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Abstract: We propose an augmented estimating equation (AEE) approach for a

semiparametric mean regression model with panel count data under possibly infor-

mative observation schemes and censoring. On a grid of time points, counts in all

the subintervals of each observation window are treated as missing values, and are

imputed with a robust working model given the observed count in the window. The

observation scheme and the event process are allowed to be dependent through co-

variates and an unobserved frailty, which enters the mean function multiplicatively.

Conditional on covariates, the censoring time and the event process can be depen-

dent through the frailty. Regression coefficients and the unspecified baseline mean

function are estimated with an Expectation-Solving (ES) algorithm. Distributions

of the observation times, censoring time, and frailty are all considered as nuisance

and unspecified. With empirical process theory, estimators for both the parametric

and nonparametric component are shown to be consistent. The regression coef-

ficient estimator is shown to be asymptotically normal. The cumulative baseline

estimator is self-consistent in that the estimator is automatically non-decreasing.

In simulation studies, the estimator performs well for moderate sample sizes and

appears to be competitive in comparison with existing estimators under a wide

range of practical settings. The utility of the proposed methods is illustrated with

a bladder tumor study.

Key words and phrases: Expectation-Solving algorithm, missing data, semipara-

metric regression.

1. Introduction

Panel count data arise when an event process is observed only at a finite

number of, often random, observation time points. This frequently occurs in

clinical or industrial studies when continuous monitoring of the subjects is in-

feasible or too costly. For instance, in many long-term studies, each subject

can experience multiple recurrences of the same event, but observations are only

recorded at several distinct time points and, hence, only the numbers of events

between two consecutive observation times are available. The observation times
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and the censoring (follow-up) time vary from subject to subject, and both may

be associated with the event process, which further complicates the statistical

inferences.

Statistical methods that properly address the challenges of panel count data

have attracted considerable attention. When there is no covariate, the mean

function of the event process is the target of the statistical inferences. Exist-

ing methods are isotonic regression (Sun and Kalbfleisch (1995)), nonparamet-

ric maximum likelihood and nonparametric maximum pseudolikelihood (Wellner

and Zhang (2000); Lu, Zhang, and Huang (2007)), generalized least squares (Hu,

Lagakos, and Lockhart (2009a)), and generalized estimating equations (Hu, La-

gakos, and Lockhart (2009b)).

When covariate effects are of main interest, semiparametric models such as

proportional means or proportional rates models are desired. Although having

been studied in the recurrent event setting by many authors (see, e.g., Cook and

Lawless (2007) and references therein), semiparametric regression models are

much less developed for panel count. Sun and Wei (2000) proposed an estimat-

ing equation approach to situations with noninformative observation times and

censoring time. The validity of their inference procedure, however, relies on cor-

rect modeling of the observation pattern and censoring time. Zhang (2002) and

Wellner and Zhang (2007) constructed an easy-to-implement pseudolikelihood

from a nonhomogeneous Poisson process, with the dependence of the cumula-

tive counts within a subject ignored. At higher computing expense, Wellner and

Zhang (2007) maximized the nonhomogeneous Poisson loglikelihood, resulting

in an estimator more efficient than the maximum pseudologlikelihood estimator.

The computing burden of the semiparametric maximum likelihood method is al-

leviated by Lu, Zhang, and Huang (2009), who approximated the logarithm of

baseline mean function with monotone cubic B-splines. Noninformative observa-

tion times and censoring time are assumed, but no model specification is needed

for them.

When the observation times, or the censoring time or both, and the event

process are dependent after conditioning on covariates, the literature is very

limited. Huang, Wang, and Zhang (2006) proposed an estimating equations

approach that allows observation times to be associated with the event process

through an unobserved multiplicative frailty. This method relaxes the conditional

independence assumption between observation times and the event process given

covariates, with no need to specify the dependence and to model the frailty. The

asymptotic distribution of the estimator was not established.

We approach panel count data from a missing data perspective and pro-

pose an augmented estimating equations (AEE) approach. A fine time grid is

constructed from all subjects’ distinct observation times, and the counts in the
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subintervals of any subject’s observation window are treated as missing values.

An Expectation–Solving (ES) algorithm (Heyde and Morton (1996); Elashoff and

Ryan (2004)) is employed to solve the expected estimating equations conditional

on the observed data. Precedents for this approach are Pan (2000) and Goet-

ghebeur and Ryan (2000) in the context of interval censored data. The method

handles informative observation times seamlessly. Similar to Huang, Wang, and

Zhang (2006), the method can handle informative censoring time by further

treating the panel counts beyond the censoring time as missing values.

In Section 2, we formally present the data structure, notation, and a semi-

parametric mean regression model for panel count data. In Section 3, we develop

the AEE approach and a two-step iterative ES algorithm under conditional inde-

pendent censoring and under informative censoring. In Section 4, we study the

finite sample performance of the estimator via simulation, report comparison re-

sults with existing methods, and illustrate our method with data from a bladder

tumor study (Byar (1980)). A discussion concludes in Section 5. Proofs of the

asymptotic properties of the proposed estimator are relegated in Appendix A.

Computational details of the variance estimator of the regression coefficient es-

timator under the Poisson assumption are sketched in Appendix B.

2. Data and Model

Consider a study involving n subjects who experience a single type of recur-

rent events under discrete monitoring. For subject i, let Ni(t) be the number

of events up to time t. We observe Ni(t) only at Mi ≥ 1 random time points,

0 < Ti,1 < · · · < Ti,Mi , i.e., Ni(Ti,1), . . . , Ni(Ti,Mi). The last observation time

Ti,Mi is also the censoring time. Suppose that Xi is a p-dimensional covariate

vector. Let Di = {Mi, Ti,j , Ni(Ti,j), Xi; j = 1, . . . ,Mi}; the observed panel count

data are taken to be independent and identically distributed copies {D1, . . . , Dn}.
Our semiparametric regression model for the panel count data specifies the

mean of the event process Ni(t), given covariate Xi, as

Λ(t;Xi) = E[Ni(t)|Xi] = Λ(t) exp(X ′
iβ), (2.1)

where β is a p× 1 vector of covariate coefficient and Λ(·) is a completely unspec-

ified baseline mean function. Model (2.1) characterizes the mean of the event

process without fully specifying how the process evolves. It is the counterpart

of the proportional means model for recurrent event data (Pepe and Cai (1993);

Lawless and Nadeau (1995); Lin et al. (2000)) in a panel count setting. It covers

many models as special cases, such as the nonhomogeneous Poisson processes

and mixed Poisson processes. In particular, it covers the case where an unob-

served nonnegative frailty variable Zi with E[Zi|Xi] = 1 enters the mean function
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multiplicatively (Huang, Wang, and Zhang (2006)),

Λ(t;Xi, Zi) = E[Ni(t)|Xi, Zi] = ZiΛ(t) exp(X
′
iβ). (2.2)

The distribution of Zi is unspecified.

We consider two scenarios of censoring for Model (2.1):

1. Conditional independent censoring: the censoring time is independent of

the event process given observed covariates (Sun and Wei (2000); Zhang

(2002)).

2. Informative censoring through a frailty: after conditioning on observed

covariates, the censoring time and the event process are still dependent

through an unobserved multiplicative frailty (Huang, Wang, and Zhang

(2006)).

Note that, in both scenarios, observation times may or may not be independent

of the event process given covariates; no model specification for observation times

or for the frailty is necessary. Our proposed methods only distinguish whether

or not the censoring time is conditionally independent of the event process given

observed covariates.

3. Augmented Estimating Equations

3.1. Conditional independent censoring

We first develop the estimating procedure under conditional independent

censoring, i.e., Ti,Mi and Ni(·) are independent given observed covariate Xi. This

assumption implies E[Ni(t)|Xi, t ≤ Ti,Mi ] = E[Ni(t)|Xi], so that we can use

the censored data to estimate quantities in Model (2.1) about E[Ni(t)|Xi]. Let

{s1, . . . , sm} be the union of all observation times and censoring times in [0, τ ].

These points form a data-dependent grid G = {0 = s0 < s1 < · · · < sm = τ}. Let
rij = I(sj ≤ Ti,Mi) be the at-risk indicator. We write Nij = Ni(sj)−Ni(sj−1) as

the number of events occurred in (sj−1, sj ]. Only summations of Nij ’s over those

subintervals whose union coincides with an observation window are observed.

Let λj = Λ0(sj) − Λ0(sj−1), the baseline mean number of events occurring in

interval (sj−1, sj ]. We treat Nij ’s as missing values. If Nij ’s were observed, under

conditional independent censoring, Model (2.1) suggests a set of complete-data

estimating equations:

n∑
i=1

[Nij − λj exp(X
′
iβ)]rij = 0, j = 1, . . . ,m, (3.1)

n∑
i=1

m∑
j=1

[Nij − λj exp(X
′
iβ)]Xirij = 0. (3.2)
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Model (2.1) contains nonhomogeneous Poisson processes as a special case,

which provides some insight about (3.1) and (3.2). The complete-data log likeli-

hood for nonhomogeneous Poisson processes is

l(Λ, β) =

n∑
i=1

m∑
j=1

[
Nij log(λj) + NijX

′
iβ − λj exp(X

′
iβ)
]
rij . (3.3)

Estimating equations (3.1) and (3.2) coincide with the score equations derived

from (3.3). When the true processes are not nonhomogeneous Poisson, they

remain valid as long as Model (2.1) is correctly specified.

Nonhomogeneous Poisson processes shed light on properties of the Nij ’s given

the observed data. For subject i, consider the observation window (Ti,k−1, Ti,k].

This interval is broken into Hik subintervals by G, (sl, sl+1], . . . , (sl+Hik−1, sl+Hik
]

for some l such that sl = Ti,k−1 and sl+Hik
= Ti,k. We only observe the total

number of counts mik = Ni(Ti,k) −Ni(Ti,k−1) in (Ti,k−1, Ti,k]. If mik = 0, there

is no event times to be imputed. If mik > 0, under the nonhomogeneous Pois-

son assumption, the vector of counts in all Hik subintervals given mik follows

a multinomial distribution with mik trials and probability vector proportional

to baseline mean vector (λl+1, . . . , λl+Hik
). The conditional expectation of Nij ,

l + 1 ≤ j ≤ l + Hik, is λjmik/(λl+1 + · · · + λl+Hik
). The multinomial distri-

bution is unchanged when the event process is a mixed Poisson process with a

subject level multiplicative frailty. In the general setting of Model (2.1) with only

the marginal mean at each time t specified, the conditional expectation of Nij ,

l + 1 ≤ j ≤ l +Hik, remains the same. It is the conditional expectation, instead

of the distribution of the Nij ’s, that is needed in the estimation.

To estimate β and λj , j = 1, . . . ,m, we solve the conditional expected version

of (3.1) and (3.2) by adapting the ES algorithm of Elashoff and Ryan (2004).

The ES algorithm iterates between an E-step which takes conditional expecta-

tion given the observed data, and an S-step which solves conditionally expected

estimating equations:

E-step Calculate

eij = E[Nij |Xi, {Ni(Ti,1), · · · , Ni(Ti,Mi)}] =
λj

Mi∑
k=1

I(Ti,k−1 < sj ≤ Ti,k)mik

m∑
l=1

Mi∑
k=1

I(Ti,k−1 < sl, sj ≤ Ti,k)λl

.

(3.4)

This essentially computes λjmik/
∑

l∈Dij

λl, where k is the index such that sj ∈

(Ti,k−1, Ti,k], and Dij is the subset of the index of G containing all grid times in

the same observation window (Ti,k−1, Ti,k] as sj .
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S-step Replacing Nij with eij in (3.1) and (3.2), the solution for the nonpara-

metric component λ given β can be explicitly expressed as

λ̂j(β) =

n∑
i=1

eijrij

n∑
i=1

exp(X ′
iβ)rij

, j = 1, . . . ,m. (3.5)

Substituting (3.5) into (3.2), we get a nonlinear equation for β,

n∑
i=1

m∑
j=1

[eij − λ̂j(β) exp(X
′
iβ)]Xirij = 0, (3.6)

which can be solved for β̂, using standard Newton-Raphson algorithm.

To initialize the ES algorithm, we set β = 0 and set eij ’s proportional to the

subinterval lengths. Then, an initial estimate of λj(0), j = 1, . . . ,m, is obtained

from (3.5) and the ES iteration continues until convergence. At convergence of

β̂, the baseline mean component λj is estimated as λ̂j = λ̂j(β̂). The baseline

mean function Λ(t) is then estimated by a piecewise constant function Λ̂(t) =∑
j:sj≤t λ̂j . As the λ̂j ’s are nonnegative, Λ̂(t) is automatically nondecreasing.

The ES algorithm encompasses the popular EM algorithm as a special case

when the complete data estimating equations are the score equations. Local

convergence of the ES algorithm is established with the general theory of it-

erative solutions to nonlinear equations (Ortega (1972)), by viewing ES as a

block Newton–Gauss–Seidel algorithm or, more generally, a splitting algorithm

(Elashoff and Ryan, 2004, Sec. 2.3). In our simulation studies, convergence

usually occurred after a few iterations and was never an issue.

In Appendix A, we give some regularity conditions and prove the asymptotic

properties of the proposed estimator. Under those conditions, β̂ and Λ̂(·) are

consistent for the true coefficient vector β0 and cumulative baseline mean function

Λ0, respectively. Further, the convergence rate of Λ̂(·) is n1/3, and
√
n(β̂ − β0)

converges weakly to a normal distribution with mean zero and a variance that

can be estimated.

It is practically challenging to obtain a closed-form variance estimator be-

cause of the missing Nij ’s. When the event process is Poisson or mixed Poisson,

an analytic sandwich variance estimator can be derived and the efficiency loss

due to incompleteness can be calculated; see details in Appendix B. Because

the “bread” part of the sandwich variance estimator, Iobs, is not enforced to be

invertible for finite samples, other variance estimators are necessary in practice.

A simpler alternative to the bootstrap variance estimator is to use multiple im-

putation (MI) as in Goetghebeur and Ryan (2000). If the exact event times
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between two observation times were imputed appropriately, panel count data

would reduce to recurrent event data, and many existing semiparametric regres-

sion methods for recurrent event data could then be applied to make inferences

about regression coefficients and baseline mean function in a fixed time interval

of interest [0, τ ] (Pepe and Cai (1993); Lawless and Nadeau (1995); Lin et al.

(2000)). Following Rubin and Schenker (1991), we impute event times using a

working nonhomogeneous Poisson model after the convergence of the ES algo-

rithm. Under conditional independent censoring, each imputed recurrent event

data set yields a complete-data point estimate and variance estimate for β and

Λ(·) from estimating equations (Lin et al. (2000)). In particular, the profile

complete-data estimating equation for β in Lin et al. (2000) is the same as the

score equation of Andersen and Gill (1982). This has been implemented in stan-

dard software, such as function coxph in R package survival (Therneau and

Lumley (2009)). When a frailty variable enters the mean of event process multi-

plicatively, the robust variance estimate for β̂ from coxph is still valid. A variance

estimator for the ES estimator is a weighted sum of between-imputation variance

and within-imputation variance with weights 1 + 1/R and 1, respectively, where

R is the number of imputations (Tanner and Wong (1987); Schenker and Welsh

(1988); Little and Rubin (2002)). In our numerical study we used R = 50, which

seems to provide good approximation of the realized variation.

Once we have a robust variance estimator for the regression coefficient β, a

standard Wald test can be applied to test hypotheses in the form H0 : Cβ = c

for appropriately constructed contrast matrix C and vector c. This covers, for

example, special cases of the significance test ofH0 : βj = 0 for the jth component

of β. The discussion of the significance of covariate effects in our data analysis

is based on these tests.

3.2. Informative censoring

When the censoring time Ti,Mi and event processNi(·) are dependent through
an unobserved frailty Zi after conditioning on observed covariates Xi, we no

longer have E[Ni(t)|Xi, t ≤ Ti,Mi ] = E[Ni(t)|Xi]. Naively applying the AEE

approach leads to biased estimators.

To adjust for the bias we introduce more missing values, conceptually. For

each subject i with Ti,Mi < τ , we treat the number of events in interval (Ti,Mi , τ ]

as a missing value. If this count were observed for each subject, the data would

appear to be panel count data, with one extra count for those subjects with

censoring time prior to τ . Further, the data would appear to have the same

censoring time for all subjects and, hence, the dependence between the censoring

time and the event process would have been artificially removed. This implies

that, if we can impute the count between (Ti,Mi , τ ], we reduce the problem to the
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conditional independent censoring scenario, and the AEE approach in the last

subsection can be applied.

Note that in the ES algorithm, it is not the full conditional distributions but

the conditional expectations E[Nij |Xi, {Ni(Ti,1), · · · , Ni(Ti,Mi)}], with Ti,Mi ≤
sj ≤ τ , that are involved. Model (2.1) implies that E[Ni(Ti,Mi)/Λ(Ti,Mi) =

E[Ni(t)]/Λ(t) for any t ∈ (Ti,Mi , τ ]. Therefore, for subject i and Nij with Ti,Mi ≤
sj ≤ τ , we have

eij = E[Nij |Xi, {Ni(Ti,1), · · · , Ni(Ti,Mi)}] =
λjNi(Ti,Mi)

Λ(Ti,Mi)
. (3.7)

This calculation is added to the E-step in the ES iteration.

In our study the conditional expectation at (3.7) was found to cause numeri-

cal problems when the censoring time Ti,Mi was too early and the count Ni(Ti,Mi)

happened to be nonzero. In that case, more Nij ’s were missing beyond Ti,Mi and

all of them happen to have a larger conditional expectation, which can influ-

ence the numerical stability of the ES algorithm. In order to improve numerical

stability, we propose a heuristic adjustment to the conditional expectation (3.7)

with

eij =
λj{Ni(Ti,Mi) + a}

Λ(Ti,Mi) + a
. (3.8)

for some small number a > 0. When Λ(Ti,Mi) is not small, eij in (3.8) and (3.7)

are approximately equal; when Λ(Ti,Mi) is small relative to a, eij in (3.8) is

bounded by {Ni(Ti,Mi) + a}/a.
An interpretation of a can be given in the special case of mixed nonho-

mogeneous Poisson event process with gamma frailty, where Ni(Ti,Mi) and Nij ,

Ti,Mi < sj ≤ τ , are independent Poisson variables given frailty Zi. If the frailty

Zi is gamma with both shape and rate parameter a exp(X ′
iβ) then, unconditioned

on Zi, Nij is negative binomial with mean eij in (3.8) given Ni(Ti,Mi). From a

Bayesian point of view, one can think of gamma as the prior distribution for

frailty. If we choose a noninformative prior, a gamma distribution with shape

and rate parameters approaching zero, then the conditional mean in (3.8) would

approach that in (3.7). If the frailty is degenerate at one, i.e., both the shape

and rate parameters approach infinity at the same speed, and eij approaches λj ,

which is the case of noninformative censoring.

With the adjusted eij , Ti,Mi < sj ≤ τ , point estimation can be done by a

slightly modified ES algorithm. In the E-step, in addition to (3.4), we compute

conditional expectation eij for those subintervals (sj−1, sj ] that are between Ti,Mi

and τ using (3.7). In the S-step, we can drop the at-risk indicator rij in (3.5)

and (3.6) to obtain β̂ and λ̂, because each rij = 1 in [0, τ ].
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The tuning parameter a needs to be chosen close to zero to let the data speak,

but it cannot be exactly zero to avoid numerical issues in estimation. Note that

{Ni(Ti,Mi) + a}/{Λ(Ti,Mi) + a} is a weighed average of Ni(Ti,Mi)/Λ(Ti,Mi) and

one. Consider the situation where subject i drops out of the study very early after

one event; that is, the censoring time Ti,Mi is close to zero and Ni(Ti,Mi) = 1.

If Λ(Ti,Mi) is of order 1/n, then the conditional expectation eij , Ti,Mi < sj ≤ τ ,

would be of order nλj if (3.7) were used, which can cause divergence of the ES

algorithm. If we choose a = n−1/2 and use (3.8), then eij would be of the order√
nλj , greatly reducing the variation in the iteration. For our simulation studies,

setting a = n−1/2 worked well and led to much better numerical stability than

setting a = 0 for dataset containing subjects who dropped out very early.

The asymptotic properties of the estimator can be obtained similar to those

under conditional independent censoring. Sandwich variance estimators can be

derived accordingly. To obtain the variance estimate from MI, we propose to

impute the count beyond censoring time based on the negative binomial working

model that results from the nonhomogeneous Poisson event process with gamma

frailty. This working model is a parametric device for MI to be used with param-

eters at the point estimate for variance estimation only after the ES algorithm

has converged. In our simulations, it has worked well even when the frailty is

not gamma.

4. Numerical Results

4.1. Simulation studies

We first consider two simulation studies, presented in Zhang (2002), under

independent censoring and noninformative observation times. The focus here

was the regression coefficient estimates.

• In Study 1, we took nonhomogeneous Poisson processes with independent

censoring. There were three mutually independent covariates: Xi,1 was uni-

form over (0, 1), Xi,2 was N(0, 1), and Xi,3 was Bernoulli with success rate

0.5. The number of observation times Mi was generated uniformly over

the set {1, 2, 3, 4, 5, 6}. The Mi observation times were the order statis-

tics generated from uniform over (1, 10) and rounded to the second decimal

points. The event process Ni(t) was Poisson with intensity 2 exp(X ′
iβ), where

β = (β1, β2, β3)
′ = (−1.0, 0.5, 1.5)′.

• In Study 2, we took mixed nonhomogeneous Poisson processes with indepen-

dent censoring. The covariates and observation scheme were generated in the

same fashion as in Study 1. Conditioning on αi, the event process was a

Poisson process with intensity (2 + αi) exp(X
′
iβ). The subject level frailty αi

was generated from a discrete set {−0.4, 0, 0.4} with probabilities 0.25, 0.5,



368 XIAOJING WANG, SHUANGGE MA AND JUN YAN

and 0.25, respectively. This mixed Poisson process is equivalent to one with

a multiplicative frailty in the mean, because the intensity can be expressed

as 2Zi exp(X
′
iβ), with Zi generated from {0.8, 1, 1.2} with probabilities 0.25,

0.5, and 0.25. Therefore, Model (2.1) still held.

Table 1 summarizes the results from Study 1 and Study 2, with n ∈ {50, 100},
obtained from 1,000 replicates. We report our estimator under conditional in-

dependent censoring and the extended estimator under informative censoring,

denoted by AEE and AEEX, respectively. Both estimators are virtually unbi-

ased, but the AEE estimator appears to have smaller standard errors than AEEX

estimator. This is not surprising because, although both estimators are consis-

tent, AEEX does not use the information of conditional independent censoring

and brings in more variation when making all subjects have the same censor-

ing time. The standard errors of both AEE and AEEX decrease as sample size

increases and the decreasing rate is approximately
√
n.

The proposed MI-based variance estimators for both AEE and AEEX seem to

slightly under-estimate the true variation, especially in the Study 2 where a frailty

is present. The variance under-estimation may stem from underestimation of the

sandwich variance estimator for each imputed right censored data, which is not

unusual for a sandwich variance estimator with small to moderate sample sizes

(Mancl and DeRouen (2001)). As sample size increases, the agreement between

the estimated standard errors and empirical standard deviation improves. The

empirical coverage rates of the 95% confidence intervals are close to the nominal

levels except for β2. Nevertheless, as sample size increases, the coverage for β2
gradually improves and in a study with n = 400, it was 92.1%.

We also report the estimator of Huang, Wang, and Zhang (2006) and the

maximum pseudolikelihood estimator of Zhang (2002), denoted by HWZ and

MPL, respectively. Results for HWZ were obtained from our own implemen-

tation, results for MPL were obtained from Table 1 in Zhang (2002). The two

estimators are virtually unbiased as well. Their standard errors, however, appear

to be higher than those of AEEX and, especially, AEE. This might be explained

by the fact that HWZ only uses the cumulative count at the censoring time in

estimating equations, and that MPL ignores the dependence within a subject.

Our next three simulation studies, adapted from Huang, Wang, and Zhang

(2006), had informative observation times, and the latter two of them had in-

formative censoring times. The focus was on both regression coefficients and

baseline mean function.

• Study 3 was designed to have informative observation times but the cen-

soring time was conditionally independent of the event process. The event

process was Poisson with intensity 2Zi exp(Xiβ), where covariate Xi was gen-

erated from a Bernoulli distribution with success rate 0.5, and frailty Zi was
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Table 1. Monte Carlo simulation results for Study 1 and Study 2 based
on 1,000 samples. In Study 1, data were generated from Poisson processes
with independent observation and censoring times. In Study 2, data were
generated from mixed Poisson processes with independent observation and
censoring times.

Mean SE MESE CP

n Param True AEE AEEX HWZ MPL AEE AEEX HWZ MPL AEE AEEX AEE AEEX
Study 1

50 β1 -1.0 -1.003 -1.000 -1.004 -0.994 0.101 0.109 0.122 0.120 0.090 0.100 0.911 0.928
β2 0.5 0.498 0.497 0.499 0.501 0.030 0.033 0.040 0.036 0.026 0.028 0.900 0.917
β3 1.5 1.500 1.494 1.500 1.502 0.069 0.077 0.086 0.083 0.067 0.071 0.912 0.921

100 β1 -1.0 -1.002 -1.001 -1.003 -1.002 0.070 0.076 0.079 0.081 0.064 0.071 0.931 0.926
β2 0.5 0.500 0.499 0.500 0.500 0.019 0.020 0.021 0.024 0.019 0.020 0.934 0.944
β3 1.5 1.499 1.495 1.499 1.500 0.049 0.054 0.055 0.056 0.048 0.051 0.947 0.937

Study 2
50 β1 -1.0 -0.995 -0.990 -0.991 -1.001 0.136 0.145 0.159 0.153 0.120 0.129 0.894 0.921

β2 0.5 0.501 0.499 0.501 0.498 0.042 0.043 0.044 0.049 0.034 0.037 0.864 0.878
β3 1.5 1.502 1.498 1.503 1.500 0.090 0.096 0.104 0.101 0.079 0.083 0.921 0.927

100 β1 -1.0 -1.001 -0.999 -1.000 -1.002 0.099 0.103 0.111 0.106 0.089 0.094 0.909 0.935
β2 0.5 0.499 0.497 0.498 0.500 0.029 0.030 0.031 0.032 0.025 0.027 0.874 0.887
β3 1.5 1.500 1.496 1.500 1.501 0.061 0.065 0.068 0.067 0.057 0.059 0.922 0.923

AEE, augmented estimating equations estimator; AEEX, extended AEE estimator; HWZ, Huang–
Wang–Zhang estimator; MPL, maximum pseudolikelihood estimator; Mean and SE, sample mean and
sample standard deviation of the 1,000 estimates; MESE, square root of the mean of 1,000 variance
estimates based on MI; CP, empirical coverage probability of 95% confidence intervals.

generated from a gamma distribution with both shape and rate equal to 2.

The observation process was nonhomogeneous Poisson with cumulative mean

log(1 + 2t) exp(Xi/2), truncated in a fixed time interval [0, 10]. The number

of observations in [0, 10] depended on the observed covariate but not on the

unobserved frailty.

• Study 4 was designed to have informative observation times and censoring

time associated with the event process after conditioning on the observed co-

variate. It used the same setting to generate covariate Xi and frailty Zi as

in Study 3. The event process was Poisson with intensity 2Zi exp(Xiβ) in

[0, 10]. If Xi = 1 and Zi > 1, Mi was generated uniformly from {1, 2, . . . , 8},
and Ti,1, . . . , Ti,Mi were the order statistics of Mi independent and identically

distributed exponential random variables with mean 2; otherwise, Mi was gen-

erated uniformly from {1, 2, . . . , 6}, and Ti,1, . . . , Ti,Mi were the order statistics

of Mi independent and identically distributed uniform random variables on

[0, 10].

• Study 5 used the same setting as Study 4 except for the distribution of frailty

Zi, which was uniformly from {0.2, 1, 1.8}. This was designed to show that

the proposed AEE and AEEX estimators do not rely on the gamma frailly

assumption.
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Table 2 summarizes the fitting results from Studies 3–5 for sample sizes

n ∈ {50, 100, 200} with 1,000 replicates. For all three estimators, AEE, AEEX,

and HWZ, we present β̂ and Λ̂(t) evaluated at t ∈ 3, 7. Although we have no

asymptotic distributional results for Λ̂(t), the empirical results are still useful

in assessing the estimators. In addition to the point estimate and empirical

standard deviation, we also report the MI based variance estimator and the

coverage probability of the 95% confidence intervals for the AEE and AEEX

estimators.

In Study 3, as the observation times and censoring time were independent

of the event process conditioning on the observed covariate, all three estimators

were expected to be consistent. This is confirmed by negligible biases in all

estimates. The AEE estimator has the smallest standard errors, which is as

expected because it does not have the extra variation caused by imputing events

after the censoring times. The difference between AEEX and HWZ is small,

with AEEX having noticeably smaller standard errors. The MI-based variance

estimator approximates the empirical variation reasonably well for the estimator

of the regression parameter β. Consequently, the empirical coverage rates of

the 95% confidence intervals are close to the nominal level, and the agreement

improves as sample size increases.

In Study 4, since the censoring time is informative, the AEE estimator of β is

biased downward by about 15%. The AEEX estimator of β is still nearly unbiased

as it adjusts the complete-data estimating equations such that, artificially, all

subjects have the same censoring time. The bias of the AEE estimator for Λ(t)

seems to be larger than that of the AEEX estimator, which is not surprising since

the estimator of β is biased to start with. The difference between AEEX and

HWZ is again small, with AEEX having slightly smaller standard errors most

notably for smaller sample sizes. This suggests that even though AEEX has the

potential to be more efficient than HWZ, the difference may be small.

In Study 5, the results are very similar to Study 4. The AEE estimator of

β is biased, while the AEEX estimator is nearly unbiased. This study suggests

that the proposed methods do not rely on the assumption of gamma frailty.

As a final illustration in Figure 1, we present graphical summaries of the

AEEX estimates of β and Λ(t) in Study 4, with sample size 100 from 1,000

replicates. The histogram of β̂ suggests that the normal approximation of β̂

is quite good. The mean of Λ̂(t) matches Λ0(t) closely. The pointwise 95%

confidence intervals of Λ̂(t) were constructed from the realized 2.5th and 97.5th

percentiles of the 1,000 estimates.
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Table 2. Monte Carlo simulation results for Study 3–5 based on 1,000 sam-
ples. In Study 3, the event process was Poisson; observation times, censor-
ing time, and event process were associated through observed covariates. In
Study 4, the event process was mixed Poisson; observation times, censoring
time, and event process were associated through both observed covariates
and unobserved gamma frailties. In Study 5, the setup was the same as in
Study 4, except that the frailty was a discrete variable.

Mean SE MESE CP
n Par True AEE AEEX HWZ AEE AEEX HWZ AEE AEEX AEE AEEX

Study 3
50 β -1 -1.005 -0.991 -1.014 0.120 0.156 0.173 0.117 0.158 0.928 0.943

Λ(3) 6 5.935 5.996 6.027 0.765 0.905 1.005 0.650 0.844 0.861 0.914
Λ(7) 14 13.819 14.175 14.187 1.271 1.843 2.070 1.154 1.882 0.889 0.942

100 β -1 -1.004 -0.993 -1.009 0.079 0.112 0.122 0.082 0.111 0.943 0.934
Λ(3) 6 6.000 6.044 6.067 0.522 0.635 0.695 0.471 0.605 0.892 0.934
Λ(7) 14 13.938 14.130 14.142 0.943 1.326 1.461 0.851 1.277 0.900 0.948

200 β -1 -1.003 -0.996 -1.006 0.058 0.083 0.084 0.057 0.080 0.928 0.935
Λ(3) 6 6.010 6.049 6.050 0.368 0.463 0.454 0.341 0.439 0.924 0.937
Λ(7) 14 14.022 14.187 14.172 0.660 0.967 0.979 0.606 0.910 0.904 0.939

Study 4
50 β -1 -1.153 -0.979 -1.000 0.245 0.247 0.259 0.230 0.242 0.867 0.925

Λ(3) 6 6.162 5.916 5.961 1.080 1.098 1.193 1.033 1.043 0.909 0.901
Λ(7) 14 13.892 13.941 14.042 2.181 2.210 2.487 2.104 2.152 0.896 0.912

100 β -1 -1.156 -0.988 -0.999 0.165 0.170 0.174 0.165 0.170 0.822 0.932
Λ(3) 6 6.224 5.957 5.973 0.793 0.794 0.815 0.750 0.752 0.925 0.909
Λ(7) 14 14.036 14.016 14.043 1.587 1.594 1.607 1.547 1.558 0.930 0.927

200 β -1 -1.156 -0.992 -1.000 0.118 0.124 0.126 0.117 0.121 0.717 0.941
Λ(3) 6 6.259 5.995 6.003 0.551 0.561 0.571 0.528 0.536 0.928 0.924
Λ(7) 14 14.084 14.016 14.024 1.157 1.135 1.141 1.090 1.100 0.924 0.925

Study 5
50 β -1 -1.151 -0.982 -0.998 0.236 0.234 0.241 0.231 0.235 0.881 0.944

Λ(3) 6 6.175 5.914 5.945 1.084 1.066 1.088 1.006 1.011 0.913 0.918
Λ(7) 14 14.008 14.028 14.075 2.111 2.071 2.103 2.050 2.076 0.922 0.935

100 β -1 -1.146 -0.986 -0.997 0.166 0.166 0.170 0.161 0.161 0.832 0.942
Λ(3) 6 6.207 5.948 5.968 0.765 0.778 0.799 0.714 0.719 0.914 0.913
Λ(7) 14 14.031 13.995 14.038 1.550 1.522 1.567 1.457 1.455 0.911 0.934

200 β -1 -1.147 -0.993 -1.000 0.112 0.112 0.115 0.113 0.115 0.744 0.943
Λ(3) 6 6.217 5.963 5.976 0.520 0.529 0.534 0.509 0.513 0.930 0.927
Λ(7) 14 14.078 14.027 14.041 1.090 1.077 1.079 1.043 1.038 0.933 0.935

AEE, augmented estimating equations estimator; AEEX, extended AEE estimator; HWZ, Huang–
Wang–Zhang estimator; Mean and SE, sample mean and sample standard deviation of the 1,000 esti-
mates; MESE, square root of the mean of 1,000 variance estimates based on MI; CP, empirical coverage
probability of 95% confidence intervals.

4.2. Illustration with bladder tumor data

We applied our AEE method to the bladder tumor data (Byar (1980)) and

compared with existing analyses in the literature. In the original study, patients
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Figure 1. Graphical summaries of AEEX estimates β̂ and Λ̂(t) in Study 4 for

AEEX with sample size 100 from 1,000 replicates. (a) Histogram of β̂; the

true value β0 is 1. (b) Normal Q-Q plot of β̂; the true value β0 is 1. (c) Mean
of Λ̂(t) (dashed) and pointwise 95% confidence interval constructed from the
realized 2.5th and 97.5th percentiles of the 1,000 estimates (dotted), overlaid
with the true baseline Λ(t) = 2t (solid).

who had superficial bladder tumors were randomized into three treatment arms:

placebo, pyridoxine pills, and thiotepa. At each follow-up visit, tumors were

counted, measured, and then removed transurethrally, and the treatment was

continued. The objective of the study was to determine if the treatment reduces

the recurrence of bladder tumor.

For comparison with existing analyses, we only analyzed data from two treat-

ment arms, placebo and thiotepa, a total of 85 patients. Three covariates are

available: initial number of tumors, size of the largest initial tumor, and treat-

ment (1 = thiotepa). We fit a semiparametric mean regression Model (2.1) and

calculated AEE under conditional independent censoring and AEEX under in-
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Table 3. Regression coefficients estimates and standard errors from bladder
tumor data analyses.

AEE AEEX HWZ MPL SWa SWb

β̂1 0.257 0.273 0.284 0.283 0.662 0.660

SE(β̂1) 0.071 0.083 0.101 0.083 0.213 0.225

β̂2 -0.028 0.030 0.033 -0.051 -0.130 -0.123

SE(β̂2) 0.097 0.119 0.144 0.101 0.203 0.204

β̂3 -0.789 -0.609 -0.602 -1.357 -2.025 -1.971

SE(β̂3) 0.303 0.376 0.379 0.369 0.450 0.442

AEE, augmented estimating equations estimator; AEEX, extended AEE estimator; HWZ,
Huang–Wang–Zhang estimator; SWa and SWb, Sun–Wei estimator with and without mod-
eling the observation pattern; MPL, maximum pseudolikelihood estimator.

formative censoring, with β1, β2, and β3 the regression coefficients for initial

tumor number, largest initial tumor size, and treatment indicator, respectively.

Estimates of regression coefficients and their standard errors are summarized in

Table 3. Both AEE and AEEX results suggest that largest initial tumor size has

no significant effect on tumor recurrence, initial tumor count implies higher risk

of tumor recurrence, and the thiotepa treatment seems to reduce tumor recur-

rence. The close agreement between AEE estimates and AEEX estimates for all

three regression coefficients may be an indication that censoring time and event

process are conditionally independent. This is in line with the finding in Sun and

Wei (2000).

Also in Table 3 are estimates from existing methods. The HWZ estimates

were from our implementation of Huang, Wang, and Zhang (2006), the MPL

and SW estimates were obtained from Sun (2006). Point estimates from AEE

and AEEX are very close to those from HWZ. All these methods give a smaller

thiotepa treatment effect in reducing tumor recurrence than MPL estimates and

SW estimates. A similar finding was reported by Huang, Wang, and Zhang

(2006), in an analysis with only treatment indicator in the regression model.

The HWZ estimates seem to have slightly higher standard errors than the AEE

estimates and AEEX estimates. The much larger magnitude of SW estimates in

comparison with other estimates might be explained by its requirement of correct

specification of the models for observation times and censoring time.

5. Discussion

Statistical inferences for semiparametric panel count regression is a challeng-

ing problem because of unobserved event times, informative observation times,

and informative censoring time. Our approach uses robust working models to
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impute event times up to a time grid and solves the conditionally expected ver-

sion of complete-data estimating equations to estimate regression coefficients and

the cumulative baseline mean function. The estimators, AEE under conditional

independent censoring and AEEX under informative censoring, are applicable

regardless of whether observation times are informative or not given covariates.

Similar to Huang, Wang, and Zhang (2006), we do not need to model for obser-

vation times and censoring time, correct specifications of which are necessary to

obtain consistent estimator in Sun and Wei (2000). We allow observation times

and censoring time to be associated with the event process through an unob-

served multiplicative frailty in the mean function, retaining the advantage of no

need to model the frailty as in Huang, Wang, and Zhang (2006). When there is

no covariate, our AEE resembles the first estimating equation of Hu, Lagakos,

and Lockhart (2009b).

For informative censoring via frailty, our AEEX estimator does not require

any different assumptions than the HWZ estimator. Nevertheless, our extended

AEEs for regression coefficients use all imputed event times and, hence, have

the potential for being more efficient than the estimating equations in Huang,

Wang, and Zhang (2006). In fact, this was suggested by Wang, Qin, and Chiang

(2001) for exploration in a recurrent event setting with informative censoring.

When conditionally independent censoring is safe to assume, for instance, in

situations where censoring times are administrative, AEE, AEEX, and HWZ

are all valid, but AEE may be preferred for higher efficiency, as illustrated in

simulation studies.

A comparison of the proposed methods and existing methods helps in under-

standing their differences and relative advantages. The MPL and ML estimators

assume the the event processes are nonhomogeneous Poisson and are condition-

ally independent of the observation schemes and the censoring times given covari-

ates. The MPL estimator trades efficiency for computing convenience. The SW,

HWZ, AEE, and AEEX estimators are based on estimating equations without

assuming that the event process is Poisson. The SW approach allows condi-

tionally independent observation schemes and censoring times given covariates,

but requires model specification for observation schemes and censoring times.

The HWZ, AEE, and AEEX allow informative observation schemes. The HWZ

and AEEX further allow informative censoring time through a multiplicative

frailty with unspecified distribution. Most of these methods are implemented

in the R package spef (Wang and Yan (2010)) available at the Comprehensive

R Archive Network (http://CRAN.R-project.org). A companion paper of the

package provides a comparative summary of their assumptions on the observa-

tion scheme and the censoring time (Wang and Yan, 2011, Table 1), in addition

to illustrations of usages.

http://CRAN.R-project.org
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In our study, our main interest lies in the estimation and inference of the

parametric parameter. The nonparametric parameter, although potentially of

importance, is usually less interesting. For the nonparametric parameter, the

convergence rate is slower than
√
n and the asymptotic distribution is not normal.

We suspect that a complex bootstrap procedure is needed for inference of the

nonparametric parameter. We postpone this investigation to a future study.
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Appendix A: Asymptotic Results

The cumulative baseline mean function Λ is estimable only on {s1 . . . sm}.
For uniqueness, we further specify that Λ̂ is right-continuous, piecewise constant,

and with possible discontinuities only at {s1, . . . , sm}.
In what follows, we establish the asymptotic properties under conditional

independent censoring. Under informative censoring, similar properties hold and

the proofs are only slightly different. We first set out some assumptions.

A1. The observation times and censoring are conditionally independent of the

event process given observed covariates.

A2. (a) The observation times are η-separable. That is, there exists η > 0 such

that Pr(Ti,j − Ti,j−1 > η) = 1. (b) If S is the support of ∪i,jTi,j , there

exist finite τ0 and τ1 such that τ0 < minS < maxS < τ∞. (c) There exists

τ∗0 < τ∗1 such that [τ∗0 , τ
∗
1 ] ⊂ S.

A3. The distribution of X is not concentrated on any proper subspace of Rp;

the support of the distribution is a compact subset of Rp.

A4. (a) β0 belongs to a compact subset of Rp. (b) There exists κ1 such that

Λ0 < κ1 < ∞; Λ0 is first-order differentiable, and there exists κ2 such that

1/κ2 < Λ
(1)
0 < κ2 < ∞.

These assumptions are mild; comparable assumptions have been made in

Wellner and Zhang (2007), Lu, Zhang, and Huang (2007) and other publications.

Under (A2), any two observation times are separated by at least η; this usually

holds in biomedical studies where continuous monitoring is unlikely. We note

that this assumption rules out scenarios with accurately observable event times,
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under which the estimate of Λ0 is n1/2 consistent. In our study, however, we

can only observe the intervals of the event times. Because of this excessive loss

of information, the estimate of Λ0 is only n1/3 consistent, as shown below in

Theorem 2. A byproduct of (A2) is that Mi is bounded. Although it might

be possible to relax the assumptions to allow Mi → ∞ but E(Mi) < ∞, such

a difference has a negligible impact in practice. The compactness assumptions

(A3) and (A4) usually hold in practice; they are made for theoretical purposes

and the real bounds may remain unknown.

For any β1 ∈ Rp and β2 ∈ Rp, ∥β1 − β2∥2 is the L2 norm of β1 − β2. For any

nondecreasing function Λ1 and Λ2, let m∆(Λ1,Λ2) =
[∫

(∆Λ1 −∆Λ2)
2dµ
]1/2

,

where ∆Λ = Λ(sk)−Λ(sj) for any sk ∈ G, sj ∈ G, and sk < sj . The consistency

result can be summarized as follows.

Theorem A.1. Under (A1)–(A4), β̂ →a.s. β0 and m∆(Λ̂,Λ0) = oP (1).

Proof. First we note that under (A2c) and the compactness assumptions, the

model we consider is identifiable. The proof follows from Wellner and Zhang

(2007).

For a randomly selected subject, let N·j , j = 1, 2, . . ., be the missing counts,

r·j be the at-risk indicator, and X be the covariate vector. Consider an objective

function

l(β,Λ) =
∑
j

[N·j log(λj) + N·jX
′β − λj exp(X

′β)]r·j .

Take Pn as the empirical measure. If ∆Λ̂ → 0 or ∞ and/or β̂ → ∞, Pnl(β̂, Λ̂) →
∞. Thus, we are able to focus on the set of bounded (β̂, Λ̂).

The functional set {log(λ)} is bounded and the functional set {Λ} is mono-

tone and bounded. They are compact with respect to the vague topology. Con-

sistency thus follows from Theorem 5.14 of Van der Vaart (1998).

Theorem A.1 establishes the consistency of Λ̂ in the L2 sense. Consistency

under other norms (for example the uniform consistency) that demands different,

possibly stronger assumptions, is not pursued in this study.

To establish the convergence rate, we need an additional assumption.

A5. For (β,Λ) satisfying (A1)–(A4), E[l(β,Λ) − l(β0,Λ0)] ≤ −κ3(∥β − β0∥22
+m2

∆(Λ,Λ0)), where κ3 is a fixed positive constant.

Here we assume that the maximizer of l is “well separated”. This can be verified

under the compactness conditions and differentiability of the objective function

l.

We first insert the definition of bracketing number; see Van der Vaart and

Wellner (1996) for more detailed descriptions. Let (F, ∥ · ∥) be a subset of a
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normed space of real functions on some set. Given functions f1 and f2, the

bracket [f1, f2] is the set of all functions f with f1 ≤ f ≤ f2. An ϵ-bracket is a

bracket [f1, f2] with ∥f1 − f2∥ ≤ ϵ. The bracketing number N[](ϵ,F, ∥ · ∥) is the

minimum number of ϵ brackets needed to cover F. The entropy with bracketing

is the logarithm of the bracketing number.

Theorem A.2. Under (A1)–(A5), ∥β̂ − β0∥22 +m2
∆(Λ̂,Λ0) = OP (n

−2/3).

Proof. Lemma 25.84 of Van der Vaart (1998) shows that, if (A4) is satisfied,

there exists a constant κ4 such that for every ϵ > 0, logN[](ϵ, {Λ}, L2) ≤ κ4(
1
ϵ ).

Since the objective function l is Hellinger differentiable, under (A2) and (A3),

we have logN[](ϵ, {l(β,Λ)}, L2) ≤ κ5(
1
ϵ ) for a constant κ5.

By Theorem 3.2.5 of Van der Vaart and Wellner (1996), for (β,Λ) satisfying

∥β − β0∥22 ++m2
∆(Λ,Λ0) < ξ, we have

P∗ sup |
√
n(Pn − E) (l(β,Λ)− l(β0,Λ0)) | = Op(1)ξ

1/2

(
1 +

ξ1/2

ξ2
√
n
κ6

)
(A.1)

with a constant κ6, where P∗ is the outer expectation. According to Theorem

3.2.1 of Van der Vaart and Wellner (1996), (A.1) and (A5) imply the desired

result.

With semiparametric models,
√
n consistency and asymptotic normality of

estimates of parametric parameters requires non-singularity of the information

matrix. We compute the information matrix for β as follows.

The score function for β is l̇β =
∑

j [N·jX − λj exp(X
′β)X]r·j .

Consider a small perturbation of λ defined by λa = λ + ah with a ∼ 0 and

h ∈ L2(P ) such that Λa =
∫
λa satisfies (A4). We can see that h = ∂λa

∂a |a=0.

Thus, the score operator for λ is l̇λ[h] =
∑

j [N·j/λj − exp(X ′β)] r·jh.

Computing the information matrix amounts to finding h∗ such that, for any

h defined above, E((l̇β − l̇λ[h
∗])l̇λ[h]) = 0. It can be shown that one solution is

h∗ =
E
(
l̇β
∑

j

[
N·j
λj

− exp(X ′β)
]
r·j |t

)
E

({∑
j

[
N·j
λj

− exp(X ′β)
]
r·j

}2
|t
) .

The information matrix is E(l̇β − l̇λ[h
∗])⊗2, which is assumed to be positive

definite and component-wise bounded.

We now further establish that, despite the slow convergence rate of the esti-

mate of Λ0, the estimate of β0 is still
√
n consistent and asymptotically normal.

Theorem A.3. Under (A1)–(A5),
√
n(β̂ − β0) → N(0, E−1(l̇β − l̇λ[h

∗])⊗2).
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Proof. We list some relevant facts.

1. (Maximization of the objective function)

Pn l̇β(β̂, Λ̂) = 0 component-wise, and Pn l̇λ[h]|β=β̂,Λ=Λ̂ = 0 for h defined above.

2. (Rate of convergence) ∥β̂ − β0∥22 +m2
∆(Λ̂,Λ0) = OP (n

−2/3).

3. (Positive Information) The Fisher Information matrix is positive definite and

component-wise bounded.

4. (Stochastic equicontinuity) For any δn → 0 and constant κ7 > 0, within the

neighborhood {∥β − β0∥ < δn,m∆(Λ,Λ0) < κ7n
−1/3},

sup
√
n|(Pn − E)(l̇β(β,Λ)− l̇β(β0,Λ0))| = oP (1),

sup
√
n|(Pn − E)(l̇λ[h

∗]|β,Λ − l̇λ[h
∗]|β0,Λ0)| = oP (1).

These equations can be established by applying Theorem 3.2.5 of Van der

Vaart and Wellner (1996), and the entropy result.

5. (Smoothness of the model) Within the neighborhood {∥β−β0∥<δn, m∆(Λ,Λ0)

< κ7n
−1/3}, the expectations of l̇β and l̇λ are Hellinger differentiable.

With these in hand, the desired result can be proved using Theorem 3.4 of Huang

(1996).

Appendix B: Variance Estimation Under Poisson Assumption

Although the methods do not rely on the Poisson assumption of the event

process, a simple closed-form variance estimator is easier to derive and may give

some insights on efficiency loss for the parametric parameter estimation if we do

assume it. For a more lucid view, we conduct the computation with finite sample

data. When the sample size is finite, the number of distinct observation/censoring

times is finite. We are hence able to treat the semiparametric model in a para-

metric manner. When the sample size converges to infinite, the computation

below matches that in Appendix A. Specifically, the matrix inversion/projection

“converges” to the functional projection of score function in Appendix A. We

also note that this argument is only valid for the parametric parameter. For

the nonparametric parameter, the variance matrix computed below has infinite

dimension as n → ∞. Thus, we are not able to make inference for the estimate

of the nonparametric parameter based on this calculation.

From a computational point of view, the unknown parameter is an (m+p)×1

vector θ = (λ1, . . . , λm, β′)′. We stack equations (3.1) and (3.2) as U(θ) =∑n
i=1 Ui(θ) = 0, where U is an (m + p) × 1 vector with the first m components

corresponding to (3.1) and the other p components corresponding to (3.2). This

estimating equation is suggested by the fact that the conditional expectation of
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U given observed data Dobs is zero. We first derive the observed information

matrix of θ, and then give a sandwich variance estimator of β.

Differentiating −U with respect to θ′ and taking conditional expectation

given Dobs yields the complete information matrix of θ. Taking the conditional

expectation of the outer product of U given Dobs gives the missing information

matrix of θ. The difference between the two information matrices leads to the

observed information matrix:

Iobs = Icom − Imis = −E

[
∂U

∂θ′
|Dobs

]
− E[UU ′|Dobs]. (A.2)

The complete information matrix can be written as:

Icom =

m∑
i=1


exp(Xi

′β)ri1 · · · 0 λ1 exp(Xi
′β)Xi

′ri1
...

. . .
...

...

0 · · · exp(Xi
′β)rim λm exp(Xi

′β)Xi
′rim

exp(Xi
′β)Xiri1 · · · exp(Xi

′β)Xirim
m∑
j=1

λj exp(Xi
′β)XiXi

′rij

 ,

where the upper left block is a m×m diagonal matrix.

We denote the missing information matrix as

Imis =

n∑
i=1

(
B11,i B12,i

B′
12,i B22,i

)
,

where the upper-left m×m block B11,i has (j, k)th entry B11,i(j, k) = Cov(Nij ,

Nik|Dobs)rijrik, the upper-right m × p B12,i block has jth row B12,i(j, ) = Cov

(Nijrij ,
∑m

j=1Nijrij |Dobs)Xi
′, and the lower-right p × p block B22,i = Var[

∑m
j=1

Nijrij |Dobs]XiXi
′. For either AEE or AEEX estimator, these covariance and

variance terms are then computed based on the respective working models.

As θ̂ is consistent for θ, the covariance matrix of β̂ is estimated by a sandwich

estimator, which is the lower-right p× p block of

V = I−1
obs(θ̂)

(
n∑

i=1

E[Ui(θ̂)|Dobs]E[Ui(θ̂)|Dobs]
′
)
I−1
obs(θ̂).
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