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Abstract: We consider the problem of obtaining D-optimal designs for factorial ex-

periments with a binary response and k qualitative factors each at two levels. We

obtain a characterization of locally D-optimal designs. We then develop efficient

numerical techniques to search for locally D-optimal designs. Using prior distribu-

tions on the parameters, we investigate EW D-optimal designs that maximize the

determinant of the expected information matrix. It turns out that these designs

can be obtained easily using our algorithm for locally D-optimal designs and are

good surrogates for Bayes D-optimal designs. We also investigate the properties

of fractional factorial designs and study robustness with respect to the assumed

parameter values of locally D-optimal designs.
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1. Introduction

Our goal is to determine optimal and efficient designs for factorial experi-

ments with qualitative factors and a binary response. The traditional factorial

design literature deals with experiments where the factors have discrete levels

and the response follows a linear model (see, for example, Xu, Phoa, and Wong

(2009) and references therein). On the other hand, there is a growing body of

literature on optimal designs for quantitative factors with binary or categorical

response. For the specific experiments we study, however, the design literature

is meager. Consequently, these experiments are usually designed by the guide-

lines of traditional factorial design theory for linear models. As we shall see, the

resulting designs can be quite inefficient, especially when compared to designs

that make use of prior information when it is available. Our goal is to address

this problem directly and determine efficient designs specifically for experiments

with qualitative factors and a binary response.

We assume that the process under study is adequately described by a gen-

eralized linear model (GLM). GLMs have been widely used for modeling binary

response. Stufken and Yang (2012) noted that “the study of optimal designs for

experiments that plan to use a GLM is however not nearly as well developed
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(see also Khuri, Mukherjee, Sinha, and Ghosh (2006)), and tends to be much

more difficult than the corresponding and better studied problem for the special

case of linear models.” For optimal designs under GLMs, there are four different

approaches proposed in the literature to handle the dependence of the design

optimality criterion on the unknown parameters: the local optimality approach

of Chernoff (1953) in which the parameters are replaced by assumed values; the

Bayesian approach (Chaloner and Verdinelli (1995)) that incorporates prior belief

on unknown parameters; the maximin approach that maximizes the minimum

efficiency over a range of values of the unknown parameters (see Pronzato and

Walter (1988) and Imhof (2001)); the sequential approach where the design and

parameter estimates are updated in an iterative way (see Ford, Titterington, and

Kitsos (1989)). We focus on local optimality and study D-optimal factorial de-

signs under GLMs. We also consider Bayes optimality and study a surrogate for

Bayes D-optimal designs that has many desirable properties.

The methods for analyzing data from GLMs have been discussed in depth

in the literature (for example, McCullagh and Nelder (1989), Agresti (2013),

Lindsey (1997), McCulloch and Searle (2001), Dobson and Barnett (2008), and

Myers, Montgomery, and Vining (2002)). Khuri, Mukherjee, Sinha, and Ghosh

(2006) provided a systematic study of the optimal design problem in the GLM

setup and recently there has been an upsurge in research in both theory and

computation of optimal designs. Russell et al. (2009), Li and Majumdar (2008,

2009), Yang and Stufken (2009), Yang, Zhang, and Huang (2011), Stufken and

Yang (2012) are some of the papers that developed theory, while Woods et al.

(2006), Dror and Steinberg (2006, 2008), Waterhouse et al. (2008), Woods and

van de Ven (2011) focused on developing efficient numerical techniques for ob-

taining optimal designs under generalized linear models. Our focus is on optimal

designs for GLMs with qualitative factors.

The case of 22 experiments with qualitative factors and a binary response

was studied by Yang, Mandal, and Majumdar (2012), where we obtained optimal

designs analytically in special cases, and demonstrated how to obtain a solution

in the general case using cylindrical algebraic decomposition. The optimal allo-

cations were shown to be robust to the choice of the assumed values of the model

parameters. Graßhoff and Schwabe (2008) has some relevant results for the k = 2

factor case. The extension for k > 2 factors is substantial due to additional com-

plexities associated with determination, computation, and robustness of optimal

designs that are not present in the two-factor case. For the general case of 2k

experiments with binary response, Dorta-Guerra, González-Dávila, and Gine-

bra (2008) obtained an expression for the D-criterion and studied several special

cases.

A motivating example is the odor removal study conducted by textile en-

gineers at the University of Georgia. The scientists studied the manufacture of
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Table 1. Factors and levels, odor experiment.

Factor Levels − +
A algae raffinated or solvent

extracted algae
catfish pond algae

B scavenger material Aqua Tech activated
carbon

BYK-P 4200 purchased from
BYK Additives Instruments

C synthetic resin polyethylene polypropylene
D compatabilizers absent present

bio-plastics from algae that contain odorous volatiles. These odorous volatiles,

generated from algae bio-plastics, either occur naturally within the algae or are

generated through the thermoplastic processing due to heat and pressure. In

order to commercialize these algae bio-plastics, the odor causing volatiles must

be removed. Static headspace microextraction and gas chromatography − mass

spectroscopy are used to identify the odorous compounds and qualitatively as-

sess whether or not they have been successfully removed. The outcome of this

assessment is the response of the experiment. For that purpose, a study was

conducted with a 24−1
IV design, a regular fraction, with five replicates using algae

and synthetic plastic resin blends. The four different factors were: type of algae,

scavenger material (adsorbent), synthetic resin and compatabilizers (see Table 1

for details).

We obtain theoretical results and algorithms for locally optimal designs for

k qualitative factors at two levels each and a binary response in the generalized

linear model setup. We consider D-optimal designs maximizing the determinant

of the information matrix. Although we explore designs in which observations

are taken at every possible level combination, when the number of factors is

large, such full factorials are practically infeasible. Hence the study of fractional

factorial designs occupies a substantial part of the linear-model based design

literature, and we too study these designs in our setup. A natural question that

arises when we use local optimality is whether the resulting designs are robust

to the assumed parameter values. We consider this in Section 5.

An alternative approach to design optimality is Bayes optimality (Chaloner

and Verdinelli (1995)). For our problem, however, for large k (k ≥ 4) the com-

putations quickly become expensive. Hence, as a surrogate criterion, we explore

a D-optimality criterion with the information matrix replaced by its expecta-

tion under the prior. This is one of the suggested alternatives to formal Bayes

optimality in Atkinson, Donev, and Tobias (2007). It has been used by Zayats

and Steinberg (2010) for optimal designs for detection capability of networks.

We call this EW D-optimality (E for expectation, W for the notation wi used

for the GLM “weight”, which can be thought of as information contained in an
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individual observation). Effectively this reduces to a locally optimal design with

local values of the weight parameters replaced by their expectations. The EW

D-optimal designs are very good and easy-to-compute surrogates for Bayes D-

optimal designs. Unless k is small or the experimenter is quite certain about

the parameter values, we suggest the use of EW D-optimal designs. The use of

surrogates of Bayes optimality has been recommended by Gotwalt, Jones, and

Steinberg (2009).

Beyond theoretical results, the question that may be asked is whether these

results give the user any advantage in concrete experiments. It turns out that

when k > 2, in most situations, we gain considerably by taking advantage of our

results instead of using standard linear-model results. Unlike the linear model

case, not all nonsingular regular fractions have the same D-efficiency. Indeed, if

we have some knowledge of the parameters, we are able to identify an efficient

fractional factorial design, that is often not a regular fraction.

This paper is organized as follows. In Section 2 we describe the preliminary

setup. In Section 3 we provide several results for locally D-optimal designs,

including their uniqueness, a characterization of locally D-optimal design, the

concept of EW D-optimal designs, and algorithms for finding D-optimal designs.

In Section 4 we discuss the properties of fractional factorial designs. We address

the robustness of D-optimal designs in Section 5, and revisit the odor example in

Section 6. Some concluding remarks and topics for future research are discussed

in Section 7. Additional results, proofs and some details on the algorithms are

relegated to the Supplementary Materials.

2. Preliminary Setup

Consider an experiment with a binary response and k explanatory variables

at 2 levels each. Suppose ni units are allocated to the ith experimental condition

such that ni > 0, i = 1, . . . , 2k, and n1 + · · · + n2k = n. We suppose that n is

fixed and the problem is to determine the “optimal” ni’s. In fact, we write our

optimality criterion in terms of the proportions

pi =
ni
n
, i = 1, . . . , 2k

and determine the “optimal” pi ≥ 0 satisfying
∑2k

i=1 pi = 1. Since ni’s are

integers, an optimal design obtained in this fashion may not always be viable. In

Section 3.3.2 we consider the design problem over integer ni’s.

We use a generalized linear model setup. Suppose η is a linear predictor that

involves the main effects and the interactions that are assumed to be in the model.

For instance, for a 23 experiment with a model that includes the main effects and

the two-factor interaction of factors 1 and 2, η = β0+β1x1+β2x2+β3x3+β12x1x2,

where each xi ∈ {−1, 1}. The aim of the experiment is to obtain inferences about
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the parameter vector of factor effects β = (β0, β1, β2, β3, β12)
′. In the framework

of generalized linear models, the expectation of the response Y , E (Y ) = π, is

connected to the linear predictor η by the link function g: η = g (π) (McCullagh

and Nelder (1989)). For a binary response, the commonly used link functions are

logit, probit, log-log, and complementary log-log links.

The maximum likelihood estimator of β has an asymptotic covariance matrix

(McCullagh and Nelder (1989); Khuri, Mukherjee, Sinha, and Ghosh (2006)) that

is the inverse of nX ′WX, whereW = diag {w1p1, . . . , w2kp2k} , wi = (dπi/dηi)
2 /

(πi(1−πi)) ≥ 0, ηi and πi correspond to the ith experimental condition for η and

π, and X is the “model matrix”. For example, for a 23 experiment with model

η = β0 + β1x1 + β2x2 + β3x3 + β12x1x2,

X =



+ 1 + 1 + 1 + 1 + 1

+1 +1 +1 −1 +1

+1 +1 −1 +1 −1

+1 +1 −1 −1 −1

+1 −1 +1 +1 −1

+1 −1 +1 −1 −1

+1 −1 −1 +1 +1

+1 −1 −1 −1 +1


. (2.1)

The ni’s determine how many observations are made at each experimental

condition, which are characterized by the rows of X. A D-optimal design max-

imizing |X ′WX| depends on the wi’s, which in turn depend on the regression

parameters β and the link function g. We discuss D-optimal designs in terms of

wi’s so that our results are not limited to specific link functions.

Unlike experiments with continuous factors, the 2k design points in our setup

are fixed and we only have the option of determining the optimal proportions.

For results on optimal designs with continuous factors in the GLM setup see, for

example, Stufken and Yang (2012).

3. Locally D-Optimal Designs

We start with a formulation of the local D-optimality problem and establish

some general results. Consider a 2k experiment. The goal is to find an optimal

p = (p1, p2, . . ., p2k)
′ which maximizes f(p) := |X ′WX| for specified values of

wi ≥ 0, i = 1, . . . , 2k. The specification of the wi’s come from the initial values of

the parameters and the link function. Here pi ≥ 0, i = 1, . . . , 2k, and
∑2k

i=1 pi = 1.

It is easy to see that there always exists a D-optimal allocation p since the set of

all feasible allocations is bounded and closed. On the other hand, the uniqueness

of D-optimal designs is usually not guaranteed (see Remark 2). Even if all the

pi’s are positive, the resulting design is not full factorial in the traditional sense
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where equal numbers of replicates are used. If some of the pi’s are zero, it is a

fractional factorial design; these will be discussed in the next section. In fact,

the number of nonzero pi’s in the optimal design could be much less than 2k, as

we will see in Section 3.3.

3.1. Characterization of locally D-optimal designs

Suppose the parameters (main effects and interactions) are β = (β0, β1, . . . ,

βd)
′, where d ≥ k. The following lemma expresses the objective function as an

order-(d+1) homogeneous polynomial of p1, . . . , p2k .

Lemma 1. Let X[i1, i2, . . . , id+1] be the (d + 1) × (d + 1) sub-matrix consisting

of the i1th, i2th, . . ., id+1th rows of the model matrix X. Then

f(p) = |X ′WX|=
∑

1≤i1<···<id+1≤2k

|X[i1, i2, . . . , id+1]|2 ·pi1wi1pi2wi2 · · · pid+1
wid+1

.

González-Dávila, Dorta-Guerra, and Ginebra (2007, Proposition 2.1) ob-

tained essentially the same result. This can also be proved directly using the

results of Rao (1973, Chap. 1). From Lemma 1 it is immediate that at least

(d+1) wi’s, as well as the corresponding pi’s, have to be positive for the determi-

nant f(p) to be nonzero. This implies that if p is D-optimal, then pi < 1 for each

i. Theorem 1 below gives a sharper bound, pi ≤ 1/(d+ 1) for each i = 1, . . . , 2k,

for the optimal allocation. Define, for each i = 1, . . . , 2k,

fi(z) = f

(
1− z

1− pi
p1, . . . ,

1− z

1− pi
pi−1, z,

1− z

1− pi
pi+1, . . . ,

1− z

1− pi
p2k

)
, 0 ≤ z ≤ 1.

(3.1)

Then fi(z) is well defined for all p of interest.

Theorem 1. If f (p) > 0, p is D-optimal if and only if for each i = 1, . . . , 2k,

one of the following is satisfied:

(i) pi = 0 and fi (1/2) ≤ [(d+ 2)/(2d+1)]f(p);

(ii) 0 < pi ≤ 1/(d+ 1) and fi(0) = [(1− pi(d+ 1))/((1− pi)
d+1)]f(p).

Remark 1. Theorem 1 is essentially a specialized version of the general equiv-

alence theorem on a pre-determined finite set of design points. Unlike the usual

form of the equivalence conditions (for examples, see Kiefer (1974), Pukelsheim

(1993), Atkinson, Donev, and Tobias (2007), Stufken and Yang (2012), Fedorov

and Leonov (2014)) where the inverse matrix of X ′WX needs to be calculated,

Theorem 1 is expressed in terms of the quantities f(p), fi(1/2) and fi(0) only.

These expressions are critical for the algorithms proposed later. The theorem also

gives a sharper bound, 0 < pi ≤ 1/(d+ 1), for support points. Note that even if
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pi = 0 for some i, it is still possible that the equality fi(1/2) = (d+2)/(2d+1)·f(p)
holds. In the Supplementary Materials, we provide a self-contained proof of The-

orem 1 that does not rely on any general equivalence theorem. Its connection to

the general equivalence theorem is provided in the Supplementary Materials.

Designs that are supported on (d + 1) points are attractive in many exper-

iments because they require a minimum number of settings. In our context, a

design p = (p1, . . . , p2k)
′ is called minimally supported if it has exactly (d + 1)

nonzero pi’s. For designs supported on rows i1, . . . , id+1, the D-optimal choice

of weights is pi1 = · · · = pid+1
= 1/(d + 1). This result can be obtained from

Lemma 1 directly. Yang, Mandal, and Majumdar (2012) found a necessary and

sufficient condition for a minimally supported design to be D-optimal for 22

main-effects model. With the aid of Theorem 1, we provide a generalization for

2k designs in the next theorem. Here wi > 0 for each i for the commonly used

link functions, including logit, probit, and (complementary) log-log.

Theorem 2. Assume wi > 0, i = 1, . . . , 2k. Let I = {i1, . . . , id+1} ⊂ {1, . . . , 2k}
be an index set satisfying |X[i1, . . . , id+1]| ̸= 0. Then the minimally supported

design satisfying pi1 = pi2 = · · · = pid+1
= 1/(d+ 1) is D-optimal if and only if

for each i /∈ I, ∑
j∈I

|X[{i} ∪ I \ {j}]|2

wj
≤ |X[i1, i2, . . . , id+1]|2

wi
.

For example, under the 22 main-effects model, since |X[i1, i2, i3]|2 is constant
across all choices of i1, i2, i3, p1 = p2 = p3 = 1/3 is D-optimal if and only if

v1 + v2 + v3 ≤ v4, where vi = 1/wi, i = 1, 2, 3, 4. This gives us Theorem 1 of

Yang, Mandal, and Majumdar (2012). For the 23 main-effects model, the model

matrix X is given by (2.1) with the last column deleted. Using this order of rows,

the standard regular fractional factorial design p1 = p4 = p6 = p7 = 1/4 given

by the defining relation 1 = ABC is D-optimal if and only if v1 + v4 + v6 + v7 ≤
4min{v2, v3, v5, v8}, and the other standard regular fractional design p2 = p3 =

p5 = p8 = 1/4 is D-optimal if and only if v2 + v3 + v5 + v8 ≤ 4min{v1, v4, v6, v7}.

Remark 2. In order to characterize the uniqueness of the optimal allocation,

we define a matrix Xw = [1, w ∗ 1, w ∗ γ2, . . . , w ∗ γs], where 1 is the 2k ×
1 vector of all 1’s, {1, γ2, . . . , γs} forms the set of all distinct pairwise Schur

products (or entrywise product) of the columns of the model matrix X, w =

(w1, . . . , w2k)
′, and “∗” indicates Schur product. It can be verified that any two

feasible allocations (pi ≥ 0 satisfying
∑2k

i=1 pi = 1) generate the same matrix

X ′WX as long as the difference of the matrices belongs to the null space of Xw.

If rank(Xw) < 2k, any criterion based on X ′WX yields an affine set of solutions
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with dimension 2k − rank(Xw). If rank(Xw) = 2k, the D-optimal allocation p

is unique. For example, for a 23 design the model consisting of all main effects

and one two-factor interaction, or for a 24 design the model consisting of all main

effects, all two-factor interactions, and one three-factor interaction, the D-optimal

allocation is unique.

3.2. EW D-optimal designs

Since locally D-optimal designs depend on wi’s, they require assumed values

of wi’s, or βi’s, as input. In Section 5, we examine the robustness of D-optimal

designs to mis-specification of βi’s. An alternate to local optimality is Bayes

optimality (Chaloner and Verdinelli (1995)). In our setup, a Bayes D-optimal

design maximizes E(log |X ′WX|) where the expectation is taken over the prior on

βi’s. One difficulty of Bayes optimality is that it is computationally expensive. To

overcome this drawback we explore an alternative suggested by Atkinson, Donev,

and Tobias (2007) where W in the Bayes criterion is replaced by its expectation.

We call this EW D-optimality where EW stands for expectation of W .

Definition. An EW D-optimal design is an optimal allocation p that maximizes

|X ′E(W )X|.

Note that EW D-optimality may be viewed as local D-optimality with the

wi’s replaced by their expectations. All existence and uniqueness properties of

locally D-optimal design apply. Since wi > 0 for all β under typical link functions,

E(wi) > 0 for each i. By Jensen’s inequality,

E
(
log |X ′WX|

)
≤ log |X ′E(W )X|

since log |X ′WX| is concave in w. Thus an EW D-optimal design maximizes an

upper bound for Bayesian D-optimality criterion.

In practice, once the E(wi)’s are calculated via numerical integration, al-

gorithms for local D-optimality can be applied with wi replaced by E(wi). We

will show that EW D-optimal designs are often almost as efficient as designs

that are optimal with respect to the Bayes D-optimality criterion, while realizing

considerable savings in computation time. In fact, while searching for an EW

D-optimal design, integration can be performed in advance of the optimization.

This provides a computational advantage over the search for Bayesian D-optimal

designs, where integration needs to be performed in each step of the optimization

in order to evaluate the design. Furthermore, EW D-optimal designs are highly

robust in terms of maximum loss of efficiency (Section 5).

Given the link function g, let ν =
[(
g−1

)′]2
/
[
g−1(1− g−1)

]
. Then wi =

ν(ηi) = ν (xi
′β), i = 1, . . . , 2k, where xi is the ith row of the model matrixX, and
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β = (β0, β1, . . . , βd)
′. If the regression coefficients β0, β1, . . . , βd are independent,

and β1, . . . , βd each has a symmetric distribution about 0 (not necessarily the

same distribution) then all the wi, i = 1, . . . , 2k have the same distribution and

the uniform design p1 = · · · = p2k = 2−k is an EW D-optimal design for any given

link function (by “uniform design” we mean a design with uniform allocation on

its support points). On the other hand, in many experiments we may be able to

assume that the slope of a main effect is non-decreasing. If βi ∈ [0, βiu] for each

i, the uniform design will not be EW D-optimal in general, as illustrated in the

following example.

Example 1. Consider a 23 experiment with main-effects model. Suppose β0,

β1, β2 and β3 are independent, β0 ∼ U [−3, 3], and β1, β2, β3 ∼ U [0, 3]. Then

E(w1) = E(w8) = 0.042, E(w2) = E(w3) = · · · = E(w7) = 0.119. Under the

logit link the EW D-optimal design is pe = (0, 1/6, 1/6, 1/6, 1/6, 1/6, 1/6, 0)′,

and the Bayesian D-optimal design, which maximizes ϕ(p) = E(log |X ′WX|), is
po = (0.004, 0.165, 0.166, 0.165, 0.165, 0.166, 0.165, 0.004)′. The efficiency of

pe with respect to po is exp {(ϕ(pe)− ϕ(po))/(d+ 1)} × 100% = 99.98%, while

the efficiency of the uniform design is 94.39%. Here the EW and Bayes criteria

lead to virtually the same design. It is remarkable that it takes 2.39 seconds

to find an EW solution while it takes 121.73 seconds to find a Bayes solution.

The difference in computational time is even more prominent for the 24 case (24

seconds versus 3,147 seconds). All multiple integrals here are calculated using R

function adaptIntegrate in the package cubature.

3.3. Algorithms to search for locally D-optimal allocation

In this section, we develop efficient algorithms to search for locally D-optimal

allocations with given wi’s. The same algorithms can be used for finding EW

D-optimal designs.

3.3.1. Lift-one algorithm for maximizing f(p) = |X ′WX|
We propose the lift-one algorithm for obtaining locally D-optimal p = (p1,

. . . , p2k)
′ with given wi’s. The basic idea is that, for randomly chosen i∈{1, . . .,

2k}, we update pi to p∗i and all the other pj ’s to p
∗
j = pj · [(1− p∗i )/(1− pi)]. This

technique is motivated by the coordinate descent algorithm (Zangwill (1969)).

It is also in spirit similar to one-point correction in the literature (Wynn (1970);

Fedorov (1972); Müller (2007)), where design points are added/adjusted one by

one. The major advantage of the lift-one algorithm is that in order to determine

an optimal p∗i , we need to calculate |X ′WX| only once due to Lemma 1 (see

Step 3◦ of the algorithm below).
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The lift-one algorithm:

1◦ Start with arbitrary p0 = (p1, . . . , p2k)
′ satisfying 0 < pi < 1, i = 1, . . . , 2k

and compute f (p0).

2◦ Set up a random order for i, going through {1, 2, . . . , 2k}.

3◦ Following the random order of i in 2◦, for each i, determine fi(z) as in (S.2)

in the Supplementary Materials. In this step, either fi(0) or fi (1/2) needs

to be calculated according to (3.1).

4◦ Take p
(i)
∗ = ([(1− z∗)/(1− pi)]p1, . . . , [(1− z∗)/(1− pi)]pi−1, z∗,

[(1− z∗)/(1− pi)]pi+1, . . . , [(1− z∗)/(1− pi)]p2k)
′, where z∗ maximizes fi(z)

with 0 ≤ z ≤ 1 (see Lemma S1.3). Then f(p
(i)
∗ ) = fi(z∗). Lemma S1.3 pro-

vides the update in terms of fi(0) or fi(1/2).

5◦ Replace p0 with p
(i)
∗ , f (p0) with f(p

(i)
∗ ).

6◦ Repeat 2◦ ∼ 5◦ until convergence, f(p0) = f(p
(i)
∗ ) for each i.

While in all examples that we studied, the lift-one algorithm converges

quickly, we do not have a proof of convergence. There is a modified lift-one al-

gorithm, which is only slightly slower, that can be shown to converge, described

as follows. For the 10mth iteration and a fixed order of i = 1, . . . , 2k we repeat

steps 3◦ ∼ 5◦, m = 1, 2, . . .. If p
(i)
∗ is a better allocation found by the lift-one

algorithm than p0, instead of updating p0 to p
(i)
∗ immediately, we obtain p

(i)
∗ for

each i, and replace p0 with the first best one among
{
p
(i)
∗ , i = 1, . . . , 2k

}
. The

updating strategy at the 10mth iteration here is similar to the Fedorov-Wynn

algorithm (Fedorov (1972), Fedorov and Hackl (1997)) but with a more efficient

updating formula. For iterations other than the 10mth, we follow the original

lift-one algorithm update.

Theorem 3. When the lift-one algorithm or the modified lift-one algorithm con-

verges, the resulting allocation p maximizes |X ′WX| on the set of feasible allo-

cations. Furthermore, the modified lift-one algorithm is guaranteed to converge.

Our simulation studies indicate that as k grows, the optimal designs produced

by the lift-one algorithm for main-effects models is supported only on a fraction of

all the 2k design points. To illustrate this, we randomly generated the regression

coefficients i.i.d. from U(−3, 3) and applied our algorithm to find the optimal

designs under the logit link. Figure 1 gives histograms of the numbers of support

points in optimal designs found by the lift-one algorithm. Thus, with k = 2, 76%

of the designs are supported on three points and 24% of them are supported on all
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Figure 1. Number of support points in an optimal design (based on 1,000
simulations).

four points. For larger k, the number of support points moves toward a smaller

fraction of 2k. On the other hand, a narrower range of coefficients requires a larger

portion of support points. For example, the mean numbers of support points

with βi’s i.i.d. from U(−3, 3) are 3.2, 5.1, 8.0, 12.4, 18.7, 28.2 for k = 2, 3, 4, 5, 6, 7,

respectively. The corresponding numbers increase to 4.0, 7.1, 11.9, 19.1, 30.6, 47.7

for U(−1, 1), and further to 4.0, 7.6, 14.1, 24.7, 41.2, 66.8 for U(−0.5, 0.5).

The lift-one algorithm is much faster than commonly used optimization

techniques (Table 2), including Nelder-Mead, quasi-Newton, conjugate-gradient,

simulated annealing (for a comprehensive reference, see Nocedal and Wright

(1999)), as well as popular design algorithms for similar purposes including

the Fedorov-Wynn (Fedorov (1972), Fedorov and Hackl (1997), Fedorov and

Leonov (2014)), Multiplicative (Titterington (1976, 1978), Silvey, Titterington,

and Torsney (1978)), and Cocktail (Yu (2010)) algorithms. We utilized the func-

tion constrOptim in R to implement Nelder-Mead, quasi-Newton, conjugate-

gradient, and simulated annealing algorithms. As the number of design points

(2k) increases, those algorithms fail to achieve adequately accurate solutions

(marked by “−” in Table 2, indicating that the relative efficiency compared
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Table 2. Performance of the lift-one algorithm (CPU time in seconds for 100
simulated β from U(−3, 3) with logit link and main-effects model).

Algorithms
Designs Nelder- quasi- conjugate simulated Fedorov Multipli- Cocktail Proposed

Mead Newton gradient annealing -Wynn cative lift-one
22 1.42 0.19 2.09 83.09 6.14 0.28 0.16 0.11
23 8.76 24.64 171.74 18.54 11.25 0.86 0.53 0.36
24 17.88 − − − 21.77 10.97 4.46 1.07
25 31.64 − − − 47.66 50.12 68.88 4.82
26 − − − − 106.89 229.17 189.83 18.29
27 − − − − 241.80 890.44 439.55 75.58

with the lift-one solutions is below 80% on average). Thus it takes the Nelder-

Mead algorithm 51.73 seconds to find solutions (pNM ) at k = 6 whose relative

efficiency, (f(pNM )/f(plo))
1/(k+1), compared with the lift-one solutions (plo) is

only 65% on average. As k increases from 2 to 3, although the time spent for

simulated annealing algorithm reduces from 83.09 seconds to 18.54 seconds, the

relative efficiency on average decreases from 99.8% to 93.0% (it drops down to

66% at k=4 and 54% at k=5). The relative efficiencies do not improve much

if more iterations or multiple initial points are allowed. The implementation of

the Fedorov-Wynn algorithm here is mainly based on Fedorov and Leonov (2014,

§3.1) with updating formula for (X ′WX)−1. As for the Multiplicative and Cock-

tail algorithms, we followed Yu (2010) and Mandal, Wong, and Yu (2015). Each

of these algorithms achieves essentially the same efficiency compared to the lift-

one algorithm. For a fair comparison, the programs were written in R, controlled

by the same relative convergence tolerance 10−5, and run at the same computer

with Intel CPU at 2.5GHz, 8GB memory, and 64-bit (Windows 8.1) Operating

System. Based on the simulation results shown in Table 2, the lift-one algo-

rithm runs at a much faster speed across different model setups. In terms of the

number of support points on average, only the solutions found by the Cocktail

algorithm are comparable with lift-one solutions. Typically, the Multiplicative

algorithm finds twice as many support points as does the lift-one, while the other

five algorithms simply keep positive weights on all 2k design points.

Remark 3. There are at least two advantages of the proposed algorithm over its

competitors: it exploits the convex structure of the optimization problem (the

set of design measures over {−1, 1}k is convex, and the objective function f(p) is

log-concave), whereas some of the other algorithms compared do not; it reduces

the number of determinant calculations required per iteration of the algorithm.

In Table 2 the comparison with a Federov-Wynn algorithm demonstrates that

the gain in speed due to these features of the new algorithm is significant.



OPTIMAL DESIGN FOR BINARY RESPONSE 397

3.3.2. Algorithm for maximizing |X ′WX| with integer solutions

To maximize |X ′WX|, we propose an exchange algorithm that adjusts pi and

pj simultaneously for a randomly chosen index pair (i, j) (see the Supplementary

Materials for detailed description). The original idea of exchange was suggested

by Fedorov (1972). It follows from Lemma 1 that the optimal adjusted (p∗i , p
∗
j )

can be obtained easily by maximizing a quadratic function. Unlike the lift-one

algorithm, the exchange algorithm can be applied to search for integer-valued

optimal allocation n = (n1, . . . , n2k)
′, where

∑
i ni = n.

The exchange algorithm:

1◦ Start with initial design n = (n1, . . . , n2k)
′ such that f(n) > 0.

2◦ Set up a random order of (i, j) going through all pairs.

3◦ For each (i, j), let m = ni + nj . If m = 0, let n∗
ij = n. Otherwise, calculate

fij(z) at (S.5). Let

n∗
ij = (n1, . . . , ni−1, z∗, ni+1, . . . , nj−1,m− z∗, nj+1, . . . , n2k) ,

where the integer z∗ maximizes fij(z) with 0 ≤ z ≤ m according to Lemma

S1.5 in the Supplementary Materials. Now f(n∗
ij) = fij(z∗) ≥ f(n) > 0.

4◦ Repeat 2◦ ∼ 3◦ until convergence (no more increase in terms of f(n) by any

pairwise adjustment).

As expected, the integer-valued optimal allocation (n1, . . . , n2k)
′ is consistent

with the proportion-valued allocation (p1, . . . , p2k)
′ for large n. For small n, the

algorithm may be used for the fractional design problem in Section 4. The

exchange algorithm for integer-valued solutions is not guaranteed to converge

to the optimal solutions, especially when n is small compared to 2k. However,

when we search for optimal proportions our algorithm, with slight modification,

is guaranteed to converge (see the Supplementary Materials for details).

In terms of finding optimal proportions, the exchange algorithm produces

essentially the same results as the lift-one algorithm, although the former is

slower. For example, based on 1,000 simulated β’s from U(-3,3) with logit link

and the main-effects model, the ratio of computational time of the exchange

algorithm over the lift-one algorithm is 6.2, 10.2, 16.8, 28.8, 39.5 and 51.3 for

k = 2, . . . , 7, respectively. It requires 2.02, 5.38, 19.2, 84.3, 352, and 1,245

seconds, respectively, to finish the 1,000 simulations using the lift-one algorithm

on a regular PC with 2.26GHz CPU and 2.0G memory.

The general purpose optimization algorithms might be a little slow and faster

alternatives should exist. Thus, the adaptive barrier method might be inefficient

compared to transformations to obtain an unconstrained optimization problem.
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For the pseudo-Bayesian designs, it is possible that a fixed quadrature scheme
would be faster, though possibly less accurate. Detailed study of the computa-
tional properties of the proposed algorithms is a topic for future research.

4. Fractional Factorial Designs

If for the optimal allocation some pi’s are zero, then the resulting design is
necessarily a fractional factorial. Even if all of the proportions in the optimal
design are substantially away from zero, the experimenter may need, or prefer,
to use a fractional factorial design, because even for moderately large values of k,
the total number of observations n would have to be large to get integer npi’s. For
linear models, the accepted practice is to use regular fractions due to the many
desirable properties like minimum aberration and optimality. We will show that
in our setup the regular fractions are often not optimal. We start by identifying
situations when they are optimal.

We use 23 designs for illustration. The model matrix for 23 main-effects
model consists of the first four columns of X given in (2.1) and wj represents the
information in the jth experimental condition, the jth row of X. Suppose the
maximum number of experimental conditions is fixed at a number less than 8,
and the problem is to identify the experimental conditions and corresponding pi’s
that optimize the objective function. Half fractions use 4 experimental conditions
(hence the design is uniform). The half fractions defined by rows {1, 4, 6, 7} and
{2, 3, 5, 8} are regular fractions, given by the defining relations 1 = ABC and
−1 = ABC respectively. If all regression coefficients except the intercept are
zeros, then the regular fractions are D-optimal, since all the wi’s are equal. The
following theorem identifies the necessary and sufficient conditions for regular
fractions to be D-optimal in terms of wi’s.

Theorem 4. For the 23 main-effects model, suppose β1 = 0. The regular frac-
tions {1, 4, 6, 7} and {2, 3, 5, 8} are D-optimal within the class of half-fractions if
and only if

4 min{w1, w2, w3, w4} ≥ max{w1, w2, w3, w4}.
If β1 = β2 = 0, the two regular half-fractions {1, 4, 6, 7} and {2, 3, 5, 8} are D-
optimal half-fractions if and only if 4min{w1, w2} ≥ max{w1, w2}.
Example 2. Under the logit link, consider the 23 main-effects model with β1 =
β2 = 0, implying w1 = w3 = w5 = w7 and w2 = w4 = w6 = w8. The regular
half-fractions {1, 4, 6, 7} and {2, 3, 5, 8} have the same |X ′WX| but not the same
X ′WX. They are D-optimal half-fractions if and only if one of the following
holds:

(i) |β3| ≤ log 2, (4.1)

(ii) |β3| > log 2 and |β0| ≤ log

(
2e|β3| − 1

e|β3| − 2

)
.
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Figure 2. Partitioning of the parameter space.

When the regular half-fractions are not optimal, it follows from Lemma 1 that

the goal is to find {i1, i2, i3, i4} that maximizes |X[i1, i2, i3, i4]|2wi1wi2wi3wi4 . In

this case there are only two distinct wi’s. If β0β3 > 0, wi’s corresponding to

{2, 4, 6, 8} are larger than others, so the fraction given by C = −1 will maximize

wi1wi2wi3wi4 . But this leads to a singular model matrix. It is not surprising

that the D-optimal half-fractions are “close” to the design {2, 4, 6, 8}, and are in

fact given by the 16 designs consisting of three elements from {2, 4, 6, 8} and one

from {1, 3, 5, 7}. We call these modified C = −1 fractions. All 16 designs lead to

the same |X ′WX|, w1w
3
2/4. For β0β3 < 0, D-optimal half-fractions are similarly

obtained from the fraction C = +1.

Figure 2 partitions the parameter space for the 23 main-effects logit model.

The left panel corresponds to the case (a) β1 = β2 = 0. Here the parameters in

the middle region would make the regular fractions D-optimal, whereas the top-

right and bottom-left regions correspond to the case β0β3 > 0. Similarly the other

two regions correspond to the case β0β3 < 0 so that modified C = −1 is optimal.

The right panel of Figure 2 is for the case (b) β1 = 0 and shows the contour

plots for the largest |β0|’s that would make the regular fractions D-optimal. (For

details, see the Supplementary Materials of this paper.) Along with Figure 2,

conditions (4.1) and (S.1) in the Supplementary Materials indicate that if β1,β2,

and β3 are small then regular fractions are preferred (see also Table 3). However,

when at least one |βi| is large, the regular fractions may not be optimal.

In general, when all the βi’s are nonzero, the regular fractions given by the

rows {1, 4, 6, 7} or {2, 3, 5, 8} are not necessarily the optimal half-fractions. To

explore this, we simulated the regression coefficients β0, β1, β2, β3 independently

from different distributions and calculated the corresponding w’s under logit,

probit, and complementary log-log links 10,000 times each. For each w, we

found the best (according to D-criterion) design supported on 4 distinct rows of
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the model matrix. By Lemma 1, any such design has to be uniform. Table 3 gives

the percentages of times each of those designs turn out to be the optimal ones for

the logit model (the results are somewhat similar for the other links). This shows

that the regular fractions are optimal when the βi’s are close to zero. In Table 3,

we only report the non-regular fractions which turn out to be D-optimal more

than 15% of the times. For the 24 case, similarly, when the βi’s are nonzeros, the

performance of the regular fractions given by 1 = ±ABCD are not very efficient

in general.

We have done a simulation study to determine the efficiency of fractions,

especially the regular ones. In order to describe a measure of efficiency, denote

the D-criterion value as ψ(p,w) = |X ′WX| for given w = (w1, . . . , w2k)
′ and

p = (p1, . . . , p2k)
′. Suppose pw is a D-optimal allocation with respect to w.

Then the loss of efficiency of p (with respect to a D-optimal allocation pw) given

w can be defined as

R(p,w) = 1−
(
ψ(p,w)

ψ(pw,w)

)1/(d+1)

. (4.2)

In Table 3, we provide within parentheses (the first number) the percentages

of times that the regular fractions are at least 70% efficient compared to the best

half-fractions (it would correspond to the case where 42% more runs are needed

due to a poor choice of design). The second number within the parentheses is the

median efficiency. It is clear that when the regular fractions are not D-optimal,

they are usually not highly efficient either.

Remark 4. For each of the five situations described in Table 3, we also calculated

the corresponding EW D-optimal half-fractions. For all five cases including the

highly asymmetric fifth scenario, the regular fractions were EW D-optimal half-

fractions.

Remark 5. In Table 2 (and later Table 3 and Table 6) we have used distributions

for β in two ways. For locally D-optimal designs these distributions were used

to simulate the assumed values in order to study the properties of the designs,

especially robustness. For EW D-optimal designs these distributions were used

as priors.

Remark 6. The priors for β should be chosen carefully in applications. A

uniform prior on βi ∼ [−a, a] can be used when the experimenter does not know

much about the corresponding factor. The prior βi ∼ [0, b] can be used when the

experimenter knows the direction of the corresponding factor effect. In our odor

study example, factor A (algae) has two levels: raffinated or solvent extracted

algae (−1) and catfish pond algae (+1). The scientists initially assessed that
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Table 3. Distribution of D-optimal half-fractions under 23 main-effects model.

Rows Percentages
β0 ∼ U(−10, 10) N(0, 5)

Simulation β1 ∼ U(−.3, .3) U(−3, 3) U(−3, 0) U(0, 1) N(1, 1)
Setup β2 ∼ U(−.3, .3) U(0, 3) U(0, 3) U(0, 3) N(2, 1)

β3 ∼ U(−.3, .3) U(1, 5) U(−2, 2) U(0, 5) N(3, 1)

1467
47.89 0.07 0.86 0.95 0.04

(100,99.9) (1.6,15.0) (8.7,29.2) (8.8,25.9) (1.7,18.7)

2358
42.02 0.04 0.68 1.04 0.08

(100,99.9) (1.6,15.2) (8.9,29.1) (8.7,25.9) (1.8,18.6)
1235 16.78 35.62 21.50
1347 19.98
1567 17.45 19.21
2348 17.54 19.11
2568 20.01
4678 16.12 35.41 21.65

raffinated algae has residual lipid which should prevent absorber to interact with

volatiles, causing odor to release. Hence it is expected that βi for this factor

should be nonnegative. In this case, one might take the prior on [0, b]. For

factor B (Scavenger), it is not known before conducting the experiment whether

Activated Carbon (−1) is better or worse than Zeolite (+1). Here a symmetric

prior on [−a, a] would be more appropriate.

Remark 7. Consider the problem of obtaining the locally D-optimal fractional

factorial designs when the number of experimental settings (m, say) is fixed. If

the total number of factors under consideration is not too large, one can always

calculate the D-efficiencies of all fractions and choose the best one. However, this

is a computationally expensive strategy for large k’s so we need an alternative.

One such strategy would be to choose the m largest wi’s and the corresponding

rows, since those wi represent the information at the corresponding design points.

Another one would be to use our algorithms discussed in Section 3.3 to find an

optimal allocation for the full factorial designs first, then to choose the m largest

pi’s and scale them appropriately. One has to be careful, however, in order to

avoid designs which would not allow the estimation of the model parameters. In

this case, the exchange algorithm described in Section 3.3.2 can be used to choose

the fraction with given m experimental units. Our simulations (not presented

here) show that both of these methods perform satisfactorily with the second

method giving designs that are generally more than 95% efficient for four factors

with the main-effects model. This method is used for computations in the next

section.
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5. Robustness

5.1. Most robust minimally supported designs

Minimally supported designs have been studied extensively. For continuous

or quantitative factors, these designs can be D-optimal for many linear and non-

linear models. In our setup of qualitative factors, these designs are attractive

since they use the minimal number, d+ 1, of experimental conditions. In many

applications, fewer experimental conditions are desirable. In this section, we

examine the robustness of minimally supported designs. Our next result gives

necessary and sufficient conditions for a fraction to be a D-optimal minimally

supported design; it is an immediate consequence of Lemma 1.

Theorem 5. Let I = {i1, . . . , id+1} ⊂ {1, . . . , 2k} be an index set. A design

pI = (p1, . . . , p2k)
′ satisfying pi = 0, ∀i /∈ I is D-optimal among minimally

supported designs if and only if

pi1 = · · · = pid+1
=

1

d+ 1
and I maximizes |X[i1, . . . , id+1]|2wi1 · · ·wid+1

.

For investigating the robustness of a design, we define the maximum loss of

efficiency of a given design p with respect to a specified region W of w by

Rmax(p) = max
w∈W

R(p,w). (5.1)

It can be shown that the region W takes the form of [a, b]2
k
for 2k main-

effects model if the range of each of the regression coefficients is an interval

symmetric about 0. For example, for a 24 main-effects model, if all the regression

coefficients range between [−3, 3], then W = [3.06× 10−7, 0.25]16 for logit link,

and [8.33× 10−49, 0.637]16 for probit link. This is the rationale for the choice of

the range of wi’s in Theorem 6 below. A design that minimizes the maximum

loss of efficiency is called most robust. This criterion is also known as “maximin

efficiency” in the literature (see, for example, Dette (1997)). For unbounded βi’s

with a prior distribution, one can use a quantile instead of the maximum loss to

measure robustness.

Theorem 6. Suppose k ≥ 3, d(d + 1) ≤ 2k+1 − 4, and that wi ∈ [a, b],

i = 1, . . . , 2k, 0 < a < b. Let I = {i1, . . . , id+1} be an index set that maximizes

|X[i1, i2, . . . , id+1]|2. Then the design pI = (p1, . . . , p2k)
′ satisfying pi1 = · · · =

pid+1
= 1/(d+ 1) is a most robust minimally supported design with maximum

loss 1− a/b in efficiency compared to other minimally supported designs.

Based on Theorem 6, the maximum loss of efficiency depends on the range

of wi’s. The result is meaningful only if the interval [a, b] is bounded away from
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0. Figure 3 provides some idea about the possible bounds of wi’s for commonly

used link functions. For example, for 23 designs with the main-effects model,

if 0.105 ≤ wi ≤ 0.25 under the logit link (see Remark 4.1.1 of Yang, Mandal,

and Majumdar (2012)), then the maximum loss of efficiency of the regular half-

fractional design satisfying p1 = p4 = p6 = p7 = 1/4 is 1 − 0.105/0.25 = 58%.

The more certain we are about the range of wi’s, the more useful the result is.

For k = 2, all 4 minimally supported designs perform equally well (or equally

badly). So they are all most robust under our definition. For main-effects mod-

els, the condition d(d + 1) ≤ 2k+1 − 4 in Theorem 6 is guaranteed whenever

k ≥ 3. A most robust minimally supported design can be obtained by search-

ing for an index set {i1, . . . , id+1} that maximizes |X[i1, i2, . . . , id+1]|2. Such

an index set is usually not unique. Based on Lemma S1.4, if the index set

{i1, . . . , id+1} maximizes |X[i1, . . . , id+1]|2, then there always exists another in-

dex set {i′1, . . . , i′d+1} such that |X[i1, . . . , id+1]|2 = |X[i′1, . . . , i
′
d+1]|2. A most

robust minimally supported design may involve a set of experimental conditions

{i1, . . . , id+1} which does not maximize |X[i1, . . . , id+1]|2. For example, consider

a 23−1 design with main-effects model. Suppose wi ∈ [a, b], i = 1, . . . , 8. If

4a > b, then the most robust minimally supported designs are the 23−1 regular

fractions. Otherwise, if 4a ≤ b, any uniform design restricted to {i1, i2, i3, i4}
satisfying |X[i1, i2, i3, i4]| ≠ 0 is a most robust minimally supported design.

5.2. Robustness of uniform designs

Yang, Mandal, and Majumdar (2012) showed that for a 22 main-effects

model, the uniform design is the most robust design in terms of maximum loss

of efficiency. In this section, we use simulation studies to examine the robustness

of uniform designs and EW D-optimal designs for higher order cases.

For illustration, we use a 24 main-effects model. We simulated β0, . . . , β4
from different distributions 1,000 times each and calculated the corresponding

w’s, denoted by vectors w1, . . ., w1000 . For each ws, we use the algorithm

described in Section 5.1 to obtain a D-optimal allocation ps . For any al-

location p, let R100α(p) be the αth quantile of the set of loss of efficiencies

{R(p,ws), s = 1, . . . , 1, 000}. Thus R100(p) = Rmax(p), defined in (5.1) with

W = {w1, . . . ,w1000}. The quantities R99(p) and R95(p) are more reliable in

measuring the robustness of p.

Table 4 compares R100α for the uniform design pu = (1/16, . . . , 1/16)′ with

the minimum of R100α(ps) for the optimal allocations ps, s = 1, . . . , 1, 000, as

well as the R100α of the EW design pe . In this table, if the values of column

(I) are smaller than those of column (II), then we can conclude that the uniform

design is better than all the D-optimal designs in terms of the quantiles of loss

of efficiency. This happens in many situations. Table 4 provides strong evidence



404 JIE YANG, ABHYUDAY MANDAL AND DIBYEN MAJUMDAR

Table 4. Loss of efficiency of 24 uniform design.

Percentages
β0 ∼ U(−3, 3) U(−1, 1) U(−3, 0) N(0, 5)
β1 ∼ U(−1, 1) U(0, 1) U(1, 3) N(0, 1)

Simulation β2 ∼ U(−1, 1) U(0, 1) U(1, 3) N(2, 1)
Setup β3 ∼ U(−1, 1) U(0, 1) U(−3,−1) N(−.5, 2)

β4 ∼ U(−1, 1) U(0, 1) U(−3,−1) N(−.5, 2)
Quantiles (I) (II) (III) (I) (II) (III) (I) (II) (III) (I) (II) (III)
R99 0.348 0.353 0.348 0.146 0.111 0.112 0.503 0.273 0.299 0.650 0.864 0.726
R95 0.299 0.304 0.299 0.128 0.094 0.093 0.495 0.251 0.256 0.617 0.788 0.670
R90 0.271 0.274 0.271 0.117 0.084 0.085 0.488 0.239 0.233 0.589 0.739 0.629

Note: (I) = R100α(pu), (II) = min
1≤s≤1,000

R100α(ps), (III) = R100α(pe).

pu is the uniform design, ps is the locally D-optimal design and pe is the EW D-optimal design.

that the uniform design pu is one of the most robust ones if the βi’s are expected

to come from an interval that is symmetric around zero. This is consistent with

the conclusion of Cox (1988).

However, there are situations where the uniform design does not perform

well, as illustrated by the two middle blocks of Table 4. If the signs of the

regression coefficients are known, it is advisable not to use the uniform design.

For many practical applications, the experimenter will have some idea of the

direction of effects of factors, which in statistical terms determines the signs of

the regression coefficients. For these situations, it turns out that the performance

of the EW D-optimal designs is comparable to that of the most robust designs,

even when the uniform design does not perform well (see columns (III) in Table 4,

where pe is the EW design). Hence we recommend the use of EW D-optimal

designs when the experimenter has some idea about the signs of βi’s. Uniform

designs are recommended in the absence of prior knowledge of the sign of the

regression parameters.

Consider the uniform designs restricted to regular fractions. Again we use 24

main-effects model as illustration and consider the uniform designs restricted to

the regular half-fractions identified by 1 = ±ABCD. We performed simulations

as above and our conclusions are similar: uniform designs on regular fractions

are among the most robust ones if the signs of the regression parameters are

unknown but they may not perform well if the signs of βi’s are known.

6. Examples

Example 3. We revisit the odor examples discussed in the introduction. The

24−1
IV design given by D = −ABC was used with 5 replications per experimental

setup. For factor C, the polypropylene used in this experiment is in tiny crystal
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Table 5. Optimal design for the Odor Study.

A B C D E(wi) nodor nEW nEW1/2

+1 +1 +1 +1 0.050
+1 +1 +1 −1 0.105 5 3 7
+1 +1 −1 +1 0.105 5 4 3
+1 +1 −1 −1 0.105 3
+1 −1 +1 +1 0.050 5
+1 −1 +1 −1 0.105 4
+1 −1 −1 +1 0.105 3 4
+1 −1 −1 −1 0.105 5 3 6
−1 +1 +1 +1 0.105 5 4
−1 +1 +1 −1 0.105 3 3
−1 +1 −1 +1 0.105 2 7
−1 +1 −1 −1 0.050 5 1
−1 −1 +1 +1 0.105 3 6
−1 −1 +1 −1 0.105 5 3 4
−1 −1 −1 +1 0.105 5 4
−1 −1 −1 −1 0.050

form as opposed to fine powder which leads the scientist to speculate that β3
should be positive. Moreover one expects that the presence of compatabilizers

should reduce the odor and hence β4 is expected to be positive. Initial results

from the experiment indicate that the number of successes is increasing in the

level of A (from −1 to +1). We examine the efficiency of the design used in this

experiment in view of these facts and consider an EW D-optimal design with

the ranges (−3, 3) for β0, β2 and (0,3) for β1, β3, β4. These priors are reasonably

uninformative except for the directions of effects of the factors (signs of the

parameters). Furthermore, if the design points are not restricted to the original

half-fraction, the best EW D-optimal design with 40 experimental units, given

by nEW , is supported on 13 points.

In order to compare the performance of the three designs given in Table 5,

we drew 1,000 random samples of the βi’s from the setup discussed above and

for each of them calculated the locally D-optimal design with 40 runs. Then we

calculated the loss of efficiencies of the EW D-optimal design (nEW ) and EW D-

optimal half-fraction (nEW 1
2
) as well as that of the original design used (nodor),

with respect to the locally D-optimal design. The mean, standard deviation, and

some quantiles of the loss of efficiencies are given in Table 6. These numbers

indicate that the EW D-optimal design is around 20% more efficient than the

original one, while the EW half-fraction design is about 10% more efficient than

the original one.

Example 4. Hamada and Nelder (1997) discussed a 24−1 fractional factorial

experiment performed at IIT Thompson laboratory that was originally reported
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Table 6. Odor Study: Loss of efficiencies of different designs.

Design R99 R95 R90 Mean SD
EW design (nEW ) 51.4 46.6 44.7 33.0 9.5
EW half-fraction (nEW 1

2
) 77.2 69.5 63.2 41.9 15.7

Original design (nodor) 84.8 76.8 70.1 51.8 15.1

by Martin, Parker, and Zenick (1987). This was a windshield molding slugging

experiment where the outcome was whether the molding was good or not. There

were four factors each at two levels: (A) poly-film thickness (0.0025, 0.00175),

(B) oil mixture ratio (1:20, 1:10), (C) material of gloves (cotton, nylon), and (D)

the condition of metal blanks (dry underside, oily underside). By analyzing the

data presented in Hamada and Nelder (1997), we get an estimate of the unknown

parameter as β̂ = (1.77,−1.57, 0.13,−0.80,−0.14)′ under logit link. If one wants

to conduct a follow-up experiment on half-fractions, then it is sensible to use the

knowledge obtained by analyzing the data. With the knowledge of β̂, we take the

assumed value of β as (2,−1.5, 0.1,−1,−0.1)′. The locally D-optimal design pa

is given in Table 7. Another option is to consider a range for the possible values

of the regression parameters, namely, (1, 3) for β0, (−3,−1) for β1, (−0.5, 0.5)

for β2, β4, and (−1, 0) for β3. For this choice of range for the parameter values

with independence and uniform distributions, the EW D-optimal half-fractional

design pe is also given in Table 7. We have calculated the linear predictor η and

success probability π for all possible experimental settings. It seems that a good

fraction would not favor high success probabilities very much. This is one of the

main differences between the design reported by Hamada and Nelder (denoted

by pHN ) and our designs (denoted by pa and pe). These designs have six rows

in common. The last two columns of Table 7 give the Baysian D-optimal and

EW D-optimal designs, respectively. It can be seen that the optimal allocations

for these two designs are quite similar, and both of them are supported on the

same rows.

7. Discussion and Future Research

For binary response, the logit link is the most commonly used link in practice.

The situation under this link function is close to that in the linear model case

because, typically, the wi’s are not too close to 0 and do not vary much. Similar

to the cases of linear models, uniform designs perform well under logit link,

more than other popular link functions. In general, the performance of the logit

and probit links are similar, while that of the complementary log-log link is

somewhat different. For example, if we consider a 22 experiment with a main-

effects model, the efficiency of the uniform design with respect to the Bayes

D-optimal design is 99.99% under the logit link, but is only 89.6% under the
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Table 7. Optimal half-fraction design for Windshield Molding Experiment.

Row A B C D η π pHN pa pe pB pef

5 +1 −1 +1 +1 -0.87 0.295 0.044 0.184 0.073 0.092
1 +1 +1 +1 +1 -0.61 0.352 0.125 0.178 0.011 0.117 0.103
6 +1 −1 +1 −1 -0.59 0.357 0.125 0.178 0.011 0.118 0.103
2 +1 +1 +1 −1 -0.33 0.418 0.059 0.184 0.078 0.092
7 +1 −1 −1 +1 0.73 0.675 0.125 0.163 0.125 0.103
3 +1 +1 −1 +1 0.99 0.729 0.195 0.079 0.091
8 +1 −1 −1 −1 1.01 0.733 0.195 0.078 0.091
4 +1 +1 −1 −1 1.27 0.781 0.125 0.147 0.115 0.103
13 −1 −1 +1 +1 2.27 0.906 0.125 0.158 0.111 0.061 0.054
9 −1 +1 +1 +1 2.53 0.926 0.053 0.057
14 −1 −1 +1 −1 2.55 0.928 0.043 0.057
10 −1 +1 +1 −1 2.81 0.943 0.125 0.074 0.110 0.061 0.053
15 −1 −1 −1 +1 3.87 0.980
11 −1 +1 −1 +1 4.13 0.984 0.125
16 −1 −1 −1 −1 4.15 0.984 0.125
12 −1 +1 −1 −1 4.41 0.988

Notation: pHN : Design reported by Hamada and Nelder, pa: Locally D-optimal design, pe:

EW D-optimal half-fraction, pB : Bayesian D-optimal design, pef : EW D-optimal design.

complementary log-log link. Figure 3 provides a graphical display of the weight

function (w) for commonly used link functions. As seen there, the complementary

log-log link function is not symmetric about 0. This partly explains the poor

performance of the uniform design under this link. Nevertheless, the EW D-

optimal designs are still highly efficient across different link functions. For the

same setup, the efficiencies of EW designs with respect to the corresponding

Bayesian D-optimal designs are 99.99% (logit link), 99.94% (probit link), 99.77%

(log-log link), and 100.00% (complementary log-log link), respectively. It appears

that EW D-optimal designs are excellent surrogates of Bayes D-optimal designs.

A more extensive investigation is planned for the future.

Efficiencies depend on the priors used for the parameters, and hence the prior

on the βs should be different for different link functions in order to maintain

roughly consistent prior beliefs about the success probabilities under different

experimental setups.

Our recommendation is to use EW D-optimal designs unless the experi-

menter has absolutely no prior knowledge of the parameters, in which case it is

recommended to use the uniform design. In EW optimality, we replace the wi’s

by their expectations. However, taking the average of the wi’s is not same as

taking the average of the βi’s. Consider a 24 design with main-effects model. Ta-

ble 8 uses the notations from Table 4. Suppose β0 ∼ U(−3, 0), β1, β2 ∼ U(1, 3),

β3, β4 ∼ U(−3,−1), and the βi’s are independent. It is clear that the uniform
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Figure 3. wi = ν(ηi) = ν(x′
iβ) for commonly used link functions.

Table 8. Loss of efficiencies of different designs for 24 main-effects model.

Uniform Most robust EW D-opt E(β) D-opt
R99 0.503 0.273 0.299 0.331
R95 0.495 0.251 0.256 0.284
R90 0.488 0.239 0.233 0.251

design performs much worse compared to the most robust design, while the per-
formance of the EW D-optimal design is comparable with the best design. The

last column corresponds to the locally D-optimal design where the assumed val-

ues of the parameter are taken to be the midpoints of the ranges of βi’s mentioned

above. Clearly this is worse than the EW D-optimal design.
In the linear model setup, as the potential columns in the model matrix

are orthogonal, analysis of experimental data based on regular fractions is not

unduly biased by the omission of non-negligible model terms. Under a GLM

setup, the regular fractions may give larger than necessary variance for some
models. We did not consider the performance of different designs under model

robustness. Moreover, because of the bias-variance trade-off, regular fractions (or

other designs) may not be model-robust. Extending optimal designs based on

GLMs to topics such as confounding, aberration, and trade-off between variance
and bias represents an important topic for future research.

Supplementary Materials

The proofs of the Theorems 2, 3, 4, 6 and some associated lemmas in this
paper are given in the online supplementary material available at http://www3.

stat.sinica.edu.tw/statistica/. There is also a discussion of the connection

between general equivalence theorem and Theorem 1 and some additional results

for Example 4.1, as well as a discussion on the exchange algorithm for real-valued
allocations.

http://www3.stat.sinica.edu.tw/statistica/
http://www3.stat.sinica.edu.tw/statistica/
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