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Abstract: Likelihood-based inference for the parameters of generalized linear mixed

models is hindered by the presence of intractable integrals. Gaussian variational

approximation provides a fast and effective means of approximate inference. We

provide some theory for this type of approximation for a simple Poisson mixed

model. In particular, we establish consistency at rate m−1/2 +n−1, where m is the

number of groups and n is the number of repeated measurements.
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1. Introduction

Variational approximation has become a central component in inference in
Machine Learning and other areas of Computer Science. Recent summaries
of variational approximation methodology and theory are provided by Jordan
(2004), Titterington (2004), and Bishop (2006). The Infer.NET software project
(Minka et al. (2009)) is a manifestation of the numerous areas in which variational
approximations are being applied. Almost all of this work involves Bayesian in-
ference.

Statistical areas such as longitudinal data analysis have issues that are similar
to those arising in Machine Learning. Recently, we have explored the transfer-
ral of variational approximation technology to statistical settings. One of these
is likelihood-based, rather than Bayesian, inference for generalized linear mixed
models. A particularly appealing approach in this context is Gaussian varia-
tional approximation, which involves minimum Kullback-Liebler divergence from
a family of Gaussian densities. Details on Gaussian variational approximation for
generalized linear mixed models are given in Ormerod and Wand (2009, 2010).

The present article is concerned with theoretical aspects of Gaussian vari-
ational approximations to maximum likelihood estimation. Almost all of the
variational approximation theory of which we are aware treats Bayesian inferen-
tial settings (e.g., Humphreys and Titterington (2000); Wang and Titterington
(2006)). An exception is Hall, Humphreys and Titterington (2002), who treat
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likelihood-based inference for Markovian models with missingness. As we shall
see, in the case of generalized linear mixed models, rigorous asymptotics for vari-
ational approximation maximum likelihood estimation is delicate and involved.
For this reason attention is restricted to a simple generalized linear mixed model
setting which we call the simple Poisson mixed model and formally define in
Section 2. In Poisson mixed models, the Gaussian variational approximation ad-
mits explicit forms that allow us to study its properties quite deeply. We show
that the exact maximum likelihood estimators are well-defined. We then prove
that their variational approximations are ‘root-m’ consistent, in the sense that
their discrepancy from the true parameter values decreases at a rate proportional
to the inverse square-root of the number of groups – denoted by m. However,
this property requires the number of repeated measurements, n, to be at least
as large as the square root of m. Without that condition the convergence rate
is Op(n−1) rather than Op(m−1/2). Hence, consistency of Gaussian variational
approximation requires that both the number of groups m and the number of re-
peated measures n be allowed to increase. While this excludes some longitudinal
data analysis settings, such as matched paired designs, there are others where
it is reasonable for n to grow. Ormerod and Wand (2009, 2010) show Gaussian
variational approximation to be quite accurate for n ' 5. Our results also have
something important to say in non-asymptotic cases, where n is small – Section
3.5 shows that Gaussian variational approximation can be inconsistent unless n,
as well as m, is large.

The maximum likelihood problem and its Gaussian variational approximate
solution are described in Section 2. Section 3 contains our theoretical results and
accompanying commentary. All proofs are given in Section 4. We conclude with
some discussion in Section 5.

2. Simple Poisson Mixed Model

We now describe the simple Poisson mixed model and Gaussian variational
approximate maximum likelihood estimation of its parameters. The simple Pois-
son mixed model is a special case of the generalized linear mixed model where the
fixed effects are a simple linear relationship, and the random effects correspond
to a random intercept. The responses, conditional on the random effects, are
assumed to be Poisson.

The observed data are (Xij , Yij), 1 ≤ i ≤ m, 1 ≤ j ≤ n, where the Yijs are
non-negative integers and the Xijs are unrestricted real numbers. The simple
Poisson mixed model is

Yij |Xij , Ui independent Poisson with mean exp(β0 + β1Xij + Ui),

Ui independent N(0, σ2).
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In biomedical applications the 1 ≤ i ≤ m corresponds to m patients, and 1 ≤
j ≤ n corresponds to n repeated measures on those patients, where typically
m À n. The random intercepts Ui invoke a within-patient correlation. See, for
example, McCulloch, Searle, and Neuhaus (2008) for details of this model and
its longitudinal data analysis connections.

Let β ≡ (β0, β1) be the vector of fixed effects parameters. The conditional
log-likelihood of (β, σ2) is the logarithm of the joint probability mass function
of the Yij ’s, given the Xij ’s, as a function of the parameters. It admits the
expression

`(β, σ2) =
m∑

i=1

n∑
j=1

{Yij(β0 + β1 Xij) − log(Yij !)} − m
2 log(2πσ2)

+
m∑

i=1

log
∫ ∞

−∞
exp

( n∑
j=1

Yiju − eβ0+β1 Xij+u − u2

2σ2

)
du. (2.1)

The maximum likelihood estimates of β and σ2 are then

(β̂, σ̂2) = argmax
β,σ2

`(β, σ2).

In practice, computation of (β̂, σ̂2) and corresponding inference is hindered
by the fact that the m integrals in (2.1) cannot be reduced. In this simple setting
the integrals are univariate and quadrature can be entertained. However, in more
elaborate grouped data generalized linear mixed models, such as those described
in Ormerod and Wand (2010), the integrals are multidimensional and quadrature
is more challenging.

Gaussian variational approximation offers a remedy since it results in a closed
form approximation to `(β, σ2). So-called variational parameters can be chosen
to optimize the quality of the approximation. Let u, x, and y, respectively,
denote the random vectors containing the Ui’s, the Xij ’s, and the Yij ’s. Also, let
p be the generic symbol for density or probability mass function. Then

`(β, σ2) = log p(y|x; β, σ2).

Hence, for arbitrary density functions q on Rm,

`(β, σ2) = log p(y|x)
∫

Rm

q(u) du =
∫

Rm

log p(y|x)q(u) du

=
∫

Rm

log
{

p(y, u|x)/q(u)
p(u|y, x)/q(u)

}
q(u) du

=
∫

Rm

q(u) log
{

p(y, u|x)
q(u)

}
du +

∫
Rm

q(u) log
{

q(u)
p(u|y, x)

}
du.
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The second term is the Kullback-Leibler distance between q(u) and p(u|y, x).
Since this is always non-negative (Kullback and Leibler (1951)) we get

`(β, σ2) ≥
∫

Rm

q(u) log
{

p(y, u|x)
q(u)

}
du.

Now take q to be the m-variate Gaussian density function with mean µ and
covariance matrix Λ. This leads to

`(β, σ2) ≥ `(β, σ2,µ,Λ), (2.2)

where

`(β, σ2, µ,Λ) ≡
m∑

i=1

n∑
j=1

{Yij(β0 + β1Xij + µi) − eβ0+β1Xij+µi+λi/2 − log(Yij !)}

−m

2
log(σ2) − 1

2σ2

m∑
i=1

(µ2
i + λi) + 1

2 log |Λ| (2.3)

is the Gaussian variational approximation to `(β, σ2). Here µ = (µ1, . . . , µm)
and λ = (λ1, . . . , λm) are the diagonal entries of Λ. Since (2.2) holds for all
choices of µ and Λ, we obtain the tightest lower bound by maximizing over these
variational parameters. Theorem 1 in Section 3.1 implies that the off-diagonal
entries of Λ do not improve the lower bound, so there is no loss from working
with

`(β, σ2, µ,λ) ≡
m∑

i=1

n∑
j=1

{Yij(β0 + β1Xij + µi) − eβ0+β1Xij+µi+λi/2 − log(Yij !)}

−m

2
log(σ2) − 1

2σ2

m∑
i=1

(µ2
i + λi) + 1

2

m∑
i=1

log(λi). (2.4)

The Gaussian variational approximate maximum likelihood estimators are:

(β̂, σ̂2) = (β, σ2) component of argmax
β,σ2,µ,λ

`(β, σ2, µ, λ).

Note that maximization over µ and λ makes the lower bound as tight as possible,
and hence improves the accuracy of the variational approximation.

3. Theoretical Results

In this section we provide several theoretical results concerned with the max-
imum likelihood problem presented in Section 2 and its approximate solution via
Gaussian variational approximation. All proofs are deferred to Section 4.
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3.1. Sufficiency of a diagonal covariance matrix

Theorem 1. If Σ is a symmetric, positive definite matrix then, given the com-
ponents down the main diagonal of Σ, |Σ| is uniquely maximized by taking the
off-diagonal components to vanish.

Theorem 1 provides a justification for dropping the off-diagonal terms of Λ
between (2.3) and (2.4). This means that the optimal q density factorizes into
a product of m univariate normal densities. This result is in accordance with
the fact that the integral over u in the exact log-likelihood (2.1) reduces to m

univariate integrals.

3.2. Similarities between the log-likelihood and its lower bound

In this section we give formulae for the log-likelihood and its approximation.
Assume that the Xij ’s and Ui’s are totally independent, the Xij ’s are identically
distributed as X, and the Ui’s are all normal N(0, σ2). Also, for 1 ≤ i ≤ m, let

Yi • ≡
n∑

j=1

Yij and Bi = Bi(β0, β1) ≡
n∑

j=1

exp(β0 + β1 Xij).

Then the log-likelihood and its approximation are:

`(β, σ2) = `0(β, σ2) + `1(β, σ2) + DATA ,

and
`(β, σ2, µ, λ) = `0(β, σ2) + `2(β, σ2, µ, λ) + DATA ,

where DATA denotes a quantity depending on the data alone, not on β or σ2,

`0(β, σ2) ≡
m∑

i=1

n∑
j=1

{Yij (β0 + β1 Xij)} − m
2 log σ2 ,

`1(β, σ2) ≡
m∑

i=1

log
{ ∫ ∞

−∞
exp

(
Yi • u − Bi e

u − 1
2 σ−2 u2

)
du

}
(3.1)

and

`2(β, σ2, µ, λ) ≡
m∑

i=1

{
µi Yi • − Bi exp

(
µi + 1

2 λi

)}
− 1

2σ2

∑m
i=1

(
µ2

i + λi

)
+ 1

2

∑m
i=1 log λi. (3.2)

A first step is to find λ and µ to maximize `2(β, σ2, µ, λ). It is clear from
the definition of `2, as a series in functions of (λi, µi), that if we keep β0, β1, and
σ2 fixed then the resulting µi will be a function of λi, and vice versa.
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3.3. Properties of the variational parameters

Here we discuss relationships among the parameters that produce an ex-
tremum of `2(β, σ2, λ, µ).

Theorem 2. If σ2 > 0 then: (i) `2(β, σ2, µ, λ) has a unique maximum in (λ, µ);
(ii) the maximum occurs when

µi = σ2 Yi • + 1 − σ2 λ−1
i , for 1 ≤ i ≤ m ; (3.3)

(iii) at the maximum, the parameter values satisfy

0 < λi < σ2 and µi < σ2 Yi • ; (3.4)

and (iv) µi is defined uniquely, in terms of Bi and Yi •, by

σ2 Bi exp
{
µi + 1

2 σ2 (σ2 Yi • + 1 − µi)−1
}

= σ2 Yi • − µi . (3.5)

It is worth noting that the values of the components (λi, µi) at which the
maximum in (λ, µ) of `2(β, σ2,µ, λ) occurs, are determined index-by-index and
do not require a more complex maximization. Of course, this is an immediate
consequence of the diagonalization noted in Theorem 1.

3.4. “True Values” of parameters

In this section we derive the almost-sure limits of the values of β and σ2 that
maximize `(β, σ2) and `(β, σ2). First, however, we derive the limits of m−1 `j

for j = 0, 1, 2. For this purpose we impose the following conditions:

(A1) for 1 ≤ j ≤ n, the triples (Xij , Yij , Ui) are independent and identically
distributed as (Xi, Yi, Ui), say, which in turn is distributed as (X,Y, U);

(A2) the random variables X and U are independent;

(A3) the sets of variables Si = {(Xij , Yij , Ui) : 1 ≤ j ≤ n}, for 1 ≤ i ≤ m, are
independent and identically distributed;

(A4) each Yij , conditional on both Xij and Ui, is Poisson-distributed with mean
exp(β0

0 +β0
1 Xij +Ui), where β0

0 and β0
1 denote the true values of β0 and β1;

(A5) each Ui is normal N(0, (σ2)0), where (σ2)0 denotes the true value of σ2, and
(σ2)0 > 0;

(A6) the moment generating function of X, φ(t) = E{exp(tX)}, is finite for
|t| < 2c for some c > 0, and that |β0

1 | < c.
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Let (B, Y•) = (B1, Y1 •). Note that B is a function of β0 and β1, although Y•
is not. Define Q = Q(β0, β1) to be the unique solution of the equation

σ2 B exp
{
Q + 1

2 σ2 (σ2 Y• + 1 − Q)−1
}

+ Q − σ2 Y• = 0 . (3.6)

The case Q ≥ is easly to handle. Hence forth, we assume the more difficult Q < 0
case. Let:

`0
0(β, σ2) ≡ n exp

(
β0

0 + 1
2 (σ2)0

) {
β0 φ

(
β0

1

)
+ β1 φ′(β0

1

)}
− 1

2 log(σ2), (3.7)

`0
1(β, σ2) ≡ E

[
log

{ ∫ ∞

−∞
exp

(
Y• u − B eu − 1

2 σ−2 u2
)
du

}]
, (3.8)

and
`0
2(β, σ2) ≡ E(QY•) − σ−2 E(σ2 Y• − Q)

− 1
2σ2 E

{
Q2 + σ2 (σ2 Y• + 1 − Q)−1

}
+1

2 log(σ2) − 1
2 E{log(σ2 Y• + 1 − Q)} . (3.9)

Note that the terms in log(σ2)/2, in both `0
0 and `0

2, cancel from `0
0 + `0

2.
Since φ(t) < ∞ for |t| < 2c then E{exp(t |X|)} < ∞ for 0 < t < 2c, and

therefore |φ′(t)| ≤ E{|X| exp(t |X|)} < ∞ for |t| < 2c. Therefore `0
0(β, σ2) is

well-defined and finite provided that |β0
1 | < 2c and σ2 > 0. The theorem below

implies that `0
2(β, σ2) is finite if |β0

1 | < c and σ2 > 0. Clearly, `0
1(β, σ2) is

well-defined and finite whenever σ2 > 0.

Theorem 3. Assume conditions (A1)−(A6). Then `0
2(β, σ2) is well-defined and

finite if |β0
1 | < c and σ2 > 0. Moreover, with probability 1, as m → ∞ and

for fixed n, we have m−1 `j(β, σ2) → `0
j (β, σ2) for j = 0, 1, and m−1 supλ,µ

`2(β, σ2, µ, λ) → `0
2(β, σ2), uniformly in

β0 ∈
[
β

(1)
0 , β

(2)
0

]
, β1 ∈

[
β

(1)
1 , β

(2)
1

]
, σ2 ∈

[
(σ2)(1), (σ2)(2)

]
, (3.10)

provided that

−∞<β
(1)
0 <β

(2)
0 <∞, −c<β

(1)
1 <β

(2)
1 <c, 0<(σ2)(1) <(σ2)(2) <∞. (3.11)

Recall from Section 3.2 that the log-likelihood `, and its approximate form
`, satisfy ` = `0 + `1 and ` = `0 + `2. Therefore, provided the maximizations
are taken over values in a range permitted by (3.10) and (3.11), the almost sure
limits of the estimators of β0, β1, and σ2 that maximize ` and `, are the values
of the quantities that maximize `0

0(β, σ2) + `0
1(β, σ2) and `0

0(β, σ2) + `0
2(β, σ2),

respectively.
By exploiting formulae (3.7)−(3.9) it is possible to choose the distribution

of X such that (A1)–(A6) hold but the value of (β, σ2) that maximizes `0
0 + `0

1 is
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different from that which maximizes `0
0+`0

2. The maximum likelihood estimators,
based on maximizing `, are consistent and converge at rate m−1/2, even if n is held
fixed. Therefore, in the present context and for fixed n, the Gaussian variational
approximate estimators, based on maximizing `, are inconsistent. However, as we
show in Section 3.5, permitting m and n to diverge together leads to consistency,
in fact at rate m−1/2 + n−1.

3.5. Consistency at rate m−1/2 + n−1

We are now in a position to state our main results on the consistency and
convergence rates of estimators of the model parameters based on Gaussian vari-
ational approximation. Recall from Section 2 that the Gaussian variational ap-
proximate maximum likelihood estimators are

(β̂
0
, β̂

1
, σ̂2) = (β0, β1, σ

2) component of argmax
β0,β1,σ2,µ,λ

`(β, σ2, µ, λ).

We impose the following conditions:

(A7) the moment generating function of X, φ(t) = E{exp(tX)}, is well-defined
on the whole real line;

(A8) the mapping that takes β to φ′(β)/φ(β) is invertible;

(A9) in some neighbourhood of β0
1 (the true value of β1), (d2/dβ2) log φ(β) does

not vanish;

(A10) for a constant C > 0, m = O(nC) as m and n diverge;

(A11) the true values β0
0 , β0

1 , and (σ2)0 of β0, β1, and σ2, respectively, lie in
(−∞,∞), (−∞,∞), and (0,∞), respectively, and when choosing (β̂

0
, β̂

1
,

σ̂2) we search in the rectangular region [−C1, C1] × [−C1, C1] × [C−1
1 , C1],

where C1 is a constant satisfying C1 > max(|β0
0 |, |β0

1 |, (σ2)0, 1/(σ2)0).

Theorem 4. If (A1)−(A6) and (A7)−(A11) hold then, as m and n diverge,

β̂
0

= β0
0 + Op(m−1/2 + n−1), β̂

1
= β0

1 + Op(m−1/2 + n−1),

and
σ̂2 = (σ2)0 + Op(m−1/2 + n−1).

4. Proofs

Theorem 1, which is proved in Section 4.1, reduces the parametric complexity
of the variational problem from O(m2) to O(m) in respect of the number of
groups. The proof of Theorem 2 is then relatively conventional. That theorem
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is then applied to prove Theorem 3 by eliminating λ and µ from the variational
likelihood. The proof of Theorem 4 is conducted in a sequence of three steps,
each of which is essentially a lemma for the next. In particular, the first step
(given in Section 4.4.1) establishes consistency of estimators of β0, β1, and σ2;
the second step (Section 4.4.2) uses the conclusion of Step 1 to control remainder
terms, so that the consistency property can be extended to a rate of convergence
that is almost, but not quite, as good as the rate stated in Theorem 4. Finally,
in Section 4.4.3, the conclusion of Step 2 is used to give still better control of
remainders, so that the full theorem can be derived.

4.1. Proof of Theorem 1

Let Σ be p×p, and let Σ1 be the (p− 1)× (p− 1) matrix, a be the p-vector,
and b be the scalar such that

Σ =
[

Σ1 a

aT b

]
.

Then,
|Σ| = |Σ1|

(
b − aTΣ−1

1 a
)
.

We prove the theorem by induction over p, and so we may assume that |Σ1|
is uniquely maximized by taking the off-diagonal components of Σ1 to vanish.
(The theorem clearly holds when p = 1.) Since Σ1 is positive definite then,
for Σ1 and b fixed, b − aTΣ−1

1 a is uniquely maximized by taking a = 0, and
then |Σ| = |Σ1| b. The induction hypothesis now implies that |Σ| is uniquely
maximized by taking the off-diagonal components of Σ to equal zero.

4.2. Proof of Theorem 2

Note that

∂`2(β, σ2, µ, λ)
∂µi

= Yi • − Bi exp
(
µi + 1

2 λi) − σ−2 µi , (4.1)

∂`2(β, σ2, µ, λ)
∂λi

= −1
2 Bi exp

(
µi + 1

2 λi

)
− 1

2 σ−2 + 1
2 λ−1

i . (4.2)

Equating both equations to zero to obtain a turning point in (λi, µi), and sub-
tracting twice the second equation from the first, we see that (3.3) holds.

Using (3.3) to express λi in terms of µi, the right-hand sides (4.1) and
(4.2), when set equal to zero, are both equivalent to (3.5). The left-hand
side there increases from zero to σ2 Bi exp{σ2 (σ2 Yi • + 1)−1/2}, and the right-
hand side decreases from ∞ to 0, as µi increases from −∞ to 0. Moreover,
σ2 Bi exp{σ2 (σ2 Yi • + 1)−1/2} > 0, provided that σ2 > 0. Therefore, if σ2 > 0
then (3.5) has a unique solution in µi, and so (i) holds.
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The fact that the equation formed by setting the left-hand side of (4.1)
equal to zero has a solution means that σ2 Yi •−µi > 0, which is the second part
of (3.4). It therefore follows from (3.3), and the fact that λi > 0 since Λ must
be positive definite, that λi ∈ (0, σ2), which is the first part of (3.4).

4.3. Proof of Theorem 3

First we establish the finiteness of `0
2(β, σ2). Assume that σ2 > 0. Since

Q ≤ 0 and Y• ≥ 0 then σ2 Y• + 1 − Q ≥ 1, and so it suffices to ensure that
E(Y•) + E(|Q|Y•) + E(Q2) < ∞. Now, (3.6) implies that σ2 B exp(−|Q|) ≤
σ2 Y• − Q ≤ σ2 B exp(−|Q| + σ2/2). Therefore,

(σ2Y•)2 + 2σ2Y•|Q| + Q2 = (σ2Y• − Q)2 ≤ (σ2B)2 exp(−2|Q|+σ2) ≤ (σ2B)2eσ2
,

and so,

E
{
(σ2Y•)2+2σ2 Y•|Q|+Q2

}
≤σ4 exp(2β0+σ4){n(n−1)φ2(β1)+nφ(2β1)}<∞

provided |β0
1 | < c. Hence, the latter condition implies that, E(Y•) + E(|Q|Y•) +

E(Q2) < ∞, and therefore that `0
2(β, σ2) < ∞.

Since

E(Yij |Xij) = E{exp(β0
0 + β0

1 Xij + Ui) |Xij} = exp
(
β0

0 + β0
1 Xij + 1

2 (σ2)0
)

and E{X exp(β1 X)} = φ′(β1), then

E{Yij (β0 + β1 Xij)} = E
{

exp
(
β0

0 + β0
1 Xij + 1

2 (σ2)0
)
(β0 + β1 Xij)

}
= exp

(
β0

0 + 1
2 (σ2)0

) {
β0 φ

(
β0

1

)
+ β1 φ′(β0

1

)}
.

Therefore, if we take m to diverge to infinity and keep n fixed, then by
the Law of Large Numbers, and with probability 1, m−1 `j(β, σ2) → `0

j (β, σ2)
for j = 0, and analogously the result when j = 1 also holds. This establishes
pointwise convergence. Uniform convergence follows from equicontinuity of the
functions `0 and `1 if they are interpreted as indexed by different values of their
random arguments. For example, in the case of `0 we have, for different versions
(β′

0, β
′
1, (σ

2)′) and (β′′
0 , β′′

1 , (σ2)′′) of (β0, β1, σ
2),

m−1 |`0(β′, (σ2)′) − `0(β′′, (σ2)′′)| ≤ (|β′
0 − β′′

0 | + |β′
1 − β′′

1 |) S + 1
2 | log{ (σ2)′

(σ2)′′
}| ,

(4.3)
where S = m−1

∑
i

∑
j Yij (1+|Xij |) and converges almost surely to a finite limit

as m → ∞. (Here we have used the fact that |β0
1 | < c, where c is as in (A6).)

It follows from (4.3) that the almost sure limit as m → ∞, of the supremum of



THEORY OF GAUSSIAN VARIATIONAL APPROXIMATION 379

|`0(β′, (σ2)′)− `0(β′′, (σ2)′′)| over |β′
0 −β′′

0 |+ |β′
1 −β′′

1 |+ |(σ2)′− (σ2)′′| ≤ ε, where
the parameter values are constrained to satisfy (3.10) and (3.11), converges to
zero as ε ↓ 0. The case of `1 is similar.

To treat the convergence of `2(β, σ2, µ,λ) we note that, in view of Theorem 2
and particularly (3.5), with probability 1,

m−1 sup
λ,µ

`2(β, σ2, µ, λ) → E(Q Y•) − E
{
B exp

(
Q + 1

2 R
)}

−1
2 σ−2 E

(
Q2 + R

)
+ 1

2 E(log R) ,

where the random variables B, Q, and R are jointly distributed such that R =
σ2 (σ2 Y• +1−Q)−1 and Q solves (3.6). In this notation, and with probability 1,

m−1 sup
λ,µ

`2(β, σ2, µ, λ) → E(Q Y•) − E
[
B exp

{
Q + 1

2 σ2 (σ2 Y• + 1 − Q)−1
}]

−1
2 σ−2 E

{
Q2 + σ2 (σ2 Y• + 1 − Q)−1

}
+1

2 log(σ2) − 1
2 E{log(σ2 Y• + 1 − Q)} .

That is equivalent to asserting that, with probability 1, m−1 supλ,µ `2(β, σ2,µ,λ)
→ `0

2(β, σ2). Again, uniform convergence follows via an equicontinuity argument.

4.4. Proof of Theorem 4

4.4.1. Consistency

For 1 ≤ i ≤ m, let λ̂ i and µ̂
i

denote the entries of µ and λ that maximize
`(β, σ2, µ, λ). Equating the right-hand sides of (4.1) and (4.2) to zero, and
dividing by n, we see that β̂

0
, β̂

1
, σ̂2, λ̂ i, and µ̂

i
satisfy

µ̂
i

(n σ̂2)
+ exp

(
µ̂

i
+ 1

2 λ̂ i + β̂
0

) 1
n

n∑
j=1

exp(β̂
1
Xij) −

1
n

Yi • = 0 (4.4)

and
1

n σ̂2 + exp
(
µ̂

i
+ 1

2 λ̂ i + β̂
0

) 1
n

n∑
j=1

exp(β̂
1
Xij) −

1

n λ̂ i

= 0. (4.5)

Since X has a finite moment generating function, φ, on the real line, Markov’s
inequality can be used to prove that for all C1, C2 > 0 and ρ ∈ (0, 1/2),

sup
β1: |β1|≤C1

P

{∣∣∣∣ 1n
n∑

j=1

exp(β1 Xij) − φ(β1)
∣∣∣∣ > n−ρ

}
= O

(
n−C2

)
.

Therefore, if G(n) is a grid of points in the interval [−C1, C1] containing no more
than O(nC) points, for some C > 0, then

P

{
sup

β1∈G(n)

∣∣∣∣ 1n
n∑

j=1

exp(β1 Xij) − φ(β1)
∣∣∣∣ > n−ρ

}
= O

(
n−C2

)
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for all C2 > 0. Choosing C sufficiently large, and using Hölder continuity of the
exponential function and of φ, we can extend this bound from G(n) to the whole
of the interval:

P

{
sup

β1: |β1|≤C1

∣∣∣∣ 1n
n∑

j=1

exp(β1 Xij) − φ(β1)
∣∣∣∣ > n−ρ

}
= O

(
n−C2

)
.

Therefore, provided m = O(nC) for some C > 0,

P

{
max

1≤i≤m
sup

β1: |β1|≤C1

∣∣∣∣ 1n
n∑

j=1

exp(β1 Xij) − φ(β1)
∣∣∣∣ > n−ρ

}
= O

(
n−C2

)
(4.6)

for all C1, C2 > 0. The probability statement in each of the three displays imme-
diately above (4.6) could have been preceded by max1≤i≤m, although we chose
not to do so because the distribution of Xij does not depend on i. Nevertheless,
the passage to (4.6) can be interpreted as moving the operator max1≤i≤m from
outside to inside the probability statement.

Recall that, conditional on Xij and Ui, Yij is Poisson-distributed with mean
exp(β0

0 + β0
1 Xij + Ui). It therefore can be proved using Markov’s inequality that

for all C1, C2 > 0 and ρ ∈ (0, 1/2),

max
1≤i≤m

P

[∣∣∣∣ 1n
n∑

j=1

{
Yij − exp

(
β0

0 + β0
1 Xij + Ui

)}∣∣∣∣ > n−ρ

]
= O

(
n−C2

)
.

Hence, since m = O(nC) for some C > 0,

P

[
max

1≤i≤m

∣∣∣∣ 1n
n∑

j=1

{
Yij − exp

(
β0

0 + β0
1 Xij + Ui

)}∣∣∣∣ > n−ρ

]
= O

(
n−C2

)
. (4.7)

The properties m = O(nC) and

P
{

max
1≤i≤m

Ui ≥ σ (2D log m)1/2
}
≤ m1−D (4.8)

imply that there exists C ′ > 0 such that

P
[

max
1≤i≤m

exp(Ui) > exp
{
C ′ (log n)1/2

}]
→ 0 . (4.9)

Combining (4.6), (4.7), and (4.9) we see that for all C1, C2 > 0 and ρ ∈ (0, 1/2),

P

{
max

1≤i≤m

∣∣∣∣ 1n Yi • − exp
(
β0

0 + Ui

)
φ(β0

1)
∣∣∣∣ > n−ρ

}
= O

(
n−C2

)
. (4.10)
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From (4.6) and (4.10) we deduce that, for each ρ ∈ (0, 1/2), λ̂ i and µ̂
i
satisfy

µ̂
i

σ2n
+ exp

(
µ̂

i
+ 1

2 λ̂ i + β0

) {
φ(β1) + Op

(
n−ρ

)}
= exp(β0

0 + Ui)
{
φ(β0

1) + Op

(
n−ρ

)}
, (4.11)

1
σ2n

+ exp
(
µ̂

i
+ 1

2 λ̂ i + β0

) {
φ(β1) + Op

(
n−ρ

)}
=

1

nλ̂ i

, (4.12)

where the Op(n−ρ) remainders are of the stated orders uniformly in 1 ≤ i ≤ m

and in σ2, |β0|, |β1| ≤ C1, and σ2 ≥ C−1
1 with C1 > 0 arbitrary but fixed.

By (3.4), 0 < λi < σ2. Therefore, the left-hand side of (4.11) equals
{µi/(σ2n)}+exp(µi +ωi) {φ(β1)+Op(n−ρ)}, where β0 −σ2/2 ≤ ωi ≤ β0 +σ2/2;
call this result (R1). We confine σ2 and β0 to compact sets, in particular to
values satisfying σ2, |β0| ≤ C1, and σ2 ≥ C−1

1 , and so |ωi| is bounded uniformly
in i. This property, (R1), and (4.11) imply that

exp
(
µ̂

i
+ 1

2 λ̂ i + β0

)
{φ(β1) + op(1)} = exp(β0

0 + Ui) {φ(β0
1) + op(1)} , (4.13)

uniformly in 1 ≤ i ≤ m and in σ2, β0 and β1 satisfying σ2, |β0|, |β1| ≤ C1, and
σ2 ≥ C−1

1 , for any fixed C1 > 1. To establish (4.13) in detail, note first that for
each C1 > 0,

φ(β1) is bounded away from zero and infinity uniformly in |β1| ≤ C1 . (4.14)

If (4.13) fails for some η > 0, then it can be shown from (4.11) that “for some
i in the range 1 ≤ i ≤ m, both µi < 0 and |µi|/(σ2n) > η exp(µi + ωi), for all
σ2, β0, and β1 satisfying σ2, |β0|, |β1| ≤ C1, and σ2 ≥ C−1

1 ,” where the property
within quotation marks holds with probability bounded away from zero along
an infinite subsequence of values of n. In this case, since |ωi| is bounded then
µi < − log n + O(log log n), and so, in view of (4.14), the left-hand side of (4.11),
which can be nonnegative, is, for this i = i(n), of order n−c for some c > 0.
Hence for this i, exp(β0

0 + Ui) = Op(n−c), and so the probability that the latter
bound holds for some 1 ≤ i ≤ m must itself be bounded away from zero along
an infinite subsequence of values of n diverging to infinity; call this result (R2).
Since the distribution of Ui is symmetric then (4.9) holds if, on the left-hand side
we replace Ui by −Ui, and so

P
[

min
1≤i≤m

exp(Ui) ≥ exp
{
− C ′ (log n)1/2

}]
→ 1 .

Since exp{−C ′ (log n)1/2} is of strictly larger order than n−c for any c > 0,
property (R2) is violated, and so the original assumption that (4.13) fails must
have been false.
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Results (4.13) and (4.14) imply that λ̂ i and µ̂
i
satisfy

µ̂
i
+ 1

2 λ̂ i + β0 + log φ(β1) = β0
0 + Ui + log φ(β0

1) + op(1) , (4.15)

exp
(
µ̂

i
+ 1

2 λ̂ i + β0

)
φ(β1) = exp

(
β0

0 + Ui

)
φ(β0

1) {1 + op(1)} , (4.16)

uniformly in 1 ≤ i ≤ m and in σ2, β0, and β1 satisfying σ2, |β0|, |β1| ≤ C1, and
σ2 ≥ C−1

1 , for each fixed C1 > 0. Substituting (4.16) into (4.12), and noting
(4.14), we deduce that the λ̂ i satisfy

1
σ2n

+ exp
(
β0

0 + Ui

)
φ(β0

1) {1 + op(1)} =
1

nλ̂ i

,

uniformly in 1 ≤ i ≤ m and in σ2, β0, and β1 satisfying σ2, |β0|, |β1| ≤ C1, and
σ2 ≥ C−1

1 . This result, (4.8), and the version of (4.8) with Ui replaced by −Ui

imply that
− log(nλ̂ i) = β0

0 + Ui + op(1) , (4.17)

uniformly in the same sense. In particular, sup1≤i≤m λ̂ i → 0 in probability.
Hence, by (4.15),

µ̂
i
= Ui + β0

0 − β0 + log{φ(β0
1)

φ(β1)
} + op(1) , (4.18)

uniformly in 1 ≤ i ≤ m and in σ2, β0, and β1 satisfying σ2, |β0|, |β1| ≤ C1, and
σ2 ≥ C−1

1 .
The following property follows using the argument leading to (4.6):

P

{
max

1≤i≤m
sup

β1: |β1|≤C1

∣∣∣∣ 1n
n∑

j=1

Xij exp(β1 Xij) − φ′(β1)
∣∣∣∣ > n−ρ

}
= O

(
n−C2

)
;

(4.19)
the property below is a consequence of (4.10):

P

{∣∣∣∣ 1
mn

m∑
i=1

Yi • − exp
(
β0

0 + 1
2 (σ2)0

)
φ(β0

1)
∣∣∣∣ > n−ρ

}
= O

(
n−C2

)
; (4.20)

and the following property can be derived analogously:

P

{∣∣∣∣ 1
mn

m∑
i=1

n∑
j=1

Xij Yij−exp
(
β0

0 + 1
2 (σ2)0

)
φ′(β0

1)
∣∣∣∣ > n−ρ

}
= O

(
n−C2

)
. (4.21)

Each of (4.19)−(4.21) holds for all C1, C2 > 0, and all ρ ∈ (0, 1/2). Formula
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(3.2) for `2(β, σ2, µ, λ) implies that

− 1
mn

∂`2(β, σ2, µ, λ)
∂β0

=
1

mn

m∑
i=1

exp
(
β0 + µi + 1

2 λi

) n∑
j=1

exp(β1 Xij) , (4.22)

− 1
mn

∂`2(β, σ2, µ, λ)
∂β1

=
1

mn

m∑
i=1

exp
(
β0 + µi + 1

2 λi

) n∑
j=1

Xij exp(β1 Xij)

= exp
{
β0

0 + 1
2 (σ2)0

}
φ(β0

1)φ(β1)−1φ′(β1) + op(1), (4.23)

where the second identity in (4.23) follows from (4.18) and (4.19). The second
identity in (4.23) holds uniformly in values of λi and µi that solve (4.4) and (4.5),
and for σ2, β0, and β1 satisfying σ2, |β0|, |β1| ≤ C1, and σ2 ≥ C−1

1 . Also, by (3.1),
(4.20), and (4.21),

1
mn

∂`0(β, σ2)
∂β0

=
1

mn

m∑
i=1

Yi • = exp
(
β0

0 + 1
2 (σ2)0

)
φ(β0

1) + op(1) , (4.24)

1
mn

∂`0(β, σ2)
∂β1

=
1

mn

m∑
i=1

n∑
j=1

Xij Yij

= exp
(
β0 + 1

2 (σ2)0
)
φ′(β0

1)φ(β1)φ(β1)−1 + op(1) , (4.25)

uniformly in the same sense. Combining (4.23) and (4.25) we deduce that:

1
mn

∂`(β, σ2, µ, λ)
∂β1

= exp{β0
0 + 1

2 (σ2)0}φ(β1)−1{φ′(β0
1)φ(β1) − φ(β0

1)φ′(β1)}

+op(1), (4.26)

uniformly in the following sense:

uniformly in σ2, β0, β1, λ, and µ that solve ∂`/∂β0 = ∂`/∂β1 = 0,
∂`/∂λ = ∂`/∂µ = 0, and which satisfy σ2, |β0|, |β1| ≤ C1, and
σ2 ≥ C−1

1 , provided that C1 is so large that |β0
0 |, |β0

1 | < C1, and
C−1

1 < (σ2)0 < C1.

(4.27)

Recall from (4.1), (4.22) and (4.24) that

∂`2(β, σ2,µ,λ)
∂µi

= Yi • − Bi exp
(
µi + 1

2 λi

)
− σ−2 µi , (4.28)

∂`(β, σ2,µ,λ)
∂β0

=
m∑

i=1

n∑
j=1

Yij −
m∑

i=1

exp
(
β0 + µi + 1

2 λi

) n∑
j=1

exp(β1 Xij)

=
m∑

i=1

{
Yi • − Bi exp

(
µi + 1

2 λi

)}
. (4.29)
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Adding (4.28) over i, and subtracting from (4.29), we deduce that
m∑

i=1

µ̂
i
= 0 . (4.30)

Hence, by (4.18),

β0
0 − β̂

0
+ log{φ(β0

1)

φ(β̂
1
)
} = op(1) , (4.31)

uniformly in the sense of (4.27).
Formula (4.26) (respectively, (4.31)) equates the value of φ′(β1)/φ(β1) (re-

spectively, exp(β0) φ(β1)) to its true value, plus a negligible remainder. Since,
by assumption, there is a one-to-one relation between values of β and values of
φ′(β)/φ(β) (respectively, exp(β)). Therefore consistency of estimation of β0 and
β1 follows from (4.26) and (4.31).

Note too that

2
m

∂`(β, σ2, µ, λ)
∂σ2

= σ−4 1
m

m∑
i=1

(
λi + µ2

i

)
− σ−2

= σ−4 1
m

m∑
i=1

[
Ui + β0

0 − β0 + log{φ(β0
1)

φ(β1)
}
]2 − σ−2 + op(1) , (4.32)

where the first identity follows from (3.1) and (3.2), and the second comes from
(4.18). Therefore if β0 and β1 solve the variational approximate likelihood equa-
tions then

σ̂2 =
1
m

m∑
i=1

U2
i + op(1) = (σ2)0 + op(1) .

and (σ2)0 is estimated consistently.

4.4.2. Convergence rate for variational approximate estimators equals
Op(m−1/2 + n−ρ)

By (4.17),
λ̂ i = n−1 exp

{
−

(
β0

0 + Ui

)
+ op(1)

}
, (4.33)

where the remainder is of the stated order uniformly in 1 ≤ i ≤ m. Also, by
(4.8), the version of (4.8) for −Ui rather than Ui, and (4.18),

max
1≤i≤m

|µ̂
i
| = Op

(
nη

)
, (4.34)

for each η > 0. Hence, by (4.11), (4.33) and the consistency of the estimator of
(σ2)0, proved in Section 4.4.1,

exp(µ̂
i
+ β̂

0
)
{
φ(β̂

1
) + Op

(
n−ρ

)}
= exp(β0

0 + Ui)
{
φ(β0

1) + Op

(
n−ρ

)}
, (4.35)
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uniformly in 1 ≤ i ≤ m and for each ρ ∈ (0, 1/2).
Equation (4.35), together with (4.14), imply the following stronger form of

(4.18):

µ̂
i
= Ui + β0

0 − β̂
0
+ log

{ φ(β0
1)

φ(β̂
1
)

}
+ Op

(
n−ρ

)
, (4.36)

uniformly in 1 ≤ i ≤ m and for each ρ ∈ (0, 1/2).
The argument from (4.19) down, but with (4.18) replaced by (4.36), can now

be used to prove that for each ρ ∈ (0, 1/2),

σ̂2 = (σ2)0 + Op(m−1/2 + n−ρ) , β̂
0

= β0
0 + Op(m−1/2 + n−ρ) ,

β̂
1

= β0
1 + Op(m−1/2 + n−ρ) . (4.37)

The term in m−1/2 derives from the standard deviations of means of functions
of the Uis.

4.4.3. Concise convergence rate for variational approximate estimators

Without loss of generality, φ′(t) 6= 0 in some compact neighbourhood of β0
1 .

(If not, add a constant to the random variable X to ensure that φ′(β0
1) 6= 0.) We

take β0
1 to lie in that neighbourhood, and assume too that β̂

1
is there. In view

of the already-proved consistency of β̂
1

for β0
1 , this assumption too can be made

without loss of generality.
Using (4.6), (4.7), (4.14), (4.33), (4.34), and the consistency of σ̂2 for (σ2)0,

it can be proved that

1
n

n∑
j=1

exp(β1 Xij) = φ(β1) exp{∆i1(β1)} , (4.38)

1
n

n∑
j=1

Xij exp(β1 Xij) = φ′(β1) exp{∆i2(β1)} , (4.39)

1
n

Yi • −
µi

σ2n
= exp{Ui + β0

0 + ∆i3(β0, β1)}φ(β0
1) , (4.40)

uniformly in i, and where ∆i1, ∆i2 and ∆i3 satisfy, for all C1 > 0 and each
ρ ∈ (0, 1/2)

max
1≤i≤m

sup
|β0|,|β1|≤C1

|∆ik(β0, β1)| = Op

(
n−ρ

)
. (4.41)

(When k = 1 or 2 the dependence of ∆ik(β0, β1) on β0 is degenerate. Note that,
by (3.4), the left-hand side of (4.40) is strictly positive.) It can also be proved
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that

max
k=1,2,3

max
r=1,2

sup
|β0|,|β1|≤C1

1
m

∣∣∣∣ m∑
i=1

exp(Ui)∆ik(β0, β1)r

∣∣∣∣ = Op

(
m−1/2+n−1

)
, (4.42)

max
k=1,2,3

max
r1=0,1

max
r2=1,2

sup
|β0|,|β1|≤C1

1
m

∣∣∣∣ m∑
i=1

U r1
i ∆ik(β0, β1)r2

∣∣∣∣ = Op

(
m−1/2+n−1

)
. (4.43)

In the notation of (4.38)–(4.40), (4.4) is equivalent to:

exp
{
β0 +µi + 1

2 λi +∆i1(β1)
}

φ(β1) = exp{β0
0 +Ui +∆i3(β0, β1)}φ(β0

1) . (4.44)

Taking logarithms of both sides of (4.44), and adding over i, we deduce that
if β0 and β1 satisfy that equation,

β0−β0
0 +log

{φ(β1)
φ(β0

1)

}
=

1
m

m∑
i=1

{
Ui−µi− 1

2 λi +∆i3(β0, β1)−∆i1(β1)
}

. (4.45)

Additionally, m−1
∑

i Ui = Op(m−1/2); by (4.30),
∑

i µ̂
i

= 0; using (4.33),
m−1

∑
i λ̂ i = Op(n−1); and by (4.43),

sup
|β0|,|β1|≤C1

1
m

∣∣∣∣ m∑
i=1

{∆i3(β0, β1) − ∆i1(β1)}
∣∣∣∣ = Op

(
m−1/2 + n−1

)
.

Combining the results from (4.45) down we deduce that

β̂
0
− β0

0 + log
{φ(β̂

1
)

φ(β0
1)

}
= Op

(
m−1/2 + n−1

)
. (4.46)

Observe that

∆ ≡ 1
mn

m∑
i=1

n∑
j=1

Xij {Yij − exp(β0
0 + β0

1 Xij + Ui)} = Op

(
m−1/2

)
. (4.47)

Using (4.23) and (4.25) we deduce that the equation ∂`/∂β1 = 0 is equivalent to:

1
mn

m∑
i=1

n∑
j=1

Xij

{
Yij − exp

(
β0 + µi + 1

2 λi + β1 Xij

)}
= 0 ,

which, in turn, is equivalent to

∆ + exp(β0
0) φ′(β0

1)
1
m

m∑
i=1

exp{Ui + ∆i2(β0
1)}

= exp(β0) φ′(β1)
1
m

m∑
i=1

exp{µi + 1
2 λi + ∆i2(β1)} . (4.48)
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But by (4.44),

µ̂
i
+ 1

2 λ̂ i = β0
0 − β̂

0
+ log

{ φ(β0
1)

φ(β̂
1
)

}
+ Ui + ∆i3(β̂ 0

, β̂
1
) − ∆i1(β̂ 1

) , (4.49)

and therefore

exp
{
µi + 1

2 λi + ∆i2(β̂ 0
)
}

= exp{β0
0 − β̂

0
+ Ui + ∆i3(β̂ 0

, β̂
1
) − ∆i1(β̂ 1

)

+∆i2(β̂ 1
)}φ(β0

1)/φ(β̂
1
) . (4.50)

Combining (4.48) and (4.50) we deduce that

∆ exp(−β0
0) φ(β0

1)−1 + φ′(β0
1) φ(β0

1)−1 1
m

m∑
i=1

exp{Ui + ∆i2(β0
1)}

= φ′(β̂
1
) φ(β̂

1
)−1 1

m

m∑
i=1

exp
{

Ui + ∆i3(β̂ 0
, β̂

1
) − ∆i1(β̂ 1

) + ∆i2(β̂ 1
)
}

. (4.51)

Together, (4.37), (4.42), (4.43), (4.47), and (4.51) imply that

φ′(β0
1) φ(β0

1)−1 1
m

m∑
i=1

exp(Ui)

= φ′(β̂
1
) φ(β̂

1
)−1 1

m

m∑
i=1

exp(Ui) + Op

(
m−1/2 + n−1

)
. (4.52)

(To derive (4.52) we Taylor-expanded quantities exp(Ui+∆i) as exp(Ui) (1+∆i+
∆2

i /2), plus a remainder dominated by (1/6)|∆i|3 exp(Ui + |∆i|) = Op(nη−(3/2)),
uniformly in 1 ≤ i ≤ m for all η > 0; here we used (4.41).) Result (4.52) implies
that

φ′(β0
1) φ(β0

1)−1 = φ′(β̂
1
) φ(β̂

1
)−1 + Op

(
m−1/2 + n−1

)
. (4.53)

Together, (4.46) and (4.53) imply that

β̂
0

= β0
0 + Op

(
m−1/2 + n−1

)
, β̂

1
= β0

1 + Op

(
m−1/2 + n−1

)
. (4.54)

Results (4.33), (4.49), and (4.54) imply that

µ̂
i
= Ui + ∆i3(β̂ 0

, β̂
1
) − ∆i1(β̂ 1

) + Op

(
m−1/2 + n−1

)
, (4.55)

uniformly in 1 ≤ i ≤ m. Combining (4.43) and (4.55) we obtain

1
m

m∑
i=1

µ2
i =

1
m

m∑
i=1

U2
i + Op

(
m−1/2 + n−1

)
= (σ2)0 + Op

(
m−1/2 + n−1

)
. (4.56)
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From (4.32), (4.33) and (4.56) we deduce that σ̂2 = (σ2)0 + Op(m−1/2 + n−1).
The theorem follows from this property and (4.54).

5. Discussion

The preceding two sections represent an important first step in understand-
ing the theoretical properties of variational approximations in likelihood-based
inference. The simple Poisson mixed model lends itself to a deep understanding
of such properties since it is the one of the simplest generalized linear mixed
model that still is complicated enough to benefit from approximation methods.
Of course, there are several extensions that could be entertained: non-equal
sample sizes within groups, multiple fixed effects, multiple variance components,
more general covariance structures, and other generalized response families. The
case of unequal sample sizes is straightforward to address provided we take the
sizes to lie between two constant multiples of n; more disparate sample sizes lead
to more complex results. General covariance structures and response families are
more challenging to address, but a problem of arguably greater interest is that
of finding practical approximations to the distributions of estimators. Methods
for solving that problem are currently being developed. Asymptotic distribution
theory is another extension of interest. The current article is likely to provide a
basis for such future work.
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