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Abstract: In this paper, we develop a posterior mode estimation method for non-

linear and non-Gaussian state space models. By exploiting special structures of the

state space models, we derive a modified quadratic hill-climbing procedure which

can be implemented efficiently in O(n) operations. The method can be used for es-

timating the state variable, performing Bayesian inference and carrying out Monte

Carlo likelihood inference. Numerical illustrations using simulated and real data

demonstrate that our procedure is much more efficient than a common gradient

method. It is also evident that our method works very well in a new stochastic

volatility model which contains a nonlinear state equation.
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1. Introduction

Let yt be a p × 1 observable time series and αt be a m × 1 state vector.

Define also α = (α′

1, . . . , α
′

n)′ and y = (y′1, . . . , y
′

n)′. The general nonlinear and

non-Gaussian state space model considered in this paper is

p(yt|αt) (1)

αt+1 = gt(αt) + ηt, t = 1, . . . , n, (2)

where log p(yt|αt) is twice continuously differentiable and gt(·) is a known function

of αt which can be time dependent. The specification in (1) allows the modeling

of non-Gaussian measurement time series as in Shephard and Pitt (1997). The

innovation ηt can also be non-Gaussian. In addition, the Markov dependence in

αt and αt+1 defined by gt(·) encompasses a wide variety of nonlinear structure

in αt. In the following discussion, we assume that

(A1) Given α, yt and ys are independent for all t and s.

(A2) p(yt|α) = p(yt|αt) for all t.

(A3) gt(αt) is differentiable with respect to αt.
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These assumptions are standard in nonlinear state space models.

An important topic in state space modeling is the estimation of the unknown

state variable α. To approach the problem, it seems natural to consider the

marginal posterior density p(αt|y). Then a point estimate can be derived from

the marginal posterior mean and marginal posterior mode. In standard Gaussian

linear state space models where p(yt|αt) is Gaussian and gt(αt) is a linear function

of αt, p(αt|y) is also Gaussian with mean and variance that can be computed

easily by the Kalman filter. However, in the general nonlinear and non-Gaussian

model written in (1) and (2), computing p(αt|y) can be very difficult as it involves

high-dimension integration. Kitagawa (1987) introduced a numerical method

to evaluate the marginal density but it is still very computer intensive when

the dimension is high. Therefore, it is not computationally efficient to find the

posterior mean and mode directly from p(αt|y) when n is large; see Fahrmeir

(1992, p.501) and Harvey (1989, p.165).

An alternative way of extracting the state variable α from the observed data

y is to consider p(α|y). The estimate obtained by maximizing p(α|y) with respect

to α is usually called the maximum a posteriori estimate; see Anderson and Moore

(1979, p.26) and Sage and Melsa (1971, p.441). Fahrmeir (1992) demonstrated

that optimizing p(α|y) by a scoring method works well in exponential family

distributions with linear transition equation even though n is large. Besides the

state estimation, the posterior mode searching from p(α|y) happens to be a cru-

cial step in performing the posterior sampling by Markov chain Monte Carlo

methods (Shephard and Pitt (1997)) and in approximating the likelihood func-

tion (Durbin and Koopman (1997), (2000)). In the above two applications, the

posterior mode serves as a good reference point to construct an artificial model

for sampling in a Metropolis-Hasting step and for computing the likelihood func-

tion by importance sampling. Obviously, from the posterior sample generated

by the Markov chain Monte Carlo methods, one can also estimate α by the pos-

terior mean. In summary, the posterior mode from p(α|y), which facilitates the

Bayesian and likelihood inference, is important for state space modeling.

In the majority of results that are related to posterior mode searching in

state space models, the existence of a linear transition equation is assumed for

αt (Fahrmeir (1992); Durbin and Koopman (1997), (2000); Shephard and Pitt

(1997)). Provided l′′(αt) is negative semi-definite, where l(αt) = log p(yt|αt),

the posterior mode can be evaluated easily by Newton’s method via the Kalman

filter. The condition holds if p(yt|αt) is from the exponential family. However,

the specification in (1) does not guarantee that l′′(αt) is negative semi-definite.

Furthermore, (2) may not define a linear transition equation. In this paper, we

introduce a new method to maximize p(α|y) for α under the nonlinear and non-

Gaussian state space model in (1) and (2) via the Kalman filter. Our method
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can be applied even though l′′(αt) is not always negative definite or gt(αt) is

nonlinear. More importantly, the new method is very efficient as compared with

common gradient methods because it can be implemented with O(n) operations.

Our proposed method is very useful, especially when we want to estimate the

states with known or estimated parameter values, to carry out the posterior

sampling as in Shephard and Pitt (1997) and to perform the likelihood inference

as in Durbin and Koopman (1997, 2000).

The rest of this paper is as follows. Section 2 motivates use of quadratic

hill-climbing for finding the posterior mode. Section 3 reviews the properties

and the main features of the quadratic hill-climbing method. In Section 4, the

main results of the paper are presented. We discuss how to apply the Kalman

filter for implementing the quadratic hill-climbing method, two modifications for

computational enhancement, ways to handle nonlinear transition equation and

our modified quadratic hill-climbing method for nonlinear models. We consider

some extensions in Section 5. Simulated examples for examining the performance

of our method are given in Section 6. Section 7 presents a real data illustration.

An appendix shows how the quadratic hill-climbing method can be implemented

via the Kalman filter.

2. Problems in Existing Methods

The estimation of posterior mode is to maximize log p(α|y), or

q(α) = log p(α, y) = log p(α1) +
n−1
∑

t=1

log p(αt+1|αt) +
n

∑

t=1

l(αt) (3)

with respect to α, where l(αt) = log p(yt|αt). This problem has long been studied

for the dynamic model

p(yt|αt), αt+1 = ct + Ttαt + ηt, ηt ∼ N(0, Qt). (4)

For example, Fahrmeir (1992) focused on observations generated from exponen-

tial family distributions. Recently, Shephard and Pitt (1997) and Durbin and

Koopman ((1997), (2000)) have considered this problem for Bayesian inference

and Monte Carlo likelihood evaluation. Most of the existing works applied New-

ton’s method with the typical iterative step

α(1) = α(0) − q′′(α(0))−1 q′(α(0)), (5)

where α(0) and α(1) are the current and the updated iterates of α, q ′ and q′′ are

the first and second derivatives of q with respect to α respectively. The basic
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idea of Newton’s method is to find the maximum of a quadratic approximation

of q(α) around α(0). As shown in the Appendix,

q′′(α) =







l′′(α1) 0
. . .

0 l′′(αn)






− Γ−1

under (4), where Γ = cov(α). To use Newton’s method, it is required to have

q′′(α) negative definite. This is satisfied when all the second derivatives l ′′(αt)

are negative definite. Otherwise, there is no guarantee that the quadratic ap-

proximation to q(α) has a maximum.

When the negative definiteness of l′′(αt) does not hold, Durbin and Koopman

(2000, p.13) suggest using an iterative method, called method 2 here, for posterior

mode searching. However, we have to assume the following linear measurement

equation:

yt = Ztαt + εt, εt ∼ p(εt), −
1

εt

∂log p(εt)

∂εt
> 0. (6)

Although we can apply Newton’s method or method 2 to a variety of models,

there exist many unsolved cases.

An example where all the existing methods fail is

yt = α2
t + εt, εt ∼ N(0, 1). (7)

Similar measurement equations were considered in Alspach and Sorenson (1972)

and Carlin, Polson and Stoffer (1992). The former discussed a quadratic scalar

example and the latter studied an nonstationary growth model. It can be shown

easily that l′′(αt) = 2yt − 6α2
t , which is not necessarily negative. Moreover, (7)

cannot be written in the linear form (6). Hence, the posterior mode estimation

problem cannot be dealt by Newton’s method or method 2.

Another interesting example is the stochastic volatility in the mean model:

yt|αt ∼ N

(

δ exp(
αt

2
), exp(αt)

)

, αt+1 = c + φαt + ηt, ηt ∼ N(0, σ2
η). (8)

It is an important model for financial market volatility. Its basic version, that is

when δ = 0, has been studied widely in the literature (Harvey, Ruiz and Shep-

hard (1994); Kim, Shephard and Chib (1998)). The additional conditional mean

component δexp(αt

2 ) is used to capture the potential risk premium (Engle, Lilien

and Robins (1987)). In this case, l′′(αt) = − yt

2βt

(yt −
1
2µt), where µt = δexp(αt

2 )

and βt = exp(αt) are the conditional mean and variance of yt respectively. Since

l′′(αt) is not always negative and the conditional mean in (8) is not a linear

function of αt, Newton’s method and method 2 are not applicable.
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Here we introduce the modified quadratic hill-climbing method to solve the

posterior mode estimation problem in these alternative situations. More impor-

tantly, the hill-climbing method admits extension to the nonlinear transition as

in (2): αt+1 = g(αt) + ηt. To the best of our knowledge, this is the first time the

posterior mode estimation is considered in nonlinear state space models.

3. Review of Quadratic Hill-Climbing Method

To solve the non-negativity problem of q ′′(α) encountered in Newton’s

method, we propose using Goldfeld, Quandt and Trotter (1966)’s quadratic hill-

climbing method. This optimization algorithm has two attractive features. It

does not require q′′(α) to be everywhere negative definite. Furthermore, the

step size in each iteration is controlled in such a way as to yield a good quadratic

approximation of the target function q(α) in a neighborhood of the current iterate

α(0). Let δ be a constant that q′′(α(0)) − δI is negative definite and Sδ be the

region consisting of α with ‖α − α(0)‖ ≤ ‖(q′′(α(0)) − δI)−1q′(α(0))‖, where ‖ · ‖

is the standard Euclidean norm. According to the theorem in Goldfeld, Quandt

and Trotter (1966, p.545), the second order expansion of q(α) at α(0),

q(α(0)) + (α − α(0))′q′(α(0)) +
1

2
(α − α(0))′q′′(α(0))(α − α(0)), (9)

will attain the maximum in Sδ at α(0) − (q′′(α(0))− δI)−1 q′(α(0)) if δ ≥ 0, and at

α(0) − q′′(α(0))−1 q′(α(0)) if δ < 0. In view of (9), consider the following iterative

scheme:

(a) Initialize a positive parameter R at a suitable value.

(b) Calculate δ = λ + R‖q′(α(0))‖ and

α(1) =







α(0) − (q′′(α(0)) − δI)−1 q′(α(0)), δ ≥ 0,

α(0) − q′′(α(0))−1 q′(α(0)), δ < 0.
(10)

(c) Check to see whether q(α(1)) > q(α(0)).

(d) If yes, then stop and one iteration is completed. If not, increase R, say by

setting R = 2R, and goto (b).

The parameter λ is taken as the largest eigenvalue of q ′′(α(0)) so that q′′(α(0))−δI

is negative definite. The updating scheme in (10) defines α(1) as the maxi-

mum of the quadratic approximation of q(α) in Sδ with center α(0) and radius

‖(q′′(α(0)) − δI)−1q′(α(0))‖. Goldfeld, Quandt and Trotter (1966) showed that

the upper bound of the radius ‖(q′′(α(0)) − δI)−1q′(α(0))‖ is R−1. Therefore,

one can limit the step size by controlling R. At each iteration, a positive R is

selected. If the quadratic approximation of q(α) within Sδ is good, it is likely

that α(1) determined by (10) is close to the maximum of q(α) in the same region,
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thus producing a functional increment in step (c). Otherwise, the value of R is

gradually increased in step (d) to reduce the radius of the region until a move

to α(1) with q(α(1)) > q(α(0)) is generated. In cases where q(α) is concave, the

iterative scheme in (10) reduces to Newton’s method.

Although the hill-climbing approach can be applied to any conditional dis-

tribution p(yt|αt), the crude application of (10), which involves the inversion of

q′′(α(0)) − δI, is highly inefficient as α(0) is typically of high dimension. A fast

algorithm is needed.

4. Main Results

We begin this section with a fast algorithm for applying the quadratic hill-

climbing method. We assume here a linear transition equation for αt and discuss

some ways to handle the nonlinear transition equation in Section 4.2. In other

words, the assumed underlying model is that in (4). The typical step of quadratic

hill-climbing involves the updating of α(0) to α(1) from α(1) = α(0) − (q′′(α(0)) −

δI)−1 q′(α(0)). Computing this quantity directly using standard matrix inversion

methods is computer intensive when the sample size n is large. To facilitate

fast calculation of the posterior mode, which is important in block sampling

(Shephard and Pitt (1997)) and Monte Carlo likelihood evaluation (Durbin and

Koopman (1997), (2000)), artificial observations ŷt = α
(0)
t + Htl

′(α
(0)
t ) and noise

variance Ht = −(l′′(α
(0)
t )− δI)−1 are formed. To get α(1) from α(0) − (q′′(α(0))−

δI)−1 q′(α(0)), we propose using the following Gaussian state space model:

ŷt = αt + εt, εt ∼ N(0,Ht), αt+1 = ct + Ttαt + ηt, ηt ∼ N(0, Qt).

The desired iterate α(1) can then be obtained as the Kalman filter smoothed

value of α under the above model. A proof for the equivalence of α(1) and the

smoothed value is given in the Appendix. It should be noted that updating α(0)

to α(1) with the use of the Kalman filter is very important for estimating the

posterior mode in O(n) operations. Otherwise, we need to invert the mn × mn

matrix q′′(α(0)) − δI by some standard matrix inversion algorithms which are

typically of order O(n2) or even O(n3). Clearly, standard methods that do not

exploit the special dynamic structure of {yt} and {αt} are much less efficient.

4.1. Two modifications

We introduce two modifications of quadratic hill-climbing procedure to en-

hance computational efficiency. The first modification is about the selection of

λ. Goldfeld, Quandt and Trotter (1966) suggested setting λ at the largest eigen-

value of q′′(α(0)). Evaluating the largest eigenvalue is likely very time consuming

because q′′(α(0)) is of dimension mn. Moreover, evaluation involves the inverse
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of the mn × mn matrix Γ. Therefore, this choice of λ may result in a highly

computer-intensive algorithm. According to Lemma 1 of Goldfeld, Quandt and

Trotter (1966), the purpose of selecting λ as the largest eigenvalue is to guarantee

that q′′(α(0)) − δI is negative definite. To avoid dealing with eigenvalues of high

dimension matrices, we propose another choice of λ that serves the same purpose.

Let β1, . . . , βn be the largest eigenvalue of the m×m matrices l′′(α1), . . . , l
′′(αn)

respectively. With λ = max{β1, . . . , βn},

q′′(α) − δI =







l′′(α1) − λI 0
. . .

0 l′′(αn) − λI






− Γ−1 − R‖q′(α(0))‖I

is negative definite. Computing βt is easy because l′′(αt) is m×m only. In terms

of computation time, the suggested method is obviously preferable to Goldfeld,

Quandt and Trotter (1966)’s approach, especially when n is large.

The second modification is about the value of δ. In the original proposal

of Goldfeld, Quandt and Trotter (1966), δ = λ + R‖q ′(α(0))‖ and so we have

to compute the norm ‖q′(α(0))‖ at each iteration. Again, this is not desirable

because evaluating the norm of q′(α) involves Γ−1. We propose setting δ = λ+R

rather than δ = λ+R‖q′(α(0))‖. It can be shown that the maximum of the radius

‖(q′′(α(0))−δI)−1q′(α(0))‖ is R−1‖q′(α(0))‖ and we have bypassed the calculation

of ‖q′(α(0))‖. In practice, we need to select the starting value of R carefully. If R

is initialized at a ‘large’ value, say 1, the maximum radius will be ‖q ′(α(0))‖. In

this case, the iteration can be easily trapped in a local optimum because when

α(0) is close to a local optimum, ‖q′(α(0))‖ will be small, implying that the next

move to α(1), limited by the maximum distance ‖q ′(α(0))‖, will be a small step.

Convergence might then be to a local optimum. On the other hand, if R is started

up with a ‘small’ value, say 10−10, it may take many trials to increase R so as

to have an increase in q(α). Our experience is that an initial value of R = 0.001,

implying the maximum radius of 1000 ‖q ′(α(0))‖, usually does a good job.

4.2. Nonlinear transition with non-Gaussian errors

So far we have assumed that a transition equation exists for {αt}. In the

general specification stated in (2), gt(αt) can be a nonlinear function of αt and

ηt can be non-Gaussian. There are standard approaches for estimating the state

variable α in nonlinear and non-Gaussian state space models. Two well-known

examples are the extended Kalman filter and the Gaussian sum filter; see An-

dersen and Moore (1979) and Harvey (1989). The former applies the first order

approximation to gt(αt), while the latter uses sums of Gaussian densities to

approximate the filtering density p(αt|y1, . . . , yt). We adopt another approach



262 MIKE K. P. SO

for nonlinear filtering, a posterior mode estimation method under the nonlinear

model in (1) and (2) that can be used for filtering the state variable, implement-

ing the block sampling of Shephard and Pitt (1997) and carrying out the Monte

Carlo likelihood inference in Durbin and Koopman (1997, 2000).

To deal with the possible nonlinear transition, we propose linearizing gt(αt)

by expanding it about a point α̂t using the first-order Taylor expansion, gt(αt) ≈

gt(α̂t) + ∂gt(αt)
∂αt

∣

∣

∣

αt=α̂t

(αt − α̂t). If ηt is non-Gaussian, we suggest the second

order approximation to lηt
(x) = log pηt

(x), where pηt
denotes the distribution of

ηt. In other words, pηt
is approximated by the normal distribution with mean

η̂t − l′′ηt
(η̂t)

−1l′ηt
(η̂t) and variance −l′′ηt

(η̂t)
−1, where η̂t is the point of expansion,

l′ηt
and l′′ηt

are the first and second deviatives of lηt
with respect to ηt. If l′′ηt

(η̂t)

is not negative definite, we can use −l′ηt
(η̂t)l

′

ηt
(η̂t)

′ instead. The rationale is that

E(−l′′ηt
(η̂t)) = E(l′ηt

(η̂t)l
′

ηt
(η̂t)

′) under some regularity assumptions on pηt
. In

summary, we approximate the model in (1) and (2) by a model in (4) with

Tt =
∂gt(αt)

∂αt

∣

∣

∣

∣

αt=α̂t

,

Qt =

{

−l′′ηt
(η̂t)

−1 if l′′ηt
(η̂t) is n.d.

(l′ηt
(η̂t)l

′

ηt
(η̂t)

′)−1 otherwise,
(11)

ct = gt(α̂t) − Ttα̂t + η̂t + Qtl
′

ηt
(η̂t),

so that we can use the Kalman filter smoother of the Appendix.

To apply the quadratic hill-climbing procedure, we choose the points of ex-

pansion as α̂t = α
(0)
t and η̂t = α

(0)
t+1 − gt(α

(0)
t ). The main purpose of constructing

the linear model in (11) is to approximate p(αt+1|αt) locally around α(0) as the

log-posterior in (3) involves p(αt+1|αt). By increasing R to a certain level that

the radius of the region Sδ is sufficiently small, we expect that (11) is a good

proxy for the model in (1) and (2) in the sense that if α lies within a small Sδ, the

conditional distribution of αt+1 given αt under the model in (1) and (2) satisfies

p(αt+1|αt)

= pηt
(αt+1 − gt(αt)) ≈ pηt

(α
(0)
t+1 − gt(α

(0)
t ))

∝ exp

(

−
1

2
(α

(0)
t+1−gt(α

(0)
t )−η̂t−Qtl

′

ηt
(η̂t))

′Q−1
t (α

(0)
t+1−gt(α

(0)
t )−η̂t−Qtl

′

ηt
(η̂t))

)

= exp

(

−
1

2
(α

(0)
t+1 − ct − Ttα

(0)
t )′Q−1

t (α
(0)
t+1 − ct − Ttα

(0)
t )

)

≈ exp

(

−
1

2
(αt+1 − ct − Ttαt)

′Q−1
t (αt+1 − ct − Ttαt)

)

.
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This is, ignoring a multiplicative constant, the distribution of αt+1 conditional

on αt under the model in (11). The approximations hold because α is close to

α(0); The proportionality follows as α
(0)
t+1 − gt(α

(0)
t ) is the point of expansion of

the quadratic approximation to lηt
; The last equality is true because we expand

gt(αt) about α
(0)
t . According to the main theorem of Goldfeld, Quandt and

Trotter (1966, p.545), for fixed R in (10) the α(1) obtained from applying the

quadratic hill-climbing with the transition equation in (11) gives the maximum

of the quadratic approximation to q(α) within the region Sδ under the model in

(11). Hence, a functional increment, that is q(α(1)) > q(α(0)), is expected if the

radius of Sδ is small enough or R is large enough.

4.3. A modified quadratic hill-climbing method

The modified quadratic hill-climbing method proposed here for posterior

mode estimation under the nonlinear state space model in (1) and (2) is summa-

rized below.

(a) Initialize R at a suitable value, such as 0.001.

(b) Set δ = λ+R with λ as modified, calculate α(1) as the Kalman filter smoothed

values based on the state space model

ŷt = αt + εt, εt ∼ N(0,Ht), αt+1 = ct + Ttαt + ηt, ηt ∼ N(0, Qt),

where

ŷt = α
(0)
t + Htl

′(α
(0)
t ), Ht =







−(l′′(α
(0)
t ) − δI)−1, δ ≥ 0,

−l′′(α
(0)
t )−1, δ < 0,

Tt =
∂gt(αt)

∂αt

∣

∣

∣

∣

αt=α
(0)
t

, (12)

Qt =

{

−l′′ηt
(η̂t)

−1 if l′′ηt
(η̂t) is n.d.

(l′ηt
(η̂t)l

′

ηt
(η̂t)

′)−1 otherwise,

ct = gt(α
(0)
t ) − Ttα

(0)
t + η̂t + Qtl

′

ηt
(η̂t),

η̂t = α
(0)
t+1 − gt(α

(0)
t ).

(c) Check to see whether q(α(1)) > q(α(0)).

(d) If yes, then stop and one iteration is completed. If not, increase R, say by

setting R = 2R, and goto (b).

A nice feature of the above hill-climbing method is that the step size δ is

self-adjusted according to the quality of the quadratic approximation: when the

approximation is good, the step size can be larger; when the approximation is
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poor in high dimensional problems, the step size is automatically tuned down to

cater for an increase in q(α).

Comparing with our proposed method in (12), the extended Kalman filter

also applies the linearization of gt(αt), but the point of expansion is the filtered

αt rather than the previous smoothed estimate α
(0)
t representing the mode of

the posterior density p(α|y). While both methods can be used for estimating

α, the extended Kalman filter is not designed to calculate the posterior mode

which is found to be important for Bayesian and likelihood inference of state

space models. In contrast to (12), the extended Kalman filter does not require

iteration. However, its performance in nonlinear filtering can be seriously affected

by the precision of the filtered αt as a predicted value of αt. In practice, we

can combine the extended Kalman filter and modified quadratic hill-climbing as

follows:

(a) Apply the extended Kalman filter to generate α(0).

(b) Iterate (12) once to obtain α(1).

(c) Use α(1) as the point of expansion to form the linear approximated model

for applying the extended Kalman filter and one iteration is completed.

Step (c) is similar to the iterated extended Kalman filter (Anderson and Moore

(1979), p.204) in that the points of expansion are revised in each iteration. As

far as state estimation is concerned, the combined method may perform better

than the extended Kalman filter in some applications.

5. Extensions

The previous methodology for posterior mode estimation can also be applied

to the more general model:

p(yt|αt), αt+1 = ft(αt, ξt), t = 1, . . . , n,

where ξt is a noise in the state equation. For example, in multiplicative models

ft(αt, ξt) = gt(αt)ξt. By linearizing ft(αt, ξt) about (α̂t, ξ̂t),

ft(αt, ξt)

≈ ft(α̂t, ξ̂t)+
∂ft(αt, ξt)

∂αt

∣

∣

∣

∣

(αt,ξt)=(α̂t,ξ̂t)
(αt − α̂t)+

∂ft(αt, ξt)

∂ξt

∣

∣

∣

∣

(αt,ξt)=(α̂t,ξ̂t)

(ξt − ξ̂t)

= gt(αt) + ηt, (13)

gt(αt) = ft(α̂t, ξ̂t) + Tt(αt − α̂t) − Rtξ̂t, ηt = Rtξt

Tt =
∂ft(αt, ξt)

∂αt

∣

∣

∣

∣

(αt,ξt)=(α̂t,ξ̂t)
, Rt =

∂ft(αt, ξt)

∂ξt

∣

∣

∣

∣

(αt,ξt)=(α̂t,ξ̂t)

,
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we have an additive model form as in (1) and (2). Then the approximated
state space model adopted in (12) is constructed based on (13) and the modified
quadratic hill-climbing method can be used accordingly.

6. Simulation Studies

6.1. An additive model example

We illustrate the computational advantage of the modified quadratic hill-
climbing in (12) by a numerical example. In this experiment, we simulated from
the nonlinear state space model

yt = 0.5(αt + 40) −
10(αt + 40)

1 + (αt + 40)2
+ εt, εt ∼ N(0, 1),

αt+1 = 0.9αt −
10αt

1 + α2
t

− 0.1t + ηt, ηt ∼ N(0, 1),

in Andrade Netto, Gimeno and Mendes (1978). It has the additive model specifi-
cation as in (2) that αt+1 is a function of αt with an additive noise. To maximize
log p(α|y) with respect to α, we may apply some common gradient methods such
as Newton’s method and the quadratic hill-climbing in Goldfeld, Quandt and
Trotter (1966). Alternatively, we can use the modified quadratic hill-climbing
method in (12) which is applicable to the nonlinear state space model in (1)
and (2). In our experiment, we simulated time series of length n = 10, 20, 50,
100, 200 and 500. We performed both (12) and the crude method in Goldfeld,
Quandt and Trotter (1966) and followed the convergence criterion that itera-
tions were stopped when the increment in q(α) was less than 10−8. To facilitate
comparisons we initialized the iterations at 2yt − 40, obtained from the equation
yt = 0.5(αt + 40) by ignoring a nonlinear term in the measurement equation.
Table 1 presents the number of iterations for convergence, the CPU time (in sec-
onds) required and the optimal q(α) attained upon convergence. We can see that
the crude hill-climbing generally requires less iterations. However, our modified

Table 1. Posterior mode estimation under the Andrade Netto, Gimeno and
Mendes (1978) model.

number of number of

n iterations CPU seconds log p(α|y) iterations CPU seconds log p(α|y)

modified quadratic hill-climbing in (12) crude quadratic hill-climbing

10 69 0.2 -10.3 10 0.04 -10.6
20 28 0.1 -23.0 10 0.1 -22.1

50 28 0.3 -32.6 13 1.6 -35.5

100 140 4.2 -146.9 16 14.3 -149.2

200 163 14.4 -180.9 17 107.7 -194.6

500 283 118.7 -389.0 15 1509.0 -391.6



266 MIKE K. P. SO

hill-climbing approach is computationally more efficient when n is as large as 200.

The situation is more pronounced when n is 500. The time required for the crude

method is in agreement with the assertion that the computation time is of order

n3. On the other hand, the time required per iteration for our method roughly

grows linearly with n. This is not surprising as we have shown in the Appendix

that our algorithm in (12) is able to carry out the n × n matrix inversion as

required in the hill-climbing method via Kalman filter type recursions. Therefore,

it is expected that the benefit from using our method is very significant when the

sample size n is large. Even though there is discrepancy in the maximum q(α)

attained by the two methods, due mainly to the existence of multiple modes, the

difference in the posterior modes obtained by the two methods is negligible in

practice.

6.2. Logistic model

We present simulation results for the logistic model

yt =
exp(αt)

exp(αt) + exp(εt)
, εt ∼ N(0, σ2

ε ),

αt+1 =
exp(αt)

exp(αt) + exp(ηt)
, ηt ∼ N(0, 1),

in Tanizaki and Mariano (1994). Since the transition equation is not in the

additive model form of (2), we are not able to apply (12) directly. One possibility

is to use the technique in Section 5 to approximate the logistic model by an

additive model. However, it seems nontrivial to impose the bounds of 0 and 1

on αt in the optimization.

In this simulation experiment, we consider the transformed variables α′

t =

log ( αt

1−αt
) and y′t = log ( yt

1−yt
). Then the logistic model is reduced to the following

additive model

y′t =
exp(α′

t)

1 + exp(α′

t)
+ ε′t, α′

t+1 =
exp(α′

t)

1 + exp(α′

t)
+ η′t,

where ε′t = −εt ∼ N(0, σ2
ε ) and η′t = −ηt ∼ N(0, 1). With σ2

ε = 0.01, we

simulated n = 100 observations and applied the modified quadratic hill-climbing

to compute the posterior mode. With the initial value of α′

t = 0, implying that

αt = 0.5, we attained convergence in six iterations. Figure 1 shows the time trend

of αt and the path of the posterior mode. As an estimate of αt, the posterior

mode matches closely with the real time trend. This indicates that our method

works well in this model even though the dimension n = 100 is pretty large.
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Figure 1. Time series plot of αt in the logistic model is given by the solid
line. The dotted line joins the posterior mode estimates.

To investigate whether the posterior mode solution derived from (12) is ro-
bust to the choice of the initial value of α, we performed the following sensitivity
analysis. For the same simulated data set adopted above, we selected 500 sets
of initial values and performed the optimization 500 times. In each trial, we
initialized αt randomly by drawing from Uniform[0,1] and iterated (12) until
convergence. Even though the above procedure produces very different starting
values, we end up with almost identical results. The standard deviation of the
500 q(α) evaluated at the convergence value of α is less than 10−8. Practically
speaking, all 500 starting values yield the same solution. The results indicate
that the modified quadratic hill-climbing is highly robust to the choice of start-
ing values even for dimension as high as 100. To see the impact of σ2

ε on the
robustness result, we repeat the above experiment by increasing σ2

ε to 0.1. We
got similar results in that the standard deviation of the 500 q(α) upon conver-
gence is less than 10−3. Although the posterior modes from 500 random starting
values are slightly more dispersed than that in the previous case of σ2

ε = 0.01,
the difference in the posterior mode solution due to the variation in the starting
values is quite minor.

6.3. ARCH(1) + noise model

Consider the following ARCH(1) + noise model:

yt = αt + εt, εt ∼ N(0, σ2
ε ),

αt+1 =
√

a + bα2
t ξt, ξt ∼ N(0, 1).

The state variable αt follows an ARCH(1) process and the observed variable yt

is simply αt with an additive noise. This model provides an example of multi-
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plicative transition equation. Following the notation in Section 5, ft(αt, ξt) =
√

a + bα2
t ξt. To apply the modified quadratic hill-climbing method, we form the

approximated transition equation as in (13). By expanding ft(αt, ξt) at αt = α̂t

and ξt = 0, we get Tt = 0 and Rt =
√

a + bα̂2
t , where α̂t is the current iterate.

In the simulation, we fix σ2
ε = 0.1, a = 0.1 and b = 0.9. With standard normal

α0, we simulated yt, t = 1, . . . , 100. Figure 2 shows the time series plot of αt

and its posterior mode estimate. We observe that the posterior mode follows
closely the time trend of the state variable. This experiment indicates that the
posterior mode can be a good estimate of α and our method works well in the
above non-additive model.
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Figure 2. Time series plot of αt in the ARCH(1) + noise model is given

by the solid line. The dotted line joins the posterior mode estimates.

7. Real Data Illustration

Although stochastic volatility models are important alternatives to ARCH
models for market volatility, the original form

yt = exp(
αt

2
)εt, εt ∼ N(0, 1), αt+1 = c + φαt + ηt, ηt ∼ N(0, σ2

η)

is too simple to capture some of the stylized facts observed in real data (Harvey,
Ruiz and Shephard (1994); Ghysels, Harvey and Renault (1996); Kim, Shephard
and Chib (1998)). In this section, we introduce a stochastic volatility in the
mean model and demonstrate that volatility estimation by the posterior mode
of αt is feasible with our modified quadratic hill-climbing method. Let yt be the
financial return at time t. The stochastic volatility in the mean model proposed
in this paper is defined as

yt = δ exp(
αt

2
) + exp(

αt

2
)εt, εt ∼

√

ν − 2

ν
tν ,
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αt+1 = c + φαt + γ1zt + γ2|zt| + ηt, ηt ∼ N(0, σ2
η), (14)

where zt = exp(−αt

2 ) yt is the standardized return, that is, yt standardized by

the conditional standard deviation of
√

Var (yt|αt) = exp(αt/2). When δ = γ1 =

γ2 = 0 and ν = ∞, this reduces to the original model.

The above stochastic volatility in the mean model is constructed by making

three generalizations to the basic model. First, a scalar multiple of the conditional

standard deviation exp(αt/2) is added to the mean part. As in the ARCH-M

model of Engle, Lilien and Robins (1987), the additional component can be

interpreted as the risk premium. An alternative mean specification was also

considered in Koopman and Hol Uspensky (2002). The second generalization

is to allow εt to have a fat-tailed distribution. Here, we assume that εt follows

a standardized t distribution with mean 0 and variance 1. This extension is

important to capture the leptokurtosis observed in many market returns. The

last generalization is based on some empirical findings that volatility responds

asymmetrically to positive and negative returns. The specification in the variance

equation is set up similarly to Nelson (1991) and Li and Li (1996) in capturing

the volatility asymmetry. Under the model in (14), the conditional mean of αt+1

given αt is

c + φαt + γ1zt + γ2|zt| =

{

c + φαt + (γ1 + γ2)|zt|, if zt > 0,

c + φαt + (−γ1 + γ2)|zt|, if zt < 0,

which is dependent on both the sign and magnitude of zt. With all the three

new features included, we believe that the new stochastic volatility in (14) can

provide a better fit to real data.

It is not difficult to see that the stochastic volatility in the mean model in

(14) belongs to the class of nonlinear models in (1) and (2) with

l(αt) = log p(yt|αt)

= log Γ
(ν+1

2

)

− log Γ
(ν

2

)

−
1

2
log(π(ν−2))−

αt

2
−

(ν+1

2

)

log

[

1+
(zt−δ)2

ν − 2

]

,

l′(αt) = −
1

2
+

ν + 1

2(ν − 2)
zt(zt − δ)

[

1 +
(zt − δ)2

ν − 2

]

−1

,

l′′(αt) =
(ν + 1)zt

2(ν − 2)

[

1 +
(zt − δ)2

ν − 2

]

−2 {

1

2
δ

[

1 +
(zt − δ)2

ν − 2

]

− zt

}

,

gt(αt) = c + φαt + γ1zt + γ2|zt|.

To estimate the posterior mode by optimizing p(α|y), existing methods are

not applicable because l′′(αt) is not necessarily negative and we have nonlinear

transition in the variance part.
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S & P 500 returns are used for illustration. Daily returns (in %) from 1988 to

1998 were centered by the sample mean to produce the data series yt. Applying

the method in Durbin and Koopman (1997) with some modifications to account

for the nonlinear transition equation, unknown parameters were estimated by

standard maximum likelihood. Technical details are available from the author

upon request. Given the maximum likelihood estimates in Table 2, we used the

posterior mode generated by the modified quadratic hill-climbing method in (12)

to provide a smoothed estimate for αt. Figure 3 shows the time series plot of the

returns and the smoothed estimate of the volatility given by exp(α̂t/2), where

α̂t is the posterior mode. This volatility estimate is useful for derivatives pricing

and financial risk management.

Table 2. Maximum likelihood estimates from fitting the model in (14).

Parameter MLE

δ 0.00706

ν 6.574

c 0.00873

σ2
η 0.00730

φ 0.990

γ1 -0.048

γ2 -0.019
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Figure 3. Time series plots of the S and P 500 returns and the smoothed

volatility estimate exp(α̂t/2).

Following Section 6.1, we compare some numerical properties of our posterior

mode estimation method in (12) and the crude hill-climbing method under the
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stochastic volatility in the mean model. Assuming the model parameters in Table

2, we considered n = 10, 20, 50, 100, 200 and 500. The first day of 1998 was

taken as t = 1 in all cases. We adopted the same convergence criterion as in

Section 6.1 and initialized all αt at 0. Summary results are reported in Table

3. In contrast to the first experiment’s results in Table 1, our method uses less

iterations than the crude method and the maximum log p(α|y) attained agrees

in both methods even for large n. The CPU time taken illustrates again the

O(n) and O(n3) operations for the modified and crude quadratic hill-climbing

methods respectively. According to the figures in Table 3, if we want to obtain

the posterior mode of n = 2781 data points from the period 1988 to 1998, the

crude method will take more than 3000 CPU hours, while our method requires

16 CPU seconds.

Table 3. Posterior mode estimation under the stochastic volatility in the

mean model in (14).

number of number of
n iterations CPU seconds log p(α|y) iterations CPU seconds log p(α|y)

modified quadratic hill-climbing in (12) crude quadratic hill-climbing

10 4 0.03 -10.4 12 0.7 -10.4

20 5 0.02 -13.2 13 4.4 -13.2

50 5 0.3 -7.7 13 57.1 -7.6

100 5 0.6 -2.6 14 466.3 -2.6
200 5 1.3 22.0 18 4694.6 22.0

500 5 2.7 150.9 19 76261.6 150.9
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Appendix

Consider the non-Gaussian measurement time series model in (4). Let µ =

E(α) and Γ = Cov (α), so α ∼ N(µ,Γ). The logarithm of the posterior density

p(α|y) is

log p(α|y) = constant + log p(y|α) + log p(α)

= constant +
n

∑

t=1

log p(yt|αt) −
1

2
(α−µ)′Γ−1(α−µ) = constant + q(α),

where q(α) =
∑n

t=1 l(αt) −
1
2(α − µ)′Γ−1(α − µ). Direct differentiation gives the
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first and second derivatives of q(α) with respect to α as,

q′(α) =







l′(α1)
...

l′(αn)






− Γ−1(α − µ) and q′′(α) =







l′′(α1) 0
. . .

0 l′′(αn)






− Γ−1.

To facilitate the implementation of the quadratic hill-climbing procedure, we
need to calculate α(1) from

α(1) = α(0) − (q′′(α(0)) − δI)−1 q′(α(0))

= −(q′′(α(0)) − δI)−1{q′(α(0)) − (q′′(α(0)) − δI)α(0)}

= −(q′′(α(0)) − δI)−1{q′(α(0)) − q′′(α(0))α(0) + δα(0)}

= −(q′′(α(0)) − δI)−1























l′(α
(0)
1 ) − l′′(α

(0)
1 )α

(0)
1 + δα

(0)
1

...

l′(α
(0)
n ) − l′′(α

(0)
n )α

(0)
n + δα

(0)
n









+ Γ−1µ















. (15)

Recall that in linear Gaussian state space models, we have y|α ∼ N(α,H) and
α ∼ N(µ,Γ). The logarithm of the posterior density and its derivative are

log p(α|y) = constant −
1

2
(y − α)′H−1(y − α) −

1

2
(α − µ)′Γ−1(α − µ),

∂ log p(α|y)

∂α
= H−1(y − α) − Γ−1(α − µ).

Setting the first derivative to zero yields the posterior mode under the Gaussian
state space model as

α̂ = (H−1 + Γ−1)−1
{

H−1y + Γ−1µ
}

. (16)

Since α is normally distributed conditional on y, the posterior mode is the pos-
terior mean, which can be evaluated by one pass of standard Kalman filter
smoothers; see Harvey (1989, p.149-155).

To show that (15) can be computed from (16) via the Kalman filter, we form

the following artificial observations and noise variance: yt = α
(0)
t + (−l′′(α

(0)
t ) +

δI)−1l′(α
(0)
t ) and

H =









−(l′′(α
(0)
1 ) − δI)−1 0

. . .

0 −(l′′(α
(0)
n ) − δI)−1









.

Then,

H−1 +Γ−1 =









−(l′′(α
(0)
1 ) − δI) 0

. . .

0 −(l′′(α
(0)
n ) − δI)









+Γ−1 = −(q′′(α(0))− δI),



NONLINEAR AND NON-GAUSSIAN STATE SPACE MODELS 273

H−1y =









−(l′′(α
(0)
1 ) − δI) 0

. . .

0 −(l′′(α
(0)
n ) − δI)















y1
...

yn






,

with the typical element −(l′′(α
(0)
t )−δI)yt = −(l′′(α

(0)
t )−δI){α

(0)
t +(−l′′(α

(0)
t )+

δI)−1l′(α
(0)
t )} = −l′′(α

(0)
t )α

(0)
t + δα

(0)
t + l′(α

(0)
t ). Hence, α̂ in (16) is identical to

α(1) in (15) and the result follows.
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