedly, similar to many penalized problems, (B,JL, 5,1, k=
2,...,K) are generally biased in the sense that, in general, 8; # 81 +4d!. However,
if the tuning parameters (A1, A2) are chosen properly, the discrepancy is small,
and consistently estimates the discriminant directions. See Section 3 for
rigorous theoretical justifications.
To better understand SD-LDA, we present the following toy example.

Example 1. Consider a binary classification problem, where ¥ = 021, is known.
Then, we have the following solution to SD-LDA:

) e

s i — g — %6,
Baj = 3
2)\2 +o0o

for any j, where the soft-threshoding operator (z), = max{z,0}, for any = € R.

Maj — Hij
0-2

823‘ = Sign(ﬂzj - ﬂlj) {

and

: (2.10)

Example 1 illustrates how obtains the “sparse signals” and “dense sig-
nals” in &, and Bg. According to , each 52]» produces a shrunken standardized
mean difference. Therefore, 52j is only nonzero when (fio; — fi1;)/0? is large
enough with respect to the choices of A\; and \,. Benefiting from this feature,
8, is able to identify the signals with large magnitude exclusively. On the other
hand, ng is essentially a rescaled standardized mean difference, reduced by As.
When A, is large, gives a small 32j., ensuring that BQ contains the “dense
signals.” Therefore, the two types of penalties in help identify the “sparse
signals” and “dense signals” effectively. The ability to capture the two types of
signals is made possible by the ¢; and ¢, regularization.



SD-LDA 349

Example 1 assumes that X is diagonal and known to obtain explicit formulae
for the estimates. However, in practice, SD-LDA does not need any knowledge
of 3. It simply plugs in our sample estimate in . In what follows, we discuss
another special case where 3 does not have any special structure and is unknown.
Suppose that A\; = oo, and thus the sparse signal is estimated as zero. Then, the
dense signals are estimated by

B = (3 + 20D) ™ (s — i) (2.11)

It is easy to see that the sample covariance is stabilized by adding 2X,I, and
resembles the Ledoit—Wolf estimator (Ledoit and Wolf, 2004). The estimator
in also has a similar form to the regularized discriminant analysis (RDA;
Friedman, (1989)). However, in the Ledoit—Wolf estimator and RDA, the added
identity matrix is intended only to make the sample covariance well-conditioned,
and usually As is chosen to be small. In our work, A, is usually reasonably large,
to encourage the signals to have small magnitudes. When X, is large, B in
is close to the shrunken mean difference. The nearest centroids classifier
(Tibshirani et al., 2002} 2003)) also uses the shrunken mean difference to construct
a classifier. However, it uses the soft-thresholding operator to obtain a sparse
classifier, whereas obtains a dense coefficient using the ¢y penalty.

Our proposal is inspired by the lava estimator in |[Chernozhukov, Hansen
and Liao (2017) for regression. Similarly to their estimator, we separate the
coefficients into sparse signals and dense signals, and use a sparsity-inducing
penalty and a ridge penalty, accordingly. Our estimator for the classification
problem has many unique challenges. For example, in a regression problem,
there is one coefficient vector to be estimated, whereas in classification problems,
we need to estimate several discriminant directions when K > 2 so that we can
separate the classes.

Moreover, compared with the lava estimator for a regression, the formulation
for classification requires additional considerations. In regression problems, the
least squares formula is the foundation of most methods, as is the case for the
lava estimator. However, in a discriminant analysis, although there are various
approaches to finding the directions in high dimensions, no formula dominates
the others like the least squares problem does in a regression. Consequently,
we examined numerous different high-dimensional LDA formulae to find the one
most suitable to be generalized to our context. Our SD-LDA is related to the
multiclass sparse discriminant analysis (MSDA) method (Mai, Yang and Zou,
2019) in that when we are confident in the sparsity assumption, we can set the
dense signals to zero, and reduces to the MSDA. In this sense, is
a generalization of the MSDA to SD problems. We choose to generalize the
MSDA rather than other candidates for computational reasons. Note that SD-
LDA is convex. This is partially because its predecessor, MSDA, is convex.
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However, many other high-dimensional LDA methods are nonconvex, and their
generalizations to the SD problem will continue to be nonconvex and potentially
challenging in terms of computation. For example, Clemmensen et al. (2011)
and Fan, Feng and Tong (2012) both consider nonconvex optimization problems
with equality constraints. In principle, we could also modify these methods by
reparametrizing the parameters of interest into sparse and dense signals, and
adding appropriate penalty functions. However, the resulting methods would be
nonconvex.

Note that our method is significantly different from the elastic net (Zou and
Hastie, 2005)), even though we also combine a nonsmooth penalty function (group
lasso) with the ridge penalty. Elastic net imposes both penalties on the same
parameter to stablize the estimator when the predictors are highly correlated. In
our method, the penalties are enforced on the sparse and dense signals separately
to exploit their own structure. In principle we could use other group selection
penalty functions to pursue sparsity, such as a group smoothly clipped absolute
deviation (SCAD) and a group minimax concave penalty (MCP) (Fan and Li,
2001; Zhang, 2010; |Huang, Breheny and Mal [2012). However, these penalty
functions are nonconvex, which is likely to lead to instability in computation.
The corresponding theoretical study is also expected to be more challenging,
because there could be local minima.

2.4. Algorithm

In this section, we derive an algorithm to solve . SD-LDA is jointly
convex over (3, dy), but it is most straightforward to derive updates for one of
B and &8, while fixing the other, and iterate between them. To this end, we
derive the following lemma.

Lemma 1. Denote Q =2)\I, + f), s = 2A22Q_1, fogi, = i, — b1, and frg, =
05 (20Q71). Then, we have

1. for a fized Oy, the optimizer of By to (2.7) is

Br(8:) = (2AI, + ) (1, — f11 — 36,); (2.12)

2. the optimizer of 8y to ([2.7)) is

p

K
: L ore _
(d2,...,0x) = argmin E {2[5,32(%] - ugkdk} + M g
k=2

S eRP

j=1

According to Lemma 1, we first solve , and then plug its results into
to find the SD-LDA estimate. Note that the ¢, regularization enables us
to invert the covariance matrix in , so that is feasible, even in high
dimensions. For the solution of , although it does not have an explicit
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form, we can find it by modifying the groupwise coordinate descent algorithm of
Mai, Yang and Zoul (2019). We replace their ¥ with X, and fi, — ft; with fig,

respectively, to solve ([2.13)).

3. Theory

In this section, we present the theoretical properties of SD-LDA. The entire
theoretical study is based on the LDA model setup given by . For ease of
presentation, for two quantities A and &, we write A < £ if A < C¢, for some
C > 0.

We also make the following assumptions:

(A1) ||X]|]2 < uw and || 27|y < U, for some constants U and u,
(A2) maxy ||per, — p1|]2 < wy, for some constant wy,
(A3) 0 < ¢y < < 1 < 1, for some constants ¢; and cs.

Assumptions (A1) and (A2) are technical conditions that facilitate our proof.
Assumption (A1) implies that the eigenvalues of 3 are finite and bounded away
from zero, and Assumption (A2) requires a bound on the ¢;-norm of the mean
difference. Assumption (A3) guarantees that our data set is not extremely
unbalanced. This yields the following theorem.

Theorem 1. Let 0), = &), + B, with By, and &), defined as in [2.12) and (2.13),
respectively, and Assumptions (A1), (A2), and (A3) hold. Then, with probability
at least 1 — O(p~"), we have

N lo
16, = 0712 < /7222, (3.1)

for Ay = O(\/logp/n) and Ay = O(y/logp/n).

Theorem 1 shows that the estimators for the linear discriminant directions
consistently converge to the truth when plogp/n — 0. This implies that SD-
LDA approaches the Bayes rule under the same dimensionality. Hence, in theory,
SD-LDA works similarly to the true Bayes rule as the sample size increases.

Although SD-LDA allows p to diverge, we acknowledge that it has a stronger
requirement on the dimensionality than those of sparse methods. Sparse methods

often allow p to diverge at an exponential rate (Cai and Liu}, 2011; [Fan, Feng and
Tong), 2012; Mai, Zou and Yuan, [2012). Theorem 1 has a stronger requirement,
because we no longer make the sparsity assumption, and the problem is more
difficult. However, the difficulty could be technical, because SD-LDA works out
well on high-dimensional problems with p > n in our numerical studies. In
addition, in the special case of exact sparsity where we know 8; = 0, SD-LDA
reduces to the sparse classifier MSDA (Mai, Yang and Zou, [2019)), which has
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an optimal convergence rate of y/slogp/n (Min, Mai and Junge, 2023), with s
being the number of important variables. Moreover, even though SD-LDA is
inspired by the lava estimator in regression, our proof differs significantly from
theirs, because most of their proof conditions on X, but we have to directly
handle the randomness in X as a consequence of the LDA model assumption.
Furthermore, in multiclass problems, we have multiple directions to estimate,
which adds to the technical difficulty of the proof. In addition, compared with
the sparse classifier MSDA, SD-LDA involves much more complicated functionals,
such as i(i +2X 1)t We need to establish bounds for these terms, which are
not available in the literature. Because we focus on method development, we
leave a more careful theoretical investigation of the SD-LDA as a future topic of
research.

4. Simulation

Here, we present a simulation study to examine the performance of our
proposed method. We consider two scenarios separately: settings where the
sparsity assumption holds, and the settings where the sparsity assumption does
not hold, but the SD assumption holds. The sparse models are given by S1 and
52 and the SD models are given by Models D1-D6. Throughout the simulation,
we set the sample size n, = 50 for each class and p = 250K. Simulations of
imbalanced classes can be found in Section S1 in the Supplementary Material.

2

For each class, we set X | Y = k ~ N(u,0%X), where o2 is a constant that

varies from model to model. For each model, we have different d; and 3, with
p1 =0 and p = 0?*3(B; + 8;), for k =2,..., K. In the sparse models, B; = 0
for all k. For the five SD models, We choose ¢ from {0.1,0.15,0.2} for each model,
where g represents the signal strength of “dense signals.” The models are given
as follows:

S1. K =2, ¢ = 0.5. ¥ is block-diagonal, with each block X, being a 4 x 4
auto-regressive matrix with parameter 0.5, 85 = (25, O495).

S2. K =3, 0 =0.5. ¥ is block-diagonal, with each block 3, being a 4 x 4 auto-
regressive matrix with parameter 0.5, 85 = (25, 0745), 05 = (05, —25, 0749).

Dl. K=2,0=05 %=1, 8 = (2.5,04), and 35 = (0, ques), q € {0.1,0.2}.

D2. K =2, 0 = 0.5. X is block-diagonal, with each block 3, being a 4 x 4
compound symmetry matrix with parameter 0.5, §; = (2.5,0499) and 35 =

(0,q499), q € {0.1,0.2}.

D3. K =2, 0 =0.5. X is block-diagonal, with each block 3, being a 4 x 4 auto-
regressive matrix with parameter 0.5, 5 = (2.5,0499) and 85 = (0, qag),
q € {0.1,0.2}.
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D4. K=3,0=06. X =1, 8 = (2.5,07), 6; = (—2.5,0749), 35 = (0, gra0),
and B; = (0, —gra9), ¢ € {0.15,0.2}.

D5. K =3, 0 = 0.5. X is block-diagonal, with each block 3, being a 4 x 4 auto-
regressive matrix with parameter 0.5, d; = (2.5,0749), 05 = (—2.5,0749),
B; - (07q749)7 and B; - (07 _Q749)7 q S {017015}

D6. K =5, 0 = 0.5. The covariance matrix 3 has an auto-regressive structure,
namely, o;; = 0.8/°77l. The number of nonzero elements of parameter 3's is
five instead of one. Specifically, we let (d;,...,0%) = (1.55, —1.55, 15, —15)
and (85,...,0%) = (24495, —2qu95, a5, —qua9s), q¢ € {0.075,0.1}.

In addition to SD-LDA, we include the following comptitors in our simulation:
the MSDA (Mai, Yang and Zoul, 2019), a logistic regression with a lasso penalty
(Hastie, Tibshirani and Friedman) 2009) or elastic-net penalty (Zou and Hastie|
2005|) (denoted as lasso and elastic-net, respectively), a support vector machine
(SVM) (Joachims, 1998)), and sparse optimal scoring (Clemmensen et al., 2011}
denoted as SOS). MSDA is implemented using the R package msda, lasso and
elastic-net are implemented using the R package glmnet, and the SVM is im-
plemented using the R package e1071. SOS is implemented using the R package
sparseLDA for multiclass models and the R package TULIP in binary models (Pan,
Mai and Zhang, 2020).

The tuning parameters in all methods are chosen using five-fold cross-
validation, and a grid search is implemented if there are multiple tuning
parameters. We run the simulation 100 times for each model, and the means and
standard errors of the prediction error (PE in %) are reported in Table 1. The
means of the numbers of correctly and incorrectly selected variables are given in
Table 2. Recall that the sparse signals dominate in terms of their effects, and
thus we focus on their selection. For all the competitors, a variable is selected if
and only if it has a nonzero coefficient, while for SD-LDA, a variable is selected
if it has a nonzero coeflicient in Sk

As shown in Table 1, even when the true models are sparse, SD-LDA
still gives a comparable, or even significantly better result than those of the
sparse competitors. This may be because the SD-LDA can approximate a sparse
classifier by using a large A5, but it explores more classifiers using cross-validation
over Ay, yielding better empirical results. For the SD models, SD-LDA has a clear
advantage over the sparse methods, indicating that the latter are vulnerable when
dense signals exist, and the SD-LDA is preferable under such circumstances.

In Table 2, we see that the SD-LDA continues to give excellent variable
selection results across all models. In the SD models, the variable selection
becomes worse as ¢ increases. This is expected, because as ¢ increases, the
boundary between sparse and dense signals becomes blurred. However, the
sparse competitors struggle much more than the SD-LDA does. Because they
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Table 1.
parentheses) of the prediction error of 100 replicates are reported as percentages.

The prediction accuracy results.

WANG, REN AND MAI

The means and standard errors (in the

Models ¢ BE SD-LDA MSDA Lasso elastic-net SVM SOS
S1 0 6.4 6.51(0.23) 7.83(0.28) 8.58(0.3) 7.20(0.27) 22.93(0.44) 8.69(0.3)
S2 0 8.3 8.54(0.24) 9.29(0.26) 11.45(0.3) 10.51(0.26) 29.15(0.36) 17.23(0.31)
D1 0.1 20.1 25.27(0.45) 27.26(0.47) 28.40(0.5) 26.28(0.46) 40.79(0.55) 28.20(0.5)

0.2 10.0 21.08(0.45) 27.18(0.52) 28.35(0.53) 25.40(0.47) 28.18(0.48) 27.57(0.45)
D2 0.1 13.5 18.90(0.38) 26.59(0.47) 26.99(0.48) 24.18(0.42) 25.13(0.45) 25.91(0.49)
0.2 2.8 5.63(0.22) 21.65(0.48) 19.46(0.44) 10.94(0.33) 5.92(0.23) 17.08(0.49)
pg 01 152 20.42(042) 26.24(0.46) 26.76(0.45) 24.34(0.41) 29.30(0.44) 27.14(0.45)
0.2 4.1 7.99(0.28) 22.67(0.41) 21.18(0.42) 13.99(0.35) 9.33(0.28) 21.79(0.47)
D4 0.15 9.9 28.57(0.37) 31.23(0.41) 33.90(0.4) 32.47(0.32) 34.43(0.4) 35.61(0.41)
0.2 8.3 20.76(0.38) 31.59(0.41) 33.75(0.37) 31.15(0.31) 23.38(0.32) 35.00(0.39)
D5 0.1 20.4 28.63(0.39) 35.36(0.42) 38.00(0.38) 35.11(0.38) 31.09(0.38) 39.06(0.41)
0.15 5.9 17.54(0.4) 35.04(0.42) 35.41(0.39) 29.26(0.33) 14.66(0.3) 37.45(0.37)
pg 007 63 0.11(0.18) 2812(0.26) 33.41(0.36) 28.10(0.20) 11.51(0.20) 27.34(0.31)
0.1 2.4 3.10(0.10) 26.14(0.31) 28.52(0.33) 18.47(0.28) 4.00(0.14) 24.15(0.32)

Table 2. The means and standard errors of correctly selected variables (denoted as C)
and incorrectly selected variables (denoted as IC). The true numbers of important/dense
signals are 5 for Model S1, 10 for Model S2, and 1 for all SD models.

SD-LDA MSDA Lasso elastic net SOS
Models ¢ C IC C (¢ C IC C 1C C IC
S1 0 4.5(0.7) 4.6(5) 4.5(0.8) 5.60(6.8) 4.7(0.5) 19.50(8.6) 4.90(0.2) 43.6(30.3)  4.8(0) 19.4(2.3)
S2 0 9.2(1) 5.1(6.7) 9.1(1.1) 4.60(6.9) 1.8(1.1) 33.20(7.4) 5.50(2.6) 67.0(36.2) 10.0(0) 4.4(0.1)
D1 0.1 1.0(0) 4.2(4.4) 1.0(0) 4.50(6.3) (0) 9.20(9) 1.00(0) 15.0(20.6) 1.0(0) 13.6(2.2)
0.2 1.0(0.1) 4.7(5.2) 1.0(0) 6.70(7.5) 1.0(0) 18.20(13.4) 1.00(0) 56.0(52.1) 1.0(0) 30.8(3.5)
D2 0.1 1.0(0) 1.8(3.1) 1.0(0) 10.50(10.9) 1.0(0) 22.90(13.1) 1.00(0) 65.8(51) 1.0(0) 23.5(3)
0.2 0.9(0.3) 1.5(2.8) 1.0(0) 24.00(12.1) 1.0(0) 46.20(7.5) 1.00(0) 189.1(29.7) 1.0(0) 68.8(3.1)
D3 0.1 1.0(0) 2.7(3.7) 1.0(0) 7.70(9) 1.0(0) 18.7(12.9) 1.00(0) 51.1(43.5) 1.0(0) 17.3(2.6)
0.2 0.9(0.2) 1.1(2) 1.0(0) 21.90(11.1) 1.0(0) 42.1(10.1) 1.00(0) 175.1(44.2) 1.0(0) 58.2(3.3)
D4 0.15 1.0(0.1) 0.6(3.4) 1.0(0) 1.20(3.4) 0(0) 19.9(11.6) 0(0.1) 57.0(69.5) 1.0(0) 22.8(0)
0.2 0.9(0.3) 0(0)  1.0(0) 5.40(13) 0(0) 23.1(12.8) 0(0.1) 109.7(87.4) 1.0(0) 26.7(0.1)
D5 0.1 1.0(0.1) 1.2(4.4) 1.0(0) 5.30(14.3)  0(0) 19.6(10.8) 0(0.1) 102.2(79.4) 1.0(0) 28.7(0.1)
0.15 0.9(0.3) 1.6(6.2) 1.0(0) 30.40(26.5) 0(0) 22.9(10.1) 0.10(0.3) 168.2(66.5) 1.0(0) 18.9(0)
D6 0.075 2.6(0.2) 17.5(3.1) 3.3(0.1) 0.11(0) 0(0) 26.89(0.7) 0.31(0.1) 137.7(3.6)  2.3(0.1) 139.9(3.9)
0.1  2.4(0.1) 11.3(2.7) 3.8(0.1) 0.81(0.2) 0(0) 26.70(0.6) 0.36(0.1) 153.0(1.3)  2.3(0.1) 139.0(3.7)

are incapable of modeling dense signals, they drastically overselect the variables
in the hope of achieving higher accuracy.

Finally, we report the computation cost for SD-LDA and its competitors in
Table 3. For brevity, we report only the results for Models D1 and D6 with
g = 0.1 at the optimal tuning parameters. The computation time is averaged
over 100 replicates. Most methods take much less than 1 second to finish one
replicate. SD-LDA is slower than most of the competitors, which is the price we
pay to model the dense signals and achieve better prediction accuracy. Among the

discriminant analysis methods (SD-LDA, MSDA, and SOS), SD-LDA is slower
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Table 3. Average computation time based on 100 replicates.

Time (s x 1072)  SD-LDA MSDA Lasso elasticnet SVM  SOS
D1 11.3 2.3 0.18 0.18 2.5 1.2
D6 17.9 5.2 8.40 9.00 10.4  104.7

than MSDA because it needs to calculate (ﬁ) + 2X\I)~! when estimating the
dense signals. SD-LDA is slower than SOS in the relatively simple Model (D1).
However, in the more difficult Model (D6), SD-LDA is much faster than SOS,
even though SOS estimates only the sparse signals.

5. Real Data Set Analysis

We demonstrate the performance of SD-LDA on five real-world data sets:
The IBD data set from |Burczynski et al.[(2006), the small-blue-round-cell tumour
data set (SBRCT) from Khan et al.| (2001), the prostate cancer data set from
Singh et al. (2002), the gene time data set, and the cancer genome atlas data
set. The screened IBD data set is imported from the R package msda directly. It
contains 127 samples in three classes and 127 gene expressions. The SBRCT data
set has 84 samples in four classes, and the prostate cancer data set has 102 samples
in two classes. Because the dimensions of the SBRCT and the prostate cancer
data sets are extremely high, we first apply t-test screening, as in |Fan and Fan
(2008), before performing our proposal. The reduced data sets are generated by
the t-test screening with p-values of screening set to 0.001 and 0.05, respectively.
The numbers of their gene expressions are reduced to 594 and 477, respectively.

The gene time course data (GTC) describes the clinical response to treatment
for multiple sclerosis (MS) patients based on gene expression time course data.
This data set was originally described in Baranzini et al. (2004). Fifty-three
patients were given recombinant human interferon beta (rIFNf), which is often
used to control the symptoms of MS. Gene expression was measured for 76 genes
of interest before treatment (baseline) and at six follow-up time points over the
next two years (3 months, 6 months, 9 months, 12 months, 18 months, 24 months).
Afterward, patients were classified into good responders or poor responders to
rIFNS, based on clinical characteristics. There are 20 good responders and 33 bad
responders in all the 53 patients. The dimension for this data set is 76 x 7 = 532.

The Cancer Genome Atlas (TCGA) Research Network has profiled and
analyzed large numbers of human tumors to discover molecular aberrations at
the DNA, RNA, protein, and epigenetic levels. These data are part of the
pan-cancer data set, and is a random extraction of gene expressions of patients
with different types of tumors: BRCA, KIRC, COAD, LUAD, and PRAD. We
downloaded the data from https://archive.ics.uci.edu/dataset/401/gene+
expressiontcancer+rna+seq, which was kindly shared by Samuele Fiorini in
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Table 4. The means and standard errors (in parentheses) of the prediction error(%) of
SD-LDA and other competitors of 100 replicates for each data set.

DataSet SD-LDA MSDA Lasso elastic-net SVM SOS
IBD 3.71(0.28)  8.00(0.37)  6.76(0.36)  5.10(0.34)  8.27(0.38)  6.93(0.33)
SBRCT  0.08(0.08) 14.08(0.9)  1.58(0.2) 0(0) 0.92(0.17)  2.15(0.26)
Prostate 0(0) 29.06(0.74) 19.06(0.58)  2.79(0.28) 0(0) 15.33(0.63)
GTC 17.40(0.74)  33.60(0.97) 31.70(0.85) 21.20(0.87) 31.60(0.51) 45.20(1.31)
TCGA 0.20(0.02) 1.57(0.14)  0.58(0.02)  0.42(0.01)  0.37(0.01)  4.90(0.12)

Table 5. The means and standard errors of the number of selected variables by SD-LDA
and other competitors of 100 replicates are reported.

Methods  SD-LDA MSDA Lasso elastic-net SOS
IBD 9.40(0.82) 29.46(0.7) 10.67(0.18) 69.83(0.5) 52.36(1.89)
SBRCT 7.62(0.47) 17.32(0.54) 10.97(0.23) 140.45(0.67) 59.07(0.99)
Prostate 11.37(0.52) 12.66(0.4) 43.59(0.59) 233.70(0.93) 64.67(1.15)
GTC  2.04(0.18)  6.09(0.34) 12.52(0.66) 110.07(2.84)  25.65(1.15)
TCGA  19.13(0.76) 38.71(0.84) 9.01(0.19) 125.51(0.74) 108.34(2.71)

2016. The original data set is maintained by the cancer genome atlas pan-cancer
analysis project (https://www.synapse.org/). The data set has 801 samples in
five classes and 20,531 gene expressions. As with the previous data sets, we first
use t-test screening to select 801 genes.

We perform SD-LDA and the competitors included in Section 4 on the first
four data sets. We run 100 replicates, and in each replicate the data sets are
split in a 2:1 ratio in a balanced manner to form training and testing sets. The
tuning parameters are chosen using five-fold cross-validation and by checking their
prediction errors. For the TCGA data, almost all the methods perform perfectly.
To make the classification problem more challenging, we run 100 replicates, with
the data set split in a 1:9 ratio in a balanced manner to form training and testing
sets; that us, we have 80 training samples and 721 test samples.

The average prediction errors are reported in Table 4. SD-LDA is either the
best classifier, or statistically no different from the best classifier. These results
support the application of SD-LDA in practice. Note that the sparse methods
may perform better if we preprocess the data sets a little differently. For example,
Mai, Zou and Yuan (2012)) reported a prediction error of 5.9% for MSDA (its
binary equivalence, to be exact) if the data set is not screened. However, the
error is still significantly larger than that of SD-LDA on the screened data in
Table 4.

We further check the variable selection results in Table 5. By considering the
“dense signals”, SD-LDA actually selects the fewest sparse signals. Therefore,
SD-LDA could help researchers focus on a smaller set of key features for a more
in-depth study. Because the gene names for the IBD, Prostate, and TCGA data
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sets are missing from the original resources, we report only the selected genes
for the SBRCT and GTC data sets. For the SBRCT data, SD-LDA selects 10
genes, including WASp, CAV1, CDH2, HBE1, anti-CD99, Psmb10, HLA-DMA,
SYNGRI1, EHD1, and PSMBS8. Some of these genes have been shown to have
close relationship with the development of cancer. For example, CAV1 appears
to act as a tumor suppressor protein at early stages of cancer progression (Sdinz-
Jaspeado et al., 2011); CD99 appears to be a robust marker of cancer stem
cells and a promising therapeutic target in these malignancies (Pasello, Manara
and Scotlandi, 2018);and HLA-DMA antigen expression by tumor cells influences
the tumor antigen (TA)-specific immune responses and, depending on the cancer
type, the clinical course of the disease (Seliger, Kloor and Ferrone, 2017)). For the
GTC data set, SD-LDA selects two genes, Caspase 6 and FLIP. This agrees with
the findings in the existing literature. For example Julien et al.| (2016) showed
that Caspase 6 is related to MS, and (Hauser and Oksenberg}, |2006|) showed that
FLIP is related to MS.

6. Discussion

SD-LDA is proposed as a convex high-dimensional classification method that
is robust to the changing signal pattern in linear discriminant directions. It is
obtained by separating the linear discriminant directions into “sparse signals”
and “dense signals” and applying suitable penalties to estimate them. To the
best of our knowledge, this is the first SD classifier, to perform well over a wide
range of data sets. Similar techniques could be combined with linear classifiers,
such as the logistic regression or SVM, to enable them to capture the “sparse
signals” and “dense signals.” We can further consider a similar modification for
nonlinear models, such as the quadratic discriminant analysis (QDA; Fan et al.,
2015; |Li and Shao, [2015; |Jiang, Wang and Leng, 2018]).

Although our work is developed under the LDA model, in which the within-
class distribution is normal. It can be extended easily to a semiparametric
framework that has been reasonably well studied (Lin and Jeon, [2003; Liu,
Lafferty and Wasserman, 2009; Mai and Zou, 2015} |Jiang and Leng} [2016). In
such a semiparametric framework, X does not have to be normal within each
class, but there must exist a set of unknown transformations ¢ = (¢g1,...,9p)
such that (¢(X),Y) follows the LDA model. When considering high-dimensional
data, existing works frequently adopt the sparsity assumption. However, fol-
lowing our work, we can consider a semiparametric model with sparse+dense
signals to achieve greater flexibility. We leave this topic as an interesting future
research direction, for which some recent theoretical works on estimating the
transformation may be helpful (Mai, He and Zou, [2022). However, such studies
are beyond the scope of this research.



358 WANG, REN AND MAI

Supplementary Material

The derivation for algorithms and the proof for theorems are available in the
Supplementary Material. Section S2 contains the derivation for Lemma 1 and
Section S3 contains the proof for Theorem 1.
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