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CLT FOR U-STATISTICS WITH GROWING DIMENSION
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Abstract: We present a general triangular array central limit theorem for U -statistics,

where the kernel hk(x1, . . . , xk) and its dimension k may increase with the sample

size. Motivating examples that require such a general result are presented, including

a class of Hodges–Lehmann estimators, subsampling estimators, and combining p-

values using data splitting. A result for the so-called M -statistic is also presented,

which is defined as the median of some kernel computed over all subsets of the

data of a given size. The conditions in the theorems are verified in the motivating

examples as well.

Key words and phrases: Data splitting, Hodges–Lehmann estimator, hypothesis

testing, P -values, subsampling, U -statistics.

1. Introduction

Suppose X1, . . . , Xn are independent and identically distributed (i.i.d.) ac-

cording to a distribution P . Consider the U-statistic

Un(X1, . . . , Xn) =

(
n

k

)−1∑
hk(Xi1 , . . . , Xik) , (1.1)

where hk is a symmetric kernel of order k = kn (which may increase with n),

and the sum is taken over all
(
n
k

)
combinations of k observations taken from the

sample. We specifically allow the order k = kn of the kernel hkn to depend on

n, as does the kernel itself. For cleaner notation, we may just write k and hk
rather than kn and hkn , respectively. However, we will also allow k to be fixed

and k →∞ as n→∞.

The asymptotic theory of U -statistics was developed in a landmark paper by

Hoeffding (1948). The classical result assumes the kernel is fixed, n → ∞, and

P is fixed. This study provides general conditions to show asymptotic normality

in a triangular array setup. This generality allows the kernel and its order to

vary with the sample size, as necessitated by certain applications, such as the

examples presented here. A uniform in P result is given in Romano and Shaikh
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(2012), where the kernel is fixed.

When k is allowed to vary with n, such that k = kn →∞ as n→∞, sufficient

conditions for the asymptotic normality of such U -statistics appear in Mentch

and Hooker (2016), who consider inference for random forests. Unfortunately, as

noted in Song, Chen and Kato (2019), their conditions never hold, because they

assume conditions that cannot hold simultaneously (as will be explained later).

We provide rigorous sufficient conditions, which are shown to hold in a variety of

examples. Alternative conditions appear in Peng, Coleman and Mentch (2019)

(Theorem 1) and Zhou, Mentch and Hooker (2019) (Theorems 3 and 4). Another

way to show asymptotic normality with an increasing kernel order is to appeal to

the Berry–Esseen bounds for U -statistics, as in van Zwet (1984), Chen and Shao

(2007), and Song, Chen and Kato (2019). Although these results provide bounds

on a normal approximation, they impose higher moment assumptions; see also

Song, Chen and Kato (2019) (Remark 2.3) for additional references.

As an alternative to Un in (1.1), we also consider the median statistic Mn,

defined by

Mn(X1, . . . , Xn) = median {hk(Xi1 , . . . , Xik)} , (1.2)

where the median is taken over all
(
n
k

)
combinations of k observations taken from

the sample. (In this case, we may also allow the kernel to be asymmetric.)

The remainder of the paper is organized as follows. Section 2 presents four

motivating examples for the results obtained. The main theorems are given in

Section 3. The examples are revisited in Section 4, where the conditions are

verified. Section 5 concludes the paper. All proofs are deferred to Section 6.

2. Motivating Examples

In this section, we provide examples to motivate the need for a general result.

Example 1. [Maximin Tests] Assume X1, . . . , Xn are independent (but not nec-

essarily i.i.d.) normal, with Xi ∼ N(µi, 1). The problem is to test the null

hypothesis H0 that all µi are equal to zero against the (multi-directional) alter-

native that not all µi are zero. Of course, for this problem, there is no uniformly

most powerful (UMP) level-α test, but there is a uniformly most powerful invari-

ant (UMPI) level-α test, which rejects for large values of
∑n

i=1X
2
i . However, if

we believe the indices i for which µi 6= 0 are sparse, we can outperform the UMPI

test; see Arias-Castro, Candès and Plan (2011). Indeed, we may wish to direct

power against alternatives for which there are not too many nonzero µi. We can

formulate the problem as follows. Fix ε = εn > 0 and k = kn, and determine

the maximin level-α test against alternatives where at least k of the µi satisfy
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µi ≥ ε. (Note that we can treat the case where these alternatives may satisfy

|µi| ≥ ε similarly. However, for expository reasons, we focus on the case of posi-

tive alternatives.) We apply standard arguments to determine the maximin test,

as in Lehmann and Romano (2005). Intuitively, the least favorable distribution

places equal mass at the
(
n
k

)
points in the alternative parameter space, where

each point (µ1, . . . , µn) satisfies that exactly k of the components are ε, and the

rest are zero. For this choice of a least favorable distribution, the conditions of

Theorem 8.1.1. in Lehmann and Romano (2005) hold, and the maximin test

rejects for large values of the U -statistic given in (1.1), where

hk(X1, . . . , Xk) = exp

(
ε

k∑
i=1

Xi

)
. (2.1)

We wish to examine the asymptotic behavior of this test statistic (both for setting

critical values and approximating the power) in situations where possibly k →∞
and/or ε→ 0 (as well as letting the data distribution vary at time n).

Example 2. [Class of Hodges–Lehmann Estimators] Suppose X1, . . . , Xn are

i.i.d. according to a symmetric distribution on the real line. Based on robustness

considerations, the classical Hodges–Lehmann estimator is defined as the median

of all pairwise averages of the observations. Evidently, the Hodges–Lehmann

estimator is an M-statistic (1.2) (with k = 2). More generally, consider the

statistic (1.2) with

hk(X1, . . . , Xk) = k−1/2
k∑
i=1

Xi .

Let θ̂n,k = k−1/2Mn. (Note that we could have equivalently defined the kernel

with k−1/2 replaced by k−1, such that the estimator is just Mn. However, it is

convenient for the purpose of applying our results to define the kernel as above,

so that it is of order one in probability.) As k varies, one might consider this class

of estimators as k ranges from k = 1 (the usual sample median) to k = n (the

sample mean), with the choice balancing efficiency and robustness considerations.

The purpose here is to provide a limit theorem for general k, while allowing k to

increase with n.

Example 3. [Subsampling Distribution] Suppose X1, . . . , Xn are i.i.d. P , and

we are interested in a real-valued parameter ξ(P ). Assume ξ̂n = ξ̂n(X1, . . . , Xn)

is an estimator of ξ(P ). Fix 1 < k < n, and let S1, . . . , SN be the N =
(
n
k

)
subsets

of size k taken without replacement from the data, ordered in any fashion. For a

given hypothesized value of ξ, say ξ0, let Jn(t, P ) be the true c.d.f. of τn(ξ̂n− ξ0),
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evaluated at some generic t. Typically, τn =
√
n. Then, a subsampling estimator

of Jn(t, P ) is given by

Un(t) =
1

N

N∑
i=1

I
{
τk(ξ̂k(Si)− ξ0) ≤ t

}
(2.2)

(The usual subsampling estimator replaces ξ0 in (2.2) with ξ̂n, though both are

relevant, depending on the ultimate goal; see Chapter 2 in Politis, Romano and

Wolf (1999).) Evidently, for each t, Un(t) is a U -statistic of degree k. In order

to consistently estimate the true distribution Jn(t, P ), it is generally required

that k → ∞. Rather than consistency, we would like to determine the limiting

distribution of Un(t)− Jn(t, P ), appropriately normalized.

Example 4. [Combining p-values Using Data Splitting] Data splitting involves

partitioning a data set into disjoint “splits” or subsamples, which can then be

used for various statistical tasks. Typically, one portion of the data is used for

some form of selection (such as model fitting, dimension reduction, or choice of

tuning parameters), and then a second, independent portion of the data is used

for some further purpose, such as estimation or model fitting. In addition, data

splitting can be used in prediction to assess a model’s performance (where a por-

tion of the data is used to select and/or fit the model, and the remainder is used

to assess its performance), or in inference to perform tests of significance after

hypotheses or test statistics have been selected. Data splitting has become a

useful remedy for data snooping (giving a valid inference after the selection of

a hypothesis), estimating nuisance parameters, and avoiding over-fitting in pre-

diction problems. The main complaint about data splitting is that the choice

of split is arbitrary (and random). Furthermore, the resulting inference violates

the sufficiency principle, which states that inference in i.i.d. problems should be

invariant with respect to ordering. Recent methods have proposed combining

p-values over multiple splits of the data; see Ruschendorf (1982), Meinshausen,

Meier and Bühlmann (2009), Vovk and Wang (2012), and DiCiccio, DiCiccio and

Romano (2020). For example, if p̂n,i is a p-value computed over some subsample

Si of the data, then we can combine these p-values by taking their average p̄n
(which is a U -statistic) or their median. Conservative methods that control the

probability of a type-1 error at level α compare the average p-value or median

p-value with α/2. These methods are conservative in nature in that the resulting

rejection probability is significantly below the desired nominal level. The pro-

posed method improves upon these methods by exploiting the U -statistic nature

of the average of the p-values.
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3. Main Results

In this section, the main asymptotic normality theorem is developed for U -

statistics with a growing kernel order, as well as for the corresponding M -statistic.

3.1. A general U-statistic CLT under growing kernel order

Suppose X1, . . . , Xn are i.i.d. P . Consider the U-statistic given in (1.1),

where hk is assumed to be a symmetric kernel of order k = kn, and the sum is

taken over all
(
n
k

)
combinations of k observations taken from the sample. We

specifically allow the order k = kn of the kernel hkn to depend on n, as does the

kernel itself. For cleaner notation, we may write k and hk rather than kn and

hkn , respectively, but we allow k to be fixed and k → ∞ as n → ∞. (Note that

if hk is not symmetric in its arguments, it can always be symmetrized by further

averaging. Thus, for the purposes of the CLT, we assume hk is symmetric.)

Define θk = E(hk(X1, . . . , Xk)) and

ζ1,k = Var(h1,k(X)) ,

where

h1,k(x) = E(hk(x,X2, . . . , Xk))− θk .

All expectations and variances are computed under the probability distribution

P generating the data, noting that P = Pn may also vary with n.

More generally, for 1 ≤ c ≤ k, define

hc,k(X1, . . . , Xc) = E[hk(X1, . . . , Xk)|X1, . . . , Xc]− θk

and

ζc,k = Var(hc,k(X1, . . . , Xc)) , (3.1)

so that ζk,k is the variance of the kernel, based on a sample of size k equal to the

order of the kernel.

Sufficient conditions for the asymptotic normality of such U -statistics are

given in Mentch and Hooker (2016), but their result is not valid because their

conditions can never hold simultaneously. In particular, they assume ζ1,k 9 0,

which fails in our applications. Moreover, they assume that the second moment

of the kernel is uniformly bounded, so that ζk,k ≤ C <∞. However, by Theorem

1 in Hoeffding (1948), it follows that ζ1,k ≤ ζk,k/k ≤ C/k → 0. Therefore, the

conditions ζk,k ≤ C and ζ1,k 9 0 are incompatible, and thus the conditions in

their theorem can never apply.
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In some of our applications, the kernel is uniformly bounded (such as when

it is some p-value), in which case, the ζc,k are also uniformly bounded as c, k,

and n vary. In such case, ζ1,k is of order 1/k and tends to zero. Nevertheless, the

conditions in our theorem can be verified. As shown in Corollary 1, the important

condition is that kζ1,k 9 0.

Remark 1. (Simple Consistency). Under weak conditions, Un is consistent in the

sense Un − θk
P−→ 0. It suffices to show Var(Un)→ 0. However, as is well known,

Var(Un) ≤ kζk,k/n. Thus, if the ζk,k are uniformly bounded (which follows if the

kernels are uniformly bounded) and k/n→ 0, then consistency follows.

The theorem below applies in a triangular array setup, where n observations

are i.i.d. Pn. Then, quantities such as ζc,k in (3.1) are computed under Pn. Let

Ûn =
kn
n

n∑
i=1

h1,k(Xi) . (3.2)

Theorem 1. Assume the order k = kn of the kernel hk satisfies k2/n → 0.

Furthermore, assume that ζk,k/kζ1,k is bounded.

(i) Then,
nVar(Un)

k2ζ1,k
→ 1. (3.3)

(ii) In addition,

(Un − θk)− Ûn√
(k2/n)ζ1,k

P−→ 0 , (3.4)

and so

Un − θk = OP

(
k2

n
ζ1,k

)
.

(ii) If, in addition, for all δ > 0,

lim
n→∞

1

ζ1,k

∫
|h1,k(x)|>δ

√
nζ1,k

h21,k(x)dPn(x) = 0, (3.5)

then √
n (Un(X1, . . . , Xn)− θk)√

k2ζ1,k

d−→ N(0, 1). (3.6)

This result also holds for the “incomplete” U-statistic, which is the average

of the kernels computed over Bn randomly and uniformly chosen subsamples of

the data, provided that n/Bn → 0.
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Corollary 1. Under the above notation, if k2/n→ 0, the kernel hk is uniformly

bounded (both as k and the data vary), and kζ1,k 9 0, then asymptotic normality

(3.6) holds.

Remark 2. In some applications, the condition that kζ1,k 9 0 holds because

kζ1,k is of strict order one. Of course, if k is fixed, as in the classical case, all that

is required for asymptotic normality is ζ1,k > 0.

3.2. Asymptotic normality of the M-statistic

Suppose instead of using Un as an estimator, where the kernel is averaged

over all subsamples of size k of the data, we use the median of the values of the

kernel computed on all subsamples of size k, that is, Mn defined in (1.2), which

we refer to as an M -statistic. In this section, we do not assume hk is symmetric,

and so the median is taken over all n!/(n − k)! ordered indices i1, . . . , ik taken

without replacement from 1, . . . , n. (If taking the median over an even number,

say 2m values, define the median as the mth-order statistic. Note that if k > 1,

then
(
n
k

)
k! is always even.) We would like to prove a triangular array CLT for

Mn when k = kn varies with n.

Suppose that hk has a c.d.f. Fk, and that θ̃k satisfies Fk(θ̃k) = 1/2.

Define

h̃k(x1, . . . , xk; t) ..=
1

k!

∑
I
{
hk(xi1 , . . . , xik) > θ̃k + t

}
, (3.7)

where the average is taken over all permutations of 1, . . . , k. In addition, define

ζ̃1,k(t) = Var[φ̃1,k(X; t)],

with

φ̃1,k(x; t) = E[h̃k(x,X2, . . . , Xk; t)].

We assume that the sequence {Fk} is asymptotically equidifferentiable (as

k = kn →∞) relative to the sequence θ̃k; that is, for any εk → 0,

Fk(θ̃k + εk)− Fk(θ̃k) = εkF
′
k(θ̃k) + o(εk) . (3.8)

We apply (3.8) with the choice εk = δk defined by

δk =

√
ζ̃1,k(0)k2

n
.

Note that ζ̃1,k is bounded in k, so that if we assume that k2/n → 0, then
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δk → 0. Then,

E
(
h̃k (X1, . . . , Xk; δk)

)
=

1

2
− F ′k(θ̃k)δk + o(δk). (3.9)

Finally, assume that F ′k(θ̃k) → f(θ̃), which is just some positive constant.

(Note, f and θ̃ need not have meaning separately. However, typically, F ′k tends

to some f and θ̃k → θ̃.)

Theorem 2. Under the above setup, assume further that k2/n→ 0, kζ1,k(0) 9 0

and, for any fixed t,
ζ̃1,k(δkt)

ζ̃1,k(0)
→ 1 (3.10)

as n→∞. Then, √
n

ζ̃1,k(0)k2

(
Mn − θ̃k

)
d−→ N

(
0,

1

f2(θ̃)

)
.

4. Examples, Revisited

Example 5. [Example 1, revisited.] Consider Un given by (1.1), with hk given

by (2.1). We verify the conditions for asymptotic normality under H0, though

power can be studied similarly. Letting Z denote a standard normal variable,

E(Un) = E
[
exp(ε

√
kZ)

]
= exp

(
ε2k

2

)
.

In addition,

E[hk(X1, X2, . . . , Xk)|X1] = exp(εX1)E {exp[ε(X2 + · · ·+Xk)]}

= exp

[
εX1 +

ε2(k − 1)

2

]
.

Then, ζ1,k, the variance of this last quantity, is given by

ζ1,k = exp[ε2(k − 1)]V ar[exp(εX1)]

= exp[ε2(k − 1)]
[
E exp(2εX1)− (E exp(εX1))

2
]

= exp[ε2(k − 1)][exp(2ε2)− exp(ε2)] = exp(ε2k)[exp(ε2)− 1].

Similarly,

ζk,k = V ar {exp[ε(X1 + · · ·+Xk)]} = E
[
exp(2ε

√
kZ)

]
−
{
E
[
exp(ε

√
kZ)

]}2
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= exp(2ε2k)− exp(ε2k) = exp(ε2k)[exp(ε2k)− 1].

We need to verify that the ratio ζk,k/(kζ1,k) is bounded. However,

ζk,k
kζ1,k

=
exp(ε2k)− 1

k [exp(ε2)− 1]
. (4.1)

Of course, if k = 1, then the ratio (4.1) is always one, so the condition holds.

Certainly, if both k > 1 and ε > 0 are fixed, then the ratio (4.1) is fixed. In

addition, if k is fixed, but ε = εk → 0, then by L’Hospital’s rule, the ratio tends

to one, and so the condition holds. If k →∞, but ε2k → 0 (so that also ε2 → 0),

then by Taylor approximation to the numerator and denominator, it is easy to see

that the condition holds, as again, the ratio tends to one. Actually, one just needs

ε2k to remain bounded. Indeed, the numerator in (4.1) is then bounded, and the

denominator is easily seen to be bounded below by kε2. If kε2 → 0, then we have

already treated that case, but if it is bounded away from zero and ∞, then the

ratio (4.1) is bounded. Hence, it is only required that ε2k is bounded from above

(unless k = 1, in which case, the condition holds regardless). Conversely, it is

easy to check that if k > 1 and kε2 → ∞, then the ratio (4.1) is not bounded.

Note that if we are trying to detect an alternative in which k of the µi are equal

to ε, and the rest are zero, then such alternatives are contiguous to the null.

Finally, asymptotic normality holds as long as εk stays bounded from above (and

so it can tend to zero).

Example 6. [Example 2, revisited.] Consider the generalized Hodges-Lehmann

estimators θ̂n,k = k−1/2Mn, where Mn is defined by (1.2) with

hk(X1, . . . , Xk) = k−1/2
k∑
i=1

Xi.

To illustrate the theorem, assume X1, . . . , Xn are i.i.d. normal with mean zero

and variance one. Therefore, assume k > 1. We have θ̃k = 0 and

h̃k(x1, . . . , xk; t) = I

(
x1 + · · ·+ xk√

k
> t

)
.

Note that (3.9) holds with f(θ̃) = φ(0) = 1/
√

2π, where φ(·) is the standard

normal density. Then,

φ̃1,k(x, t) = P

{
x+X2 + · · ·+Xk√

k
> t

}
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= 1− Φ

(
t

√
k

k − 1
− x√

k − 1

)
,

ζ̃1,k(t) = V ar

[
Φ

(
t

√
k

k − 1
− X√

k − 1

)]

and

ζ̃1,k(0) = V ar

[
Φ

(
X√
k − 1

)]
:= τ2k ,

where X ∼ N(0, 1). Note that by the Taylor approximation, for large k,

τ2k = V ar

[
X√
k − 1

φ(0)

]
=

1

2π(k − 1)
+ o

(
1

k

)
, (4.2)

and thus

lim
k→∞

kτ2k =
1

2π
.

Here, and in other places, the approximation (4.2) can be justified because

τ2k = V ar

(
Φ(0) +

X√
k − 1

φ(0) +Rk

)
=

1

2π(k − 1)
+ o

(
1

k

)
,

where

Rk =
X2

2(k − 1)
φ′(Yk),

and Yk is some intermediate point between zero and X/
√
k − 1. Because φ′

(as well as higher derivatives) is uniformly bounded, it follows that E(R2
k) =

O(1/k2). Then, by Cauchy–Shwartz, Cov((X/
√
k − 1), Rk) = o(1/k), and so

(4.2) follows. (In fact, by continuing the Taylor Series for another term and noting

that Cov(X,X2) = 0, we find that the error is not just o(1/k), but O(1/k2).)

Note that, because ζ̃1,k(0) = O(1/k), δk = O(
√
k/n). Similarly, by the

Taylor approximation,

ζ̃1,k(δkt) = V ar

[
Φ

(
δkt

√
k

k − 1
− X√

k − 1

)]

= V ar

[
Φ

(
X√
k − 1

)]
+O

(
δ2k
k

)
.

If k is fixed, δ2k/k → 0 and (3.10) holds easily. If k →∞, then kζ̃1,k(δkt)→ 1/(2π),

because kO(δ2k/k) = o(1). Therefore, condition (3.10) holds. Hence,
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n

τ2kk
2
Mn

d−→ N(0, 2π) ,

or, equivalently, √
n

kτ2k
θ̂n,k

d−→ N(0, 2π) .

Therefore, when k is fixed,

√
nθ̂n,k

d−→ N(0, 2πkτ2k ) . (4.3)

When k →∞ and k2/n→ 0, because kτ2k → 1/(2π), we have

√
nθ̂n,k

d−→ N(0, 1) .

In this case, θ̂n,k is asymptotically efficient.

Example 7. [Example 3, revisited.] Consider the subsampling estimator Un(·)
defined in (2.2). Fix t, and note that Un = Un(t) has expectation θk = Jk(t, P ),

where Jk(t, P ) is the true sampling distribution of τk(ξ̂k − ξ0) based on a sample

of size k. Typical subsampling arguments, as in Chapter 2 of Politis, Romano

and Wolf (1999), show that Un(t)−Jn(t, P )
p−→ 0. A more detailed result would

be to find the order of the error in the difference, or even its limiting distribution.

To this end, we can simply write

Un(t)− Jn(t, P ) = [Un(t)− θk]− [Jn(t, P )− Jk(t, P )] .

The bias term [Jn(t, P )− Jk(t, P )] is nonrandom and can be analyzed separately

(e.g., using Edgeworth expansions). The U -statistic theory applies to the first

term [Un(t)− θk], the analysis of which we now illustrate using Corollary 1. We

specialize as follows. Assume the Xi are i.i.d. N(ξ, 1) and ξ̂n = n−1
∑

iXi. Take

ξ0 = 0 and τn =
√
n. The kernel, hk(x1, . . . , xk) = I{k−1/2

∑k
i=1 xi ≤ t}, is

clearly bounded. Then,

h1,k(x) = P
{
k−1/2(X1 + · · ·+Xk) ≤ t|X1 = x

}
− Φ(t) (4.4)

= Φ

(
t

√
k

k − 1
− x√

k − 1

)
− Φ(t), (4.5)

and

ζ1,k = V ar

[
Φ

(
t

√
k

k − 1
− X√

k − 1

)]
.
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As k →∞, by the Taylor approximation,

ζ1,k = V ar

[
φ(t)

X√
k − 1

]
+ o

(
1

k

)
=
φ2(t)

k
+ o

(
1

k

)
.

Note that the condition kζ1,k 9 0 holds easily because kζ1,k → φ2(t) > 0.

Therefore, we conclude that if k2/n→ 0 and k →∞, then√
n

k
[Un(t)− Φ(t)]

d−→ N(0, φ2(t)) .

Example 8. [Example 4, revisited.] Consider the average p-value, p̄n, computed

on subsamples of size k of the data. We show how to use the basic results to derive

its limiting distribution using a relatively simple example. We further derive

the limiting distribution of p̄n under contiguous alternatives, and compute the

limiting local power function. Although the methodology is offered in a simplified

setting, it shows the potential for such an approach more broadly. Specifically, we

consider the context of testing for a single mean. Obviously, these methods are

not needed here. However, this model admits simple expressions of asymptotic

power, which facilitates comparisons of the methods. Moreover, it specifically

shows that conservative methods are much too conservative, and result in tests

with very low power.

Let X1, . . . , Xn be i.i.d. real-valued with unknown mean µ. The problem is

to test the null hypothesis H0 that the mean is zero versus the alternative that the

mean is greater than zero. In order to study the power of the tests that combine

splits of the data, we further assume the underlying distribution is N(µ, 1).

Let X̄n,k,i be the average of the ith subsample of size k,. In addition, let p̂n,k,i
denote the p-value based on this subsample; that is, p̂n,k,i = 1 − Φ(

√
kX̄n,k,i).

The limiting power of the UMP level-α test against the contiguous alternatives

h/
√
n is

1− Φ(z1−α − h)

when using the full data, and

1− Φ(z1−α −
√
τh) (4.6)

when using a single subsample (or split) of size k satisfying k/n = τ . Assume

k/n→ τ ∈ (0, 1), the fraction in the sample used for testing. Assume the number

of splits or subsamples N =
(
n
k

)
, so that all possible splits are used. For r ∈ (0, 1),

consider the conservative procedure (or family of procedures) that rejects H0 if

the proportion of p-values (computed over all splits) ≤ αr is ≥ r. (In the case
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r = 1/2, the procedure requires that at least half of the p-values are ≤ α/2;

equivalently, twice the median p-value must be ≤ α.) As shown in DiCiccio,

DiCiccio and Romano (2020), this procedure is level-α. This is the exact or

finite-sample version of an asymptotic approach first suggested in Meinshausen,

Meier and Bühlmann (2009). They did not present any analytical expressions

for power. DiCiccio, DiCiccio and Romano (2020) obtained the limiting power

of this procedure for testing H0 : µ = 0 against contiguous alternatives h/
√
n,

given by

1− Φ

[
1√
τ

(z1−rα − z1−r
√

1− τ)− h
]
. (4.7)

Note that (4.7) shows that, even asymptotically, the approach is conservative;

that is, when h = 0, the limiting rejection probability is below α. It further

implies that the limiting power for small positive h can be less than α, and loss

of power results. By comparison, the limiting power against h/
√
n of a single-

split sample test by taking one sample of size k is given by (4.6). Even with

τ < 1, the test based on a single subsample of size k has better limiting power

for small h than that of the conservative tests, which combine p-values computed

on many subsamples of size k. On the other hand, for sufficiently large h, (4.7) is

larger than (4.6). In this case, the many-split sample test is an improvement over

the single sample test, even though it conservatively controls the type-1 error.

However, the power is only larger for values of the local parameter where the

power is already near one.

By deriving the limiting distribution of the average (or median) p-value, we

can construct an asymptotically level α with greatly improved power. Indeed,

the distribution of p̄n is concentrated near 1/2 under H0, and so an appropriate

critical value (sequence) is near 1/2 as well. In contrast, the conservative proce-

dure uses a critical value of α/2 (based on either the mean or median p-value).

Furthermore, and perhaps surprisingly, tests exploiting the U -statistic structure

achieve the optimal limiting local power function of the UMP level-α test. The

challenge is to derive the appropriate limiting distribution, so that a better, or

less conservative, critical value may be used.

Define the average p-value taken over all subsamples of size k as

Un(X1, . . . , Xn) = p̄n =
1

N

N∑
i=1

p̂n,k,i =
1

N

N∑
i=1

[1− Φ(
√
kX̄n,k,i)] ,

where N =
(
n
k

)
. Evidently, p̄n is a U -statistic of the form (1.1).

Theorem 3. Let X1, . . . , Xn be i.i.d. according to a normal distribution with
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mean µ and variance one.

(i) If k is fixed and µ = 0, then√
n

k

(
p̄n −

1

2

)
d−→ N(0, kζ1,k) , (4.8)

where

ζ1,k = V ar

[
Φ

(
X√

2k − 1

)]
, (4.9)

and X ∼ N(0, 1) and Φ(·) is the standard normal c.d.f.

(ii) If k →∞ and k/
√
n → 0, then kζ1,k → 1/(4π). Moreover, under H0 : µ =

0, √
n

k

(
p̄n −

1

2

)
d−→ N

(
0,

1

4π

)
.

Consider the one-sided test that rejects H0 if
√
n(p̄n − 1/2) < zαk

√
ζ1,k. Its

limiting power against contiguous alternatives h/
√
n is

P (N(h, 1) > z1−α) = 1− Φ(z1−α − h) ,

which is the same as the UMP level-α test. The same is true if k
√
ζ1,k is replaced

by
√
k/4π in the construction of the critical value of the test.

Remark 3. If k is fixed, the average of the p-values computed over all splits of

the data remains asymptotically normal; however, the overall test is less powerful

asymptotically than the UMP test against local alternatives. A justification of

this is implicit in the proof of Theorem 3.

Despite testing on small portions of the data, using the average p-value has

the same limiting local power as the UMP test. Using the asymptotic normality

of the p-value, the test rejects when the average p-value falls below the threshold

1/2+zα
√
k/(4πn). In contrast, the conservative method rejects when the average

or median p-value is below α/2, which can be substantially smaller than the above

threshold.

An asymptotically level-α test can also be performed based on the median

of the p-values by viewing the median p-value p̃n as a median statistic Mn of the

form (1.2). This method also achieves the optimal local limiting power function.

Theorem 4. Suppose X1, . . . , Xn are i.i.d. according to a normal distribution

with mean µ and variance one. Suppose k → ∞ such that k/
√
n → 0. Then,
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under a sequence of local alternatives h/
√
n,√

2πn

k

(
p̃n −

1

2

)
d−→ N(h, 1) ,

where p̃n is the median p-value computed over all splits. Consider the test that

rejects H0 if p̃n < 1/2 + zα
√
k/(2πn). Then, the limiting power of the one-sided

test of H0 : µ = 0 against h/
√
n is

1− Φ(z1−α − h) .

Note that the asymptotically level-α test rejects if the median is less than

1/2 + zα
√
k/(2πn), which can be substantially larger than α/2. For example,

if α = 0.1, n = 100, and k = 10, 1/2 + zα
√
k/n ≈ 0.34, whereas α/2 = 0.05.

The asymptotic local power of this test based on the median p-value using an

appropriate (not conservative) critical value achieves that of the optimal UMP

test.

5. Conclusion and Further Questions

In this paper, we have considered a U -statistic sequence where the kernel

size grows with the sample size. We developed conditions under which asymp-

totic normality results. At the same time, we considered the corresponding M -

statistic, defined as the median of the kernel computed over subsamples of the

data. Other quantiles can be considered by similar arguments. Using four exam-

ples, we demonstrated the utility of our results, and verified the conditions, show-

ing how to verify the conditions and calculate relevant quantities (e.g., asymptotic

variances) in more complex problems. The problem was largely motivated by that

of combining p-values obtained by data splitting, as well as providing sufficient

conditions that can be verified. The simplified example suggests that the statisti-

cal approach may be quite promising. Our results will allow further development

of this area, where only conservative procedures are in use.

6. Proofs

Proof of Theorem 1. To prove (i), follow, for example, the argument in van

der Vaart (1998). Thus, it suffices to show that Var(Un)/Var(Ûn) → 1, where

Ûn is defined in (3.2). Indeed, Theorem 11.2 of van der Vaart (1998) applies not

only for fixed k, but also when k = kn → ∞. As is well known (and argued in
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the proof of Theorem 12.3 of van der Vaart (1998)),

Var(Un) =

k∑
c=1

(
n

k

)−1(k
c

)(
n− k
k − c

)
ζc,k , (6.1)

where

ζc,k = Cov [hk(X1, . . . , Xc, Xc+1, . . . , Xk), hk(X1, . . . , Xc, Xk+1, . . . , X2k−c)] ,

(6.2)

the covariance between the kernel based on two data sets with exactly c variables

in common. By conditioning on X1, . . . , Xc, it is readily seen that (3.1) and (6.2)

agree. First, note that the c = 1 term in (6.1) divided by Var(Ûn) = k2ζ1,k/n

tends to one; that is,

(k/
(
n
k

)
)
(
n−k
k−1
)
ζ1,k

(k2/n)ζ1,k
=

(n− k)!(n− k)!

(n− 1)!(n− 2k + 1)!
→ 1.

The last limit uses k2/n → 0, and can be seen by applying Stirling’s formula,

taking logs, and using a Taylor expansion. What remains is to show that the sum

from c = 2 to c = k in (6.1) divided by k2ζ1,k/n tends to zero. However,∑k
c=2

(
n
k

)−1(k
c

)(
n−k
k−c
)
ζc,k

(k2/n)ζ1,k

≤
∑k

c=2(1/c!) [k!/(k − c)!]2 ((n− k)!/n!)((n− k)!/(n− 2k + c)!)ζc,k
(k2/n)ζ1,n

≤
∑k

c=2(k
2c/c!)(1/(n− k + 1)c)ζc,k

(k2/n)ζ1,k
≤

k∑
c=2

1

c!
εc−1n

ζc,k
ζ1,k

, (6.3)

where

εn =
k2

n− k + 1
.

Using the inequality ζc,k ≤ cζk,k/k (see Hoeffding (1948)) gives that (6.3) is

bounded above by

ζk,k
kζ1,k

k∑
c=2

1

(c− 1)!
εc−1n ≤

ζk,k
kζ1,k

k−1∑
j=1

εjn =
ζk,k
kζ1,k

· εn − ε
k
n

1− εn
. (6.4)

The second factor in the last expression for (6.4) tends to zero because εn → 0.

Thus, as long as ζk,k/kζ1,k stays bounded, the result follows.

To prove (ii), note that expression (3.4) has mean zero and variance given by
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one minus the left-hand side of (3.3). Apply Chebychev. The rest of the proof is

then trivial.

Proof of Corollary 1. Because the hk are uniformly bounded, so are the ζk,k.

Hence, the condition in Theorem 1 ζk,k/kζ1,k is bounded, because kζ1,k 9 0.

Moreover, the Lindeberg condition ( 3.5) necessarily holds because nζ1,k = (n/k)·
kζ1,k →∞, so that the region of integration in the integral is empty for large n.

Proof of Theorem 2. For any fixed t,

P


√

n

ζ̃1,k(0)k2

(
Mn − θ̃k

)
≤ t

 = P
{
Mn ≤ θ̃k + δkt

}

= P

{(
n

k

)−1∑
h̃k (Xi1 , . . . , Xik ; δkt) ≤

1

2

}
= P{Zn ≤ xk},

where

Zn =

√
n

ζ̃1,k(0)k2n

(
n

k

)−1∑[
h̃k(Xi1 , . . . , Xik ; δkt)− Eh̃k(Xi1 , . . . , Xik ; δkt)

]
and

xk =
1

δk

{
1

2
− E[h̃k(Xi1 , . . . , Xik ; δkt]

}
.

(The above follows by definition of the median, and then substracting Eh̃k(X1,

. . . , Xk; δkt) from both sides and dividing by δk.) We claim Zn
d−→ N(0, 1). To

establish this, consider the U -statistic Un = Un(t), with symmetric kernel h̃k(·; t)
defined by

Un(t) =

(
n

k

)−1∑
h̃k(Xi1 , . . . , Xik ; δkt) .

By Corollary 1, √
n

k2ζ̃1,k(δkt)
[Un(t)− E(Un(t))]

d−→ N(0, 1) . (6.5)

The left side of (6.5) and Zn only differ in that ζ1,k(0) in Zn is replaced by

ζ1,k(δkt). However, the assumption that ζ̃1,k(δkt)/ζ̃k(0) → 1 together with Slut-

sky’s theorem proves that Zn
d−→ N(0, 1). In addition, (3.9) and the assumption

F ′k(θ̃k)→ f(θ̃) imply that xk → f(θ̃)t. Therefore, by Slutsky’s theorem,

P{Zn ≤ xk} → Φ]f(θ̃)t],
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as required.

Proof of Theorem 3. We first apply Theorem 1 in the case where the order of

the kernel k is fixed. Define the kernel

hk(X1, . . . , Xk) = 1− Φ(
√
kX̄k) ,

which is the p-value of a test of H0 computed on a subsample of size k, and

X̄k =
∑k

i=1Xi/k. For this choice of kernel,

h1,k(x) = 1− E
(

Φ(
√
kX̄k)|X1 = x

)
= 1− EΦ

(
x√
k

+ Y

)
,

where Y ∼ N(0, (k − 1)/k). Thus, we can simplify

h1,k(x) = 1− E
[
I

{
Z <

x√
k

+ Y

}]
,

where Z ∼ N(0, 1) and Z is independent of Y . Therefore,

h1,k(x) = 1− Φ

(
x√

2k − 1

)
,

and ζ1,k is given in (4.9). By Theorem 1, it follows that, under H0,

√
n

(
p̄n −

1

2

)
=

k√
n

n∑
i=1

[
h1,k(Xi)−

1

2

]
+ oP (1), (6.6)

and so (4.8) follows. To calculate the limiting distribution under the sequence of

alternatives when the mean is h/
√
n, note that by contiguity, the approximation

(6.6) holds as well; that is, the term that goes to zero in probability under h = 0

does so under general h as well. The linear term does not have mean 1/2, but we

can use a Taylor expansion argument (and noting that the moments in the error

term are bounded) to calculate

Eh[h1,k(X)] = 1− E
[
Φ

(
Z + h/

√
n√

2k − 1

)]
,

where Z ∼ N(0, 1). Then,

Eh[h1,k(X)] =
1

2
− h/

√
n√

2k − 1
E

[
φ

(
Z√

2k − 1

)]
+O

(
1

n

)
.

However, using that the moment-generating function of Z2 is (1 − 2t)−1/2, one
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can calculate

E

[
φ

(
Z√

2k − 1

)]
=

1√
2π
·
(

1− 1

2k

)1/2

,

and thus

Eh[h1,k(X)] =
1

2
− h√

4πkn
+O

(
1

n

)
.

Furthermore, under µ = h/
√
n,

V arh[h1,k(X)] = V ar

[
Φ

(
Z√

2k − 1
+

h/
√
n√

2k − 1

)]
= ζ1,k + o(n−1/2) .

By (6.6 ) and these calculations, it follows that, under h/
√
n,

√
n

(
p̄n −

1

2

)
d−→ N

(
−
√

k

4π
h, k2ζ1,k

)
.

It now follows that the test that rejects if
√
n(p̄n− 1/2) < zαk

√
ζ1,k has limiting

power or rejection probably under h/
√
n given by

Ph

{√
n

(
p̄n −

1

2

)
< zαk

√
ζ1,k

}
= 1− Φ

(
z1−α −

h√
4πkζ1,k

)
.

We now show kζ1,k → (4π)−1 as k →∞. However,

kζ1,k = kV ar

[
Φ

(
Z√

2k − 1

)]
= kV ar

[
Φ(0) +

Z√
2k − 1

φ(0) + rk

]
,

where the error term can be ignored because it has a variance of order 1/k2.

Hence,

kζ1,k = k
1

2π(2k − 1)
+ o(1)→ 1

4
π.

Thus, as k →∞, the limiting power tends 1−Φ(z1−α − h), as in the case of the

UMP test.

For the case in which k → ∞ at the same time as n → ∞, we can apply

Theorem 1, along with the same calculations for fixed k.

Proof of Theorem 4. Here, we follow the notation of Theorem 2, with

hk(X1, . . . , Xk; t) = I
{

1− Φ(
√
kX̄k) > θ̃k + t

}
.

Then, θ̃k is the median of the distribution of hk under h/
√
n, or the median of
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the distribution of 1−Φ(Z+h
√
k/n) when Z is standard normal. Thus, a trivial

calculation gives θ̃k = 1− Φ(h
√
k/n). Then,

φ̃1,k(x; t) = E[hk(x,X2, . . . , Xk); t],

and

ζ̃1,k(t) = Var[φ̃1,k(X; t)].

Now,

φ̃1,k(x; t) = Ph

{
1− Φ(

√
kX̄k) > 1− Φ

(
h

√
k

n

)
+ t

}

= P

{
Φ

(
Y +

x√
k

)
< Φ

(
h

√
k

n

)
− t

}

= P

{
Y +

x√
k
< Φ−1

[
Φ

(
h

√
k

n

)
− t

]}
,

where Y follows a normal distribution with mean (k − 1)h/
√
nk and variance

(k − 1)/k. Hence,

φ̃1,k(x; t) = Φ

[
Φ−1[Φ(h

√
k/n)− t]− x/

√
k − (k − 1)h/

√
kn√

(k − 1)/k

]
.

Assume the null hypothesis h = 0, in which case θ̃k = 1/2. In this case,

φ̃1,k(x; 0) = 1− Φ

(√
k

k − 1

x√
k

)

=
1

2
−
√

k

k − 1

x√
k
φ(0) + o

(
1

k

)
.

Therefore,
ζ̃1,k(0)

(φ(0))2/k
→ 1

as k →∞. Similarly, one can show that

ζ1,k(t) =
φ2(z 1

2
−t)

k
+ o

(
1

k

)
;

thus, the conditions of Theorem 2 are met.
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Therefore, we have that, under the null hypothesis,

√
n
M̃n − 1/2√
k(φ(0))2

d−→ N(0, 1).

Under the sequence of local alternatives, µ = h/
√
n, the median θ̃k is given

by

θ̃k = 1− Φ

(
h

√
k

n

)
=

1

2
− φ(0)h

√
k

n
+ op

(
1√
n

)
.

By similar arguments, the limiting local power of the test based on the median

p-value is

1− Φ (z1−α − h) .
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