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Abstract: A common theme among high-dimensional linear discriminant analysis

(LDA) methods is the sparsity assumption. However, in practice, this assumption

may be violated, making sparse methods inaccurate. Motivated by this challenge,

we propose a novel high-dimensional LDA method that relaxes the sparsity as-

sumption. We assume that there exist a few sparse signals with large effects, and

a large number of dense signals with small effects. In the parameter estimation,

we combine the group Lasso penalty and the ℓ2 penalty to identify these signals

automatically. Our estimation involves a convex optimization problem that can be

solved straightforwardly. Theoretical and numerical results support the application

of our proposal.
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1. Introduction

Numerous works have proposed methods for applying the classical linear

discriminant analysis (LDA) to high-dimensional data, including Cai and Liu

(2011), Clemmensen et al. (2011), Witten and Tibshirani (2011), Fan, Feng and

Tong (2012), Mai, Zou and Yuan (2012), Xu et al. (2015), Mai, Yang and Zou

(2019), and Yang, Lin and Li (2022). These methods preserve the elegance and

simplicity of the classical LDA. They have explicit probabilistic models that yield

highly interpretable final classifiers and enable researchers to understand the

results, using innovations in formulation, computation, and theory to address the

high dimensionality. These methods are shown to have impressive performance

in a wide range of applications.

However, most high-dimensional LDA methods rely on sparsity, often as-

suming that some parameters in the high-dimensional LDA model are sparse,

such as the covariance matrix, precision matrix, mean differences, or discrim-

inant coefficients. Without additional parsimony assumptions, accurate model

estimation is virtually impossible in high dimensions (Bickel and Levina, 2004;

Fan and Fan, 2008), and thus sparsity is a powerful assumption. The sparsity also

facilitates interpretation, because only a small subset of predictors are relevant
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for the prediction. However, it remains an open question if we can relax the

sparsity assumption. For example, Witten and Tibshirani (2011) explicitly

enforce sparsity in their ℓ1 Fisher’s discriminant analysis (ℓ1-FDA) method, but in

the three real data sets they consider, ℓ1-FDA produced nonsparse classifiers with

thousands of nonzero coefficients and high classification accuracy. The authors

argued that this was because sparsity is often only an approximation, in practice.

Thus, it is of interest to determine whether we can accommodate such situations

using a new high-dimensional LDA model and method.

Motivated by this challenge, we propose a novel high-dimensional LDA

method that gives a “sparse+dense” (SD) classifier. We assume that there

exists a small subset of predictors with large coefficients, while the rest have

small, but possibly nonzero coefficients. Thus, we relax the sparsity assumption

by allowing all the coefficients to be nonzero, but to some extent preserve the

interpretability that only a few variables have large effects on the final prediction.

Under this assumption, we devise an estimator that automatically identifies and

estimates the sparse and dense signals using convex optimization. Numerical and

theoretical evidence is provided to support our proposal.

Our proposal is inspired by the so-called “lava” estimator in the regression

problem described in Chernozhukov, Hansen and Liao (2017). The lava estimator

estimates the coefficient in a linear regression problem with a sparse+dense

structure. Although we borrow some of their techniques in our study, we

investigate the different problem of classification, where sparse+dense estimators

have not been developed, to the best of our knowledge. We also address several

challenges in LDA problems. First, in a regression, we can treat the predictors

as fixed, or at least condition on the predictors, to make an inference about

the response, but in an LDA model, we directly model the distribution of the

predictors, and have to deal with the randomness in them. Second, in a regression,

it is relatively easier to pick the parameter of interest, and then estimate it

using a variant of the least squares formula. In an LDA model, we need to

carefully determine the parametrization and formula, for efficiency. Third, in a

linear regression model, we need only estimate one parameter of the regression

coefficient, whereas in multiclass problems, we need to estimate several different

directions to separate the classes.

The rest of the article is organized as follows. We explain the proposed model

and method in Section 2. The theoretical properties of our proposal are given in

Section 3. In Section 4, we present the numerical studies. We further examine our

method on several real data sets in Section 5. We provide proofs of the lemmas

and theorems in the Supplementary Material.
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2. Methodology

2.1. Background

Consider a pair of random variables (Y,X), where the predictor X =

(X1, . . . , Xp)
T ∈ Rp and the class label Y ∈ {1, . . . ,K}, with K being a positive

integer. LDA assumes that (e.g., see Hastie, Tibshirani and Friedman, 2009)

X | Y = k ∼ N(µk,Σ), Pr(Y = k) = πk, (2.1)

where µk ∈ Rp is the within-class mean, Σ is a p × p covariance matrix, and πk

is the prior probability of class k.

Our goal is to predict the label of any new sample X∗. It is known that,

under the LDA model, we can minimize the classification error by using the so-

called Bayes’ rule (Friedman, Hastie and Tibshirani, 2001; Mai, Yang and Zou,

2019)

Ŷ = argmax
k

[{
X − 1

2
(µ1 + µk)

}T

θ∗
k + log

(
πk

π1

)]
,

where the linear discriminant directions are given by

θ∗
k = Σ−1(µk − µ1), k = 2, . . . ,K.

Hence, the linear discriminant directions θ∗
k are critical to the classification.

They project the p-dimensional predictor X onto a K − 1–dimensional subspace

that retains all the information for optimal classification. Consequently, many

existing sparse LDA methods assume that θ∗
k is sparse, in the sense that the

majority of its elements are zero (Cai and Liu, 2011; Fan, Feng and Tong, 2012;

Mai, Zou and Yuan, 2012; Mai, Yang and Zou, 2019). In particular, in a multiclass

problem where K > 2, we have multiple directions θ∗
k to estimate, and a variable

Xj is unimportant for classification if and only if

θ∗kj = 0, for k = 2, . . . ,K. (2.2)

Therefore, the sparsity assumption indicates that (2.2) holds for most j.

2.2. The “sparse+dense” assumption

Our interest is to relax the sparsity assumption in the LDA model. To this

end, we decompose the discriminant direction as

θ∗
k = β∗

k + δ∗
k, (2.3)

for any k, where δ∗
k = (δ∗k1, . . . , δ

∗
kp)

T ∈ Rp is sparse, with only a few nonzero

and relatively large elements, while β∗
k = (β∗

k1, . . . , β
∗
kp)

T ∈ Rp have small

elements. Specifically, motivated by the sparsity assumption in (2.2), for most
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j ∈ {1, . . . , p}, we have

δ∗kj = 0, for k = 2, . . . ,K.

For ease of presentation, we also refer to δ∗
k as “sparse signals,” and to β∗

k as

“dense signals.”

Note that the entries in θ∗
k are coefficients in the final classifier, and quantify

the effect of each predictor. Hence, our SD assumption implies that a few pre-

dictors dominate the classification, while most predictors have small effects. Our

SD assumption includes the sparsity assumption as a special case, because when

β∗
k = 0, the discriminant direction is exactly sparse. However, in general, our SD

assumption is weaker than the sparsity assumption. By incorporating the dense

signals, we are essentially assuming that the directions are approximately sparse,

in which the sparse signals are most relevant for the classification. However, the

dense signals contribute to the classification as well, although with less noticeable

effects. As a result, our SD assumption allows us to perform variable selection

similarly to popular sparse methods. Even though θ∗
k does not have to be sparse,

we can still exploit the sparsity pattern in δ∗
k to identify the most important

variables.

In addition, the dense signals are assumed to have small magnitudes. Similar

to sparsity, this is also a type of parsimony assumption that limits the parameter

space. Such an assumption is important because, in high dimensions, it is

challenging to estimate the classifier accurately without appropriate parsimony

assumptions. As discussed later, this assumption enables helpful regularization

techniques in the estimation. Note that, although the dense signals have small

entries individually, jointly, they can significantly improve the classification re-

sults.

Our SD assumption in (2.3) is imposed on the discriminant direction θ∗
k,

because θ∗
k is often viewed as the most “direct” parameter for classification. In

the literature on sparse LDA methods, researchers sometimes instead assume that

the covariance matrix, precision matrix, and the mean differences are sparse (e.g.,

Shao et al., 2011; Xu et al., 2015). In our context, we choose not to make the

SD assumption on these parameters, for two reasons. First, the assumption on

the discriminant direction is easy to interpret. Second, the discriminant direction

has O(p) parameters, whereas the covariance and precision matrices have O(p2)

parameters, and are much more difficult to estimate than the discriminant

directions.

Note that our definitions of sparse and dense signals may have identifiability

issues. However, as discussed in Section 2.3, we are estimating unique target

parameters when we employ regularization.
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2.3. Estimation

To estimate our model, we first rewrite θ∗
k as the solution to the following

optimization problem, as suggested by Mai, Yang and Zou (2019):

(θ∗
2 , . . . ,θ

∗
K) = argmin

θk∈Rp

K∑
k=2

{
1

2
θT
k Σθk − (µk − µ1)

Tθk

}
. (2.4)

Equation (2.4) cannot be used in the estimation, because it involves the

unknown parameters Σ and µk. More importantly, it does not enforce our SD

assumption. We solve these two problems as follows.

To start with, suppose that we observe the data set {Yi,Xi}ni=1, and let Ck

be the set of indices of the nk samples in class k. We find

µ̂k =
1

nk

∑
i∈Ck

Xi (2.5)

Σ̂ =
1

n−K

K∑
k=1

∑
i∈Ck

(Xi − µ̂k)(Xi − µ̂k)
T (2.6)

as estimates for µk and Σ, respectively. These are also the standard estimates

for a low-dimensional LDA (Hastie, Tibshirani and Friedman, 2009), and popular

estimates in many sparse LDA methods (e.g., Cai and Liu, 2011; Fan, Feng and

Tong, 2012).

Now, we turn to the more interesting problem of imposing the SD assumption.

We use the parametrization in (2.3) and regularize β∗
k and δ∗

k. For the sparse

signals δ∗
k, we use the group lasso penalty (Yuan and Lin, 2006) to honor the

sparsity assumption in (2.2). For the dense signals, we use the ridge penalty

(Hoerl and Kennard, 1970; Hastie, Tibshirani and Friedman, 2009; Weisberg,

2005). In other words, we consider the penalized problem

(β̂k, δ̂k, k = 2, . . . ,K) =

argmin
βk∈Rp,δk∈Rp

K∑
k=2

{
1

2
(βk + δk)

T Σ̂(βk + δk)− (µ̂k − µ̂1)
T (βk + δk)

}

+λ1

p∑
j=1

√√√√ K∑
k=2

δ2kj + λ2

p∑
j=1

K∑
k=2

β2
kj, (2.7)

where λ1, λ2 > 0 are tuning parameters. After we obtain β̂k and δ̂k, we estimate

the discriminant direction θ∗
k by θ̂k = β̂k + δ̂k.

We name this method SD-LDA, where SD refers to the “sparse” and “dense”

signals that we target. SD-LDA provides a nonsparse but interpretable classifier,

because only a few variables have large effects. When the sparsity assumption

does hold, SD-LDA is as powerful as existing sparse methods. However, in the
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SD problems of our primary interest, SD-LDA continues to be suitable.

It is easy to see that (β̂k, δ̂k, k = 2, . . . ,K) produced by (2.7) approximate

(β†
k, δ

†
k, k = 2, . . . ,K) =

argmin
βk∈Rp,δk∈Rp

K∑
k=2

{
1

2
(βk + δk)

TΣ(βk + δk)− (µk − µ1)
T (βk + δk)

}

+λ1

p∑
j=1

√√√√ K∑
k=2

δ2kj + λ2

p∑
j=1

K∑
k=2

β2
kj. (2.8)

Note that, compared with (2.7), in (2.8), we use the true parameters Σ and µk.

Hence, for any fixed pair of tuning parameters (λ1, λ2), (β
†
k, δ

†
k, k = 2, . . . ,K)

are parameters. With the corresponding penalties, β†
k is dense, while δ†

k is

sparse. Moreover, unlike δ∗
k and β∗

k, defined intuitively in Section 2.2, (β†
k, δ

†
k, k =

2, . . . ,K) do not have identifiability issues, because (2.8) is strictly convex and has

a unique minimizer. Admittedly, similar to many penalized problems, (β†
k, δ

†
k, k =

2, . . . ,K) are generally biased in the sense that, in general, θ∗
k ̸= β†

k+δ†
k. However,

if the tuning parameters (λ1, λ2) are chosen properly, the discrepancy is small,

and (2.7) consistently estimates the discriminant directions. See Section 3 for

rigorous theoretical justifications.

To better understand SD-LDA, we present the following toy example.

Example 1. Consider a binary classification problem, where Σ = σ2Ip is known.

Then, we have the following solution to SD-LDA:

δ̂2j = sign(µ̂2j − µ̂1j)

{∣∣∣∣ µ̂2j − µ̂1j

σ2

∣∣∣∣− λ1

(
1

2λ2

+
1

σ2

)}
+

(2.9)

and

β̂2j =
µ̂2j − µ̂1j − σ2δ̂2j

2λ2 + σ2
, (2.10)

for any j, where the soft-threshoding operator (x)+ = max{x, 0}, for any x ∈ R.

Example 1 illustrates how (2.7) obtains the “sparse signals” and “dense sig-

nals” in δ̂2 and β̂2. According to (2.9), each δ̂2j produces a shrunken standardized

mean difference. Therefore, δ̂2j is only nonzero when (µ̂2j − µ̂1j)/σ
2 is large

enough with respect to the choices of λ1 and λ2. Benefiting from this feature,

δ̂2 is able to identify the signals with large magnitude exclusively. On the other

hand, β̂2j is essentially a rescaled standardized mean difference, reduced by λ2.

When λ2 is large, (2.10) gives a small β̂2j., ensuring that β̂2 contains the “dense

signals.” Therefore, the two types of penalties in (2.7) help identify the “sparse

signals” and “dense signals” effectively. The ability to capture the two types of

signals is made possible by the ℓ1 and ℓ2 regularization.
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Example 1 assumes that Σ is diagonal and known to obtain explicit formulae

for the estimates. However, in practice, SD-LDA does not need any knowledge

of Σ. It simply plugs in our sample estimate in (2.6). In what follows, we discuss

another special case where Σ does not have any special structure and is unknown.

Suppose that λ1 = ∞, and thus the sparse signal is estimated as zero. Then, the

dense signals are estimated by

β̂k = (Σ̂+ 2λ2I)
−1(µ̂k − µ̂1). (2.11)

It is easy to see that the sample covariance is stabilized by adding 2λ2I, and

resembles the Ledoit–Wolf estimator (Ledoit and Wolf, 2004). The estimator

in (2.11) also has a similar form to the regularized discriminant analysis (RDA;

Friedman, 1989). However, in the Ledoit–Wolf estimator and RDA, the added

identity matrix is intended only to make the sample covariance well-conditioned,

and usually λ2 is chosen to be small. In our work, λ2 is usually reasonably large,

to encourage the signals to have small magnitudes. When λ2 is large, β̂k in

(2.11) is close to the shrunken mean difference. The nearest centroids classifier

(Tibshirani et al., 2002, 2003) also uses the shrunken mean difference to construct

a classifier. However, it uses the soft-thresholding operator to obtain a sparse

classifier, whereas (2.11) obtains a dense coefficient using the ℓ2 penalty.

Our proposal is inspired by the lava estimator in Chernozhukov, Hansen

and Liao (2017) for regression. Similarly to their estimator, we separate the

coefficients into sparse signals and dense signals, and use a sparsity-inducing

penalty and a ridge penalty, accordingly. Our estimator for the classification

problem has many unique challenges. For example, in a regression problem,

there is one coefficient vector to be estimated, whereas in classification problems,

we need to estimate several discriminant directions when K > 2 so that we can

separate the classes.

Moreover, compared with the lava estimator for a regression, the formulation

for classification requires additional considerations. In regression problems, the

least squares formula is the foundation of most methods, as is the case for the

lava estimator. However, in a discriminant analysis, although there are various

approaches to finding the directions in high dimensions, no formula dominates

the others like the least squares problem does in a regression. Consequently,

we examined numerous different high-dimensional LDA formulae to find the one

most suitable to be generalized to our context. Our SD-LDA is related to the

multiclass sparse discriminant analysis (MSDA) method (Mai, Yang and Zou,

2019) in that when we are confident in the sparsity assumption, we can set the

dense signals to zero, and (2.7) reduces to the MSDA. In this sense, (2.7) is

a generalization of the MSDA to SD problems. We choose to generalize the

MSDA rather than other candidates for computational reasons. Note that SD-

LDA is convex. This is partially because its predecessor, MSDA, is convex.
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However, many other high-dimensional LDA methods are nonconvex, and their

generalizations to the SD problem will continue to be nonconvex and potentially

challenging in terms of computation. For example, Clemmensen et al. (2011)

and Fan, Feng and Tong (2012) both consider nonconvex optimization problems

with equality constraints. In principle, we could also modify these methods by

reparametrizing the parameters of interest into sparse and dense signals, and

adding appropriate penalty functions. However, the resulting methods would be

nonconvex.

Note that our method is significantly different from the elastic net (Zou and

Hastie, 2005), even though we also combine a nonsmooth penalty function (group

lasso) with the ridge penalty. Elastic net imposes both penalties on the same

parameter to stablize the estimator when the predictors are highly correlated. In

our method, the penalties are enforced on the sparse and dense signals separately

to exploit their own structure. In principle we could use other group selection

penalty functions to pursue sparsity, such as a group smoothly clipped absolute

deviation (SCAD) and a group minimax concave penalty (MCP) (Fan and Li,

2001; Zhang, 2010; Huang, Breheny and Ma, 2012). However, these penalty

functions are nonconvex, which is likely to lead to instability in computation.

The corresponding theoretical study is also expected to be more challenging,

because there could be local minima.

2.4. Algorithm

In this section, we derive an algorithm to solve (2.7). SD-LDA is jointly

convex over (βk, δk), but it is most straightforward to derive updates for one of

βk and δk while fixing the other, and iterate between them. To this end, we

derive the following lemma.

Lemma 1. Denote Q̂ = 2λ2Ip + Σ̂, Σ̄ = 2λ2Σ̂Q̂−1, µ̂dk = µ̂k − µ̂1, and µ̄dk =

µ̂T
dk(2λ2Q̂

−1). Then, we have

1. for a fixed δk, the optimizer of βk to (2.7) is

β̂k(δk) = (2λ2Ip + Σ̂)−1(µ̂k − µ̂1 − Σ̂δk); (2.12)

2. the optimizer of δk to (2.7) is

(δ̂2, . . . , δ̂K) = argmin
δk∈Rp

K∑
k=2

{
1

2
[δT

k Σ̄δk]− µ̄T
dkδk

}
+ λ1

p∑
j=1

√√√√ K∑
k=2

δ2kj. (2.13)

According to Lemma 1, we first solve (2.13), and then plug its results into

(2.12) to find the SD-LDA estimate. Note that the ℓ2 regularization enables us

to invert the covariance matrix in (2.12), so that (2.12) is feasible, even in high

dimensions. For the solution of (2.13), although it does not have an explicit
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form, we can find it by modifying the groupwise coordinate descent algorithm of

Mai, Yang and Zou (2019). We replace their Σ̂ with Σ̄, and µ̂k − µ̂1 with µ̄dk,

respectively, to solve (2.13).

3. Theory

In this section, we present the theoretical properties of SD-LDA. The entire

theoretical study is based on the LDA model setup given by (2.1). For ease of

presentation, for two quantities A and ξ, we write A ≲ ξ if A ≤ Cξ, for some

C > 0.

We also make the following assumptions:

(A1) ||Σ||2 ≤ u and ||Σ−1||2 ≤ U , for some constants U and u,

(A2) maxk ||µk − µ1||2 ≤ w1, for some constant w1,

(A3) 0 < c2 < πk < c1 < 1, for some constants c1 and c2.

Assumptions (A1) and (A2) are technical conditions that facilitate our proof.

Assumption (A1) implies that the eigenvalues of Σ are finite and bounded away

from zero, and Assumption (A2) requires a bound on the ℓ2-norm of the mean

difference. Assumption (A3) guarantees that our data set is not extremely

unbalanced. This yields the following theorem.

Theorem 1. Let θ̂k = δ̂k + β̂k, with β̂k and δ̂k defined as in (2.12) and (2.13),

respectively, and Assumptions (A1), (A2), and (A3) hold. Then, with probability

at least 1−O(p−1), we have

||θ̂k − θ∗
k||2 ≲

√
p log p

n
, (3.1)

for λ2 = O(
√
log p/n) and λ1 = O(

√
log p/n).

Theorem 1 shows that the estimators for the linear discriminant directions

consistently converge to the truth when p log p/n → 0. This implies that SD-

LDA approaches the Bayes rule under the same dimensionality. Hence, in theory,

SD-LDA works similarly to the true Bayes rule as the sample size increases.

Although SD-LDA allows p to diverge, we acknowledge that it has a stronger

requirement on the dimensionality than those of sparse methods. Sparse methods

often allow p to diverge at an exponential rate (Cai and Liu, 2011; Fan, Feng and

Tong, 2012; Mai, Zou and Yuan, 2012). Theorem 1 has a stronger requirement,

because we no longer make the sparsity assumption, and the problem is more

difficult. However, the difficulty could be technical, because SD-LDA works out

well on high-dimensional problems with p > n in our numerical studies. In

addition, in the special case of exact sparsity where we know β∗
k = 0, SD-LDA

reduces to the sparse classifier MSDA (Mai, Yang and Zou, 2019), which has
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an optimal convergence rate of
√
s log p/n (Min, Mai and Junge, 2023), with s

being the number of important variables. Moreover, even though SD-LDA is

inspired by the lava estimator in regression, our proof differs significantly from

theirs, because most of their proof conditions on X, but we have to directly

handle the randomness in X as a consequence of the LDA model assumption.

Furthermore, in multiclass problems, we have multiple directions to estimate,

which adds to the technical difficulty of the proof. In addition, compared with

the sparse classifier MSDA, SD-LDA involves much more complicated functionals,

such as Σ̂(Σ̂+ 2λ2I)
−1. We need to establish bounds for these terms, which are

not available in the literature. Because we focus on method development, we

leave a more careful theoretical investigation of the SD-LDA as a future topic of

research.

4. Simulation

Here, we present a simulation study to examine the performance of our

proposed method. We consider two scenarios separately: settings where the

sparsity assumption holds, and the settings where the sparsity assumption does

not hold, but the SD assumption holds. The sparse models are given by S1 and

S2 and the SD models are given by Models D1–D6. Throughout the simulation,

we set the sample size nk = 50 for each class and p = 250K. Simulations of

imbalanced classes can be found in Section S1 in the Supplementary Material.

For each class, we set X | Y = k ∼ N(µk, σ
2Σ), where σ2 is a constant that

varies from model to model. For each model, we have different δ∗
k and β∗

k, with

µ1 = 0 and µk = σ2Σ(β∗
k + δ∗

k), for k = 2, . . . ,K. In the sparse models, β∗
k = 0

for all k. For the five SD models, We choose q from {0.1, 0.15, 0.2} for each model,

where q represents the signal strength of “dense signals.” The models are given

as follows:

S1. K = 2, σ = 0.5. Σ is block-diagonal, with each block Σs being a 4 × 4

auto-regressive matrix with parameter 0.5, δ∗
2 = (25,0495).

S2. K = 3, σ = 0.5. Σ is block-diagonal, with each block Σs being a 4×4 auto-

regressive matrix with parameter 0.5, δ∗
2 = (25,0745), δ

∗
3 = (05,−25,0740).

D1. K = 2, σ = 0.5. Σ = Ip, δ
∗
2 = (2.5,0499), and β∗

2 = (0, q499), q ∈ {0.1, 0.2}.

D2. K = 2, σ = 0.5. Σ is block-diagonal, with each block Σs being a 4 × 4

compound symmetry matrix with parameter 0.5, δ∗
2 = (2.5,0499) and β∗

2 =

(0, q499), q ∈ {0.1, 0.2}.

D3. K = 2, σ = 0.5. Σ is block-diagonal, with each block Σs being a 4×4 auto-

regressive matrix with parameter 0.5, δ∗
2 = (2.5,0499) and β∗

2 = (0, q499),

q ∈ {0.1, 0.2}.
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D4. K = 3, σ = 0.6. Σ = Ip, δ
∗
2 = (2.5,0749), δ

∗
3 = (−2.5,0749), β

∗
2 = (0, q749),

and β∗
3 = (0,−q749), q ∈ {0.15, 0.2}.

D5. K = 3, σ = 0.5. Σ is block-diagonal, with each block Σs being a 4×4 auto-

regressive matrix with parameter 0.5, δ∗
2 = (2.5,0749), δ

∗
3 = (−2.5,0749),

β∗
2 = (0, q749), and β∗

3 = (0,−q749), q ∈ {0.1, 0.15}.

D6. K = 5, σ = 0.5. The covariance matrix Σ has an auto-regressive structure,

namely, σij = 0.8|i−j|. The number of nonzero elements of parameter β′s is

five instead of one. Specifically, we let (δ∗
2 , . . . , δ

∗
5) = (1.55,−1.55,15,−15)

and (β∗
2 , . . . ,β

∗
5) = (2q495,−2q495, q495,−q495), q ∈ {0.075, 0.1}.

In addition to SD-LDA, we include the following comptitors in our simulation:

the MSDA (Mai, Yang and Zou, 2019), a logistic regression with a lasso penalty

(Hastie, Tibshirani and Friedman, 2009) or elastic-net penalty (Zou and Hastie,

2005) (denoted as lasso and elastic-net, respectively), a support vector machine

(SVM) (Joachims, 1998), and sparse optimal scoring (Clemmensen et al., 2011,

denoted as SOS). MSDA is implemented using the R package msda, lasso and

elastic-net are implemented using the R package glmnet, and the SVM is im-

plemented using the R package e1071. SOS is implemented using the R package

sparseLDA for multiclass models and the R package TULIP in binary models (Pan,

Mai and Zhang, 2020).

The tuning parameters in all methods are chosen using five-fold cross-

validation, and a grid search is implemented if there are multiple tuning

parameters. We run the simulation 100 times for each model, and the means and

standard errors of the prediction error (PE in %) are reported in Table 1. The

means of the numbers of correctly and incorrectly selected variables are given in

Table 2. Recall that the sparse signals dominate in terms of their effects, and

thus we focus on their selection. For all the competitors, a variable is selected if

and only if it has a nonzero coefficient, while for SD-LDA, a variable is selected

if it has a nonzero coefficient in δ̂k.

As shown in Table 1, even when the true models are sparse, SD-LDA

still gives a comparable, or even significantly better result than those of the

sparse competitors. This may be because the SD-LDA can approximate a sparse

classifier by using a large λ2, but it explores more classifiers using cross-validation

over λ2, yielding better empirical results. For the SD models, SD-LDA has a clear

advantage over the sparse methods, indicating that the latter are vulnerable when

dense signals exist, and the SD-LDA is preferable under such circumstances.

In Table 2, we see that the SD-LDA continues to give excellent variable

selection results across all models. In the SD models, the variable selection

becomes worse as q increases. This is expected, because as q increases, the

boundary between sparse and dense signals becomes blurred. However, the

sparse competitors struggle much more than the SD-LDA does. Because they
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Table 1. The prediction accuracy results. The means and standard errors (in the
parentheses) of the prediction error of 100 replicates are reported as percentages.

Models q BE SD-LDA MSDA Lasso elastic-net SVM SOS

S1 0 6.4 6.51(0.23) 7.83(0.28) 8.58(0.3) 7.20(0.27) 22.93(0.44) 8.69(0.3)

S2 0 8.3 8.54(0.24) 9.29(0.26) 11.45(0.3) 10.51(0.26) 29.15(0.36) 17.23(0.31)

D1
0.1 20.1 25.27(0.45) 27.26(0.47) 28.40(0.5) 26.28(0.46) 40.79(0.55) 28.20(0.5)

0.2 10.0 21.08(0.45) 27.18(0.52) 28.35(0.53) 25.40(0.47) 28.18(0.48) 27.57(0.45)

D2
0.1 13.5 18.90(0.38) 26.59(0.47) 26.99(0.48) 24.18(0.42) 25.13(0.45) 25.91(0.49)

0.2 2.8 5.63(0.22) 21.65(0.48) 19.46(0.44) 10.94(0.33) 5.92(0.23) 17.08(0.49)

D3
0.1 15.2 20.42(0.42) 26.24(0.46) 26.76(0.45) 24.34(0.41) 29.30(0.44) 27.14(0.45)

0.2 4.1 7.99(0.28) 22.67(0.41) 21.18(0.42) 13.99(0.35) 9.33(0.28) 21.79(0.47)

D4
0.15 9.9 28.57(0.37) 31.23(0.41) 33.90(0.4) 32.47(0.32) 34.43(0.4) 35.61(0.41)

0.2 8.3 20.76(0.38) 31.59(0.41) 33.75(0.37) 31.15(0.31) 23.38(0.32) 35.00(0.39)

D5
0.1 20.4 28.63(0.39) 35.36(0.42) 38.00(0.38) 35.11(0.38) 31.09(0.38) 39.06(0.41)

0.15 5.9 17.54(0.4) 35.04(0.42) 35.41(0.39) 29.26(0.33) 14.66(0.3) 37.45(0.37)

D6
0.075 6.3 9.11(0.18) 28.12(0.26) 33.41(0.36) 28.10(0.29) 11.51(0.20) 27.34(0.31)

0.1 2.4 3.10(0.10) 26.14(0.31) 28.52(0.33) 18.47(0.28) 4.00(0.14) 24.15(0.32)

Table 2. The means and standard errors of correctly selected variables (denoted as C)
and incorrectly selected variables (denoted as IC). The true numbers of important/dense
signals are 5 for Model S1, 10 for Model S2, and 1 for all SD models.

SD-LDA MSDA Lasso elastic net SOS

Models q C IC C IC C IC C IC C IC

S1 0 4.5(0.7) 4.6(5) 4.5(0.8) 5.60(6.8) 4.7(0.5) 19.50(8.6) 4.90(0.2) 43.6(30.3) 4.8(0) 19.4(2.3)

S2 0 9.2(1) 5.1(6.7) 9.1(1.1) 4.60(6.9) 1.8(1.1) 33.20(7.4) 5.50(2.6) 67.0(36.2) 10.0(0) 4.4(0.1)

D1
0.1 1.0(0) 4.2(4.4) 1.0(0) 4.50(6.3) 1.0(0) 9.20(9) 1.00(0) 15.0(20.6) 1.0(0) 13.6(2.2)

0.2 1.0(0.1) 4.7(5.2) 1.0(0) 6.70(7.5) 1.0(0) 18.20(13.4) 1.00(0) 56.0(52.1) 1.0(0) 30.8(3.5)

D2
0.1 1.0(0) 1.8(3.1) 1.0(0) 10.50(10.9) 1.0(0) 22.90(13.1) 1.00(0) 65.8(51) 1.0(0) 23.5(3)

0.2 0.9(0.3) 1.5(2.8) 1.0(0) 24.00(12.1) 1.0(0) 46.20(7.5) 1.00(0) 189.1(29.7) 1.0(0) 68.8(3.1)

D3
0.1 1.0(0) 2.7(3.7) 1.0(0) 7.70(9) 1.0(0) 18.7(12.9) 1.00(0) 51.1(43.5) 1.0(0) 17.3(2.6)

0.2 0.9(0.2) 1.1(2) 1.0(0) 21.90(11.1) 1.0(0) 42.1(10.1) 1.00(0) 175.1(44.2) 1.0(0) 58.2(3.3)

D4
0.15 1.0(0.1) 0.6(3.4) 1.0(0) 1.20(3.4) 0(0) 19.9(11.6) 0(0.1) 57.0(69.5) 1.0(0) 22.8(0)

0.2 0.9(0.3) 0(0) 1.0(0) 5.40(13) 0(0) 23.1(12.8) 0(0.1) 109.7(87.4) 1.0(0) 26.7(0.1)

D5
0.1 1.0(0.1) 1.2(4.4) 1.0(0) 5.30(14.3) 0(0) 19.6(10.8) 0(0.1) 102.2(79.4) 1.0(0) 28.7(0.1)

0.15 0.9(0.3) 1.6(6.2) 1.0(0) 30.40(26.5) 0(0) 22.9(10.1) 0.10(0.3) 168.2(66.5) 1.0(0) 18.9(0)

D6
0.075 2.6(0.2) 17.5(3.1) 3.3(0.1) 0.11(0) 0(0) 26.89(0.7) 0.31(0.1) 137.7(3.6) 2.3(0.1) 139.9(3.9)

0.1 2.4(0.1) 11.3(2.7) 3.8(0.1) 0.81(0.2) 0(0) 26.70(0.6) 0.36(0.1) 153.0(1.3) 2.3(0.1) 139.0(3.7)

are incapable of modeling dense signals, they drastically overselect the variables

in the hope of achieving higher accuracy.

Finally, we report the computation cost for SD-LDA and its competitors in

Table 3. For brevity, we report only the results for Models D1 and D6 with

q = 0.1 at the optimal tuning parameters. The computation time is averaged

over 100 replicates. Most methods take much less than 1 second to finish one

replicate. SD-LDA is slower than most of the competitors, which is the price we

pay to model the dense signals and achieve better prediction accuracy. Among the

discriminant analysis methods (SD-LDA, MSDA, and SOS), SD-LDA is slower
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Table 3. Average computation time based on 100 replicates.

Time (s× 10−2) SD-LDA MSDA Lasso elastic-net SVM SOS

D1 11.3 2.3 0.18 0.18 2.5 1.2

D6 17.9 5.2 8.40 9.00 10.4 104.7

than MSDA because it needs to calculate (Σ̂ + 2λ2I)
−1 when estimating the

dense signals. SD-LDA is slower than SOS in the relatively simple Model (D1).

However, in the more difficult Model (D6), SD-LDA is much faster than SOS,

even though SOS estimates only the sparse signals.

5. Real Data Set Analysis

We demonstrate the performance of SD-LDA on five real-world data sets:

The IBD data set from Burczynski et al. (2006), the small-blue-round-cell tumour

data set (SBRCT) from Khan et al. (2001), the prostate cancer data set from

Singh et al. (2002), the gene time data set, and the cancer genome atlas data

set. The screened IBD data set is imported from the R package msda directly. It

contains 127 samples in three classes and 127 gene expressions. The SBRCT data

set has 84 samples in four classes, and the prostate cancer data set has 102 samples

in two classes. Because the dimensions of the SBRCT and the prostate cancer

data sets are extremely high, we first apply t-test screening, as in Fan and Fan

(2008), before performing our proposal. The reduced data sets are generated by

the t-test screening with p-values of screening set to 0.001 and 0.05, respectively.

The numbers of their gene expressions are reduced to 594 and 477, respectively.

The gene time course data (GTC) describes the clinical response to treatment

for multiple sclerosis (MS) patients based on gene expression time course data.

This data set was originally described in Baranzini et al. (2004). Fifty-three

patients were given recombinant human interferon beta (rIFNβ), which is often

used to control the symptoms of MS. Gene expression was measured for 76 genes

of interest before treatment (baseline) and at six follow-up time points over the

next two years (3 months, 6 months, 9 months, 12 months, 18 months, 24 months).

Afterward, patients were classified into good responders or poor responders to

rIFNβ, based on clinical characteristics. There are 20 good responders and 33 bad

responders in all the 53 patients. The dimension for this data set is 76×7 = 532.

The Cancer Genome Atlas (TCGA) Research Network has profiled and

analyzed large numbers of human tumors to discover molecular aberrations at

the DNA, RNA, protein, and epigenetic levels. These data are part of the

pan-cancer data set, and is a random extraction of gene expressions of patients

with different types of tumors: BRCA, KIRC, COAD, LUAD, and PRAD. We

downloaded the data from https://archive.ics.uci.edu/dataset/401/gene+

expression+cancer+rna+seq, which was kindly shared by Samuele Fiorini in

https://archive.ics.uci.edu/dataset/401/gene+expression+cancer+rna+seq
https://archive.ics.uci.edu/dataset/401/gene+expression+cancer+rna+seq
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Table 4. The means and standard errors (in parentheses) of the prediction error(%) of
SD-LDA and other competitors of 100 replicates for each data set.

DataSet SD-LDA MSDA Lasso elastic-net SVM SOS

IBD 3.71(0.28) 8.00(0.37) 6.76(0.36) 5.10(0.34) 8.27(0.38) 6.93(0.33)

SBRCT 0.08(0.08) 14.08(0.9) 1.58(0.2) 0(0) 0.92(0.17) 2.15(0.26)

Prostate 0(0) 29.06(0.74) 19.06(0.58) 2.79(0.28) 0(0) 15.33(0.63)

GTC 17.40(0.74) 33.60(0.97) 31.70(0.85) 21.20(0.87) 31.60(0.51) 45.20(1.31)

TCGA 0.20(0.02) 1.57(0.14) 0.58(0.02) 0.42(0.01) 0.37(0.01) 4.90(0.12)

Table 5. The means and standard errors of the number of selected variables by SD-LDA
and other competitors of 100 replicates are reported.

Methods SD-LDA MSDA Lasso elastic-net SOS

IBD 9.40(0.82) 29.46(0.7) 10.67(0.18) 69.83(0.5) 52.36(1.89)

SBRCT 7.62(0.47) 17.32(0.54) 10.97(0.23) 140.45(0.67) 59.07(0.99)

Prostate 11.37(0.52) 12.66(0.4) 43.59(0.59) 233.70(0.93) 64.67(1.15)

GTC 2.04(0.18) 6.09(0.34) 12.52(0.66) 110.07(2.84) 25.65(1.15)

TCGA 19.13(0.76) 38.71(0.84) 9.01(0.19) 125.51(0.74) 108.34(2.71)

2016. The original data set is maintained by the cancer genome atlas pan-cancer

analysis project (https://www.synapse.org/). The data set has 801 samples in

five classes and 20,531 gene expressions. As with the previous data sets, we first

use t-test screening to select 801 genes.

We perform SD-LDA and the competitors included in Section 4 on the first

four data sets. We run 100 replicates, and in each replicate the data sets are

split in a 2:1 ratio in a balanced manner to form training and testing sets. The

tuning parameters are chosen using five-fold cross-validation and by checking their

prediction errors. For the TCGA data, almost all the methods perform perfectly.

To make the classification problem more challenging, we run 100 replicates, with

the data set split in a 1:9 ratio in a balanced manner to form training and testing

sets; that us, we have 80 training samples and 721 test samples.

The average prediction errors are reported in Table 4. SD-LDA is either the

best classifier, or statistically no different from the best classifier. These results

support the application of SD-LDA in practice. Note that the sparse methods

may perform better if we preprocess the data sets a little differently. For example,

Mai, Zou and Yuan (2012) reported a prediction error of 5.9% for MSDA (its

binary equivalence, to be exact) if the data set is not screened. However, the

error is still significantly larger than that of SD-LDA on the screened data in

Table 4.

We further check the variable selection results in Table 5. By considering the

“dense signals”, SD-LDA actually selects the fewest sparse signals. Therefore,

SD-LDA could help researchers focus on a smaller set of key features for a more

in-depth study. Because the gene names for the IBD, Prostate, and TCGA data

https://www.synapse.org/
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sets are missing from the original resources, we report only the selected genes

for the SBRCT and GTC data sets. For the SBRCT data, SD-LDA selects 10

genes, including WASp, CAV1, CDH2, HBE1, anti-CD99, Psmb10, HLA-DMA,

SYNGR1, EHD1, and PSMB8. Some of these genes have been shown to have

close relationship with the development of cancer. For example, CAV1 appears

to act as a tumor suppressor protein at early stages of cancer progression (Sáinz-

Jaspeado et al., 2011); CD99 appears to be a robust marker of cancer stem

cells and a promising therapeutic target in these malignancies (Pasello, Manara

and Scotlandi, 2018);and HLA-DMA antigen expression by tumor cells influences

the tumor antigen (TA)-specific immune responses and, depending on the cancer

type, the clinical course of the disease (Seliger, Kloor and Ferrone, 2017). For the

GTC data set, SD-LDA selects two genes, Caspase 6 and FLIP. This agrees with

the findings in the existing literature. For example Julien et al. (2016) showed

that Caspase 6 is related to MS, and (Hauser and Oksenberg, 2006) showed that

FLIP is related to MS.

6. Discussion

SD-LDA is proposed as a convex high-dimensional classification method that

is robust to the changing signal pattern in linear discriminant directions. It is

obtained by separating the linear discriminant directions into “sparse signals”

and “dense signals” and applying suitable penalties to estimate them. To the

best of our knowledge, this is the first SD classifier, to perform well over a wide

range of data sets. Similar techniques could be combined with linear classifiers,

such as the logistic regression or SVM, to enable them to capture the “sparse

signals” and “dense signals.” We can further consider a similar modification for

nonlinear models, such as the quadratic discriminant analysis (QDA; Fan et al.,

2015; Li and Shao, 2015; Jiang, Wang and Leng, 2018).

Although our work is developed under the LDA model, in which the within-

class distribution is normal. It can be extended easily to a semiparametric

framework that has been reasonably well studied (Lin and Jeon, 2003; Liu,

Lafferty and Wasserman, 2009; Mai and Zou, 2015; Jiang and Leng, 2016). In

such a semiparametric framework, X does not have to be normal within each

class, but there must exist a set of unknown transformations g = (g1, . . . , gp)

such that (g(X), Y ) follows the LDA model. When considering high-dimensional

data, existing works frequently adopt the sparsity assumption. However, fol-

lowing our work, we can consider a semiparametric model with sparse+dense

signals to achieve greater flexibility. We leave this topic as an interesting future

research direction, for which some recent theoretical works on estimating the

transformation may be helpful (Mai, He and Zou, 2022). However, such studies

are beyond the scope of this research.
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Supplementary Material

The derivation for algorithms and the proof for theorems are available in the

Supplementary Material. Section S2 contains the derivation for Lemma 1 and

Section S3 contains the proof for Theorem 1.
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