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Abstract: Using a conditional method, explicit formulae for computing quantiles
pertinent to prediction intervals for future Weibull order statistics are developed
for two cases: when only previous independent failure data are available, and when
both previous independent failure data and early-failure data in current experiment
are available. The second case includes the case when only current early-failure data
are available. Comparisons of interval widths are made for different estimators of
parameters and different ways of forming prediction intervals.
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1. Introduction

Suppose that n components of the same type are put on a life test simultane-
ously, and the experimenter wants to set a prediction interval for the kth failure
time. Before the experiment starts, one would obtain the prediction interval
based on previously gathered data. If the experiment has started and some fail-
ures have occurred, one would then use both previous and current early-failure
data. The prediction intervals developed in this paper can also be used to predict
the total duration time in a Type II censoring experiment, and to predict the
lifetime of an k-out-of-n:F system, as the lifetime of such a system is same as the
kth failure time of the n components composing the system.

Prediction intervals for exponential distributions have been discussed by
Lawless (1971, 1972, 1977), and Hsieh and Wang (1992). Odeh (1990) considered
a prediction problem for the normal distribution. For the Weibull distribution,
Lawless (1973b) used a conditional method to obtain a prediction interval for
the first order statistic of a set of future observations, based on previously col-
lected data; Hsieh (1996) used the same technique to obtain prediction intervals
for future observations, based on only early-failure data of an on-going experi-
ment. Here, we extend the prediction problem to the case of using both previous
independent data and early-failure data of the on-going experiment. Explicit
formulae are developed for computing quantiles of pertinent pivotal quantities.
The idea of using both previous data and early-failure data of an on-going life
test to predict a future component failure time is a promising new strategy.
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The distribution theory for estimators of unknown parameters in Weibull
models is complicate and can not be described in explicit forms. Nevertheless,
using a conditional method, many problems become analytically manageable.
The conditional method used in this paper is the one conditioned on ancil-
lary statistics, which was first suggested by Fisher (1934) and promoted further
by a number of others (Cox (1958), Buehler (1959)). Lawless (1973a, 1973b,
1974, 1978) applied this conditional method to different problems relating to the
Weibull and extreme value distributions. In the conditional method, quantiles
for constructing prediction intervals depend on ancillary statistics of observed
data. Yet, the overall probability of coverage for the interval remains equal to
the preassigned confidence coefficient. Hall, Prairie and Motlagh (1975), on the
other hand, took an unconditional non-parametric approach. Engelhardt and
Bain (1979) discussed an approximate procedure for predicting the kth smallest
Weibull observation, but the procedure is complicated and requires interpola-
tion of quantiles of an F-distribution with non-integer degrees of freedom. The
procedure is hard to be implemented into a computer program.

The prediction intervals considered in this paper involve parameter esti-
mators. We are particularly interested in equivariant estimators such as the
maximum likelihood estimators (MLE), and the best linear invariant estima-
tors (BLIE). Explicit formulae for computing conditional quantiles are developed
for two cases depending on available data: when only previous failure data are
available, or when both previous and current early-failure data are available.
Some comparisons are made for prediction intervals using two different estima-
tors. For each estimator, I also compare interval widths of two different ways
of forming prediction intervals: using simulated quantiles of a pivotal statistic,
and using conditional quantiles. Coverage probabilities of these procedures un-
der log-normal distributions are also investigated. Comparisons are also made
for using previous data alone, using current failure data alone, and using both
previous and current data.

In the following discussion, we use a summation with asterisk defined by

* s
dwi=) xi+(q— s)s.
q,8 =1

2. Using Only Previous Independent Data
2.1. The problem and notation

Let U = (Ui,...,Up,) be a vector of ordered Type II censored data with
sample size m and number of failures p, taken from a Weib(0, §), where Weib(6, §)
represents a Weibull distribution with scale parameter § and shape parameter §.
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Let (V1,...,V,) is a vector of future order statistics of size n also taken from the
same distribution, and the vector be independent of U. The goal is to predict
the kth order statistic V. (1 < k < n) based on 7 alone.

For theoretical developments, it is more convenient to work with logarithms
of the U;s, and V;s. Let X; =log(U;), i =1,...,p; Y; =log(V;),i=1,...,n; and
X = (X4,... , Xp). It is known that if U has a Weib(6,6), then log(U) has the
smallest extreme value distribution with location parameter v and scale parame-
ter b, where u = log 6 and b = 1/§. Such an extreme value distribution is denoted
as SEV(u,b), and its reliability function is: R(y) = exp[—exp(¥5~)], —o0 <y <
oo. The log transformation converts the scale parameter 6 and the shape param-
eter § of the Weib(#,0) to a location parameter u and a scale parameter b in an
SEV, respectively. In estimation theory, it is easier to handle location and scale
parameters, especially, when data are Type II censored order statistics. Two
commonly used estimators for (u,b), based on order statistics, are the MLE and
BLIE; they are well discussed in, e.g., Mann, Schafer and Singpurwalla (1974),
Lawless (1982), and Bain and Engelhardt (1991).

If (@, b) denotes the estimators for (u, b), based on X, then (1,b) is an equiv-
ariant estimator of (u,b): the distributions of (4—w)/b and b/b are parameter-free
(See Lawless (1982), Theorem 4.1.1). Let § = exp(@) and & = 1/b. If (a,b) is
the MLE of (u,b) based on (7, then, by the invariance property of MLE, the
associated (6,6) is the MLE of (6, 6) based on X.

Since we do not use any observation in the second sample, we choose @ as
a ‘middle’ point for predicting Yz. A v-prediction interval for Y will be of the
form [u + b, @+ tgl;], where t; and ty satisfy v = Pr[u + thb <Y <+ tgl;]; a
~-prediction interval for the future Vj is then given by [exp(i-+t1b), exp(@+1t2b)].

To choose t; and ty we consider the pivotal statistic W} = (Y3 — @)/b. Tt
suffices to work out the cdf of W};. Now the cdf of W}’ can not be expressed in
explicit form. Nonetheless, since W} is pivotal, one can use simulation to obtain
approximate quantiles, t; and to, if one wishes to do so. Here, however, we take an
analytical approach. We use a conditional method to obtain an explicit formula
for a conditional cdf of W} which is used to construct the required prediction
interval.

2.2. The conditional CDF of W;

There are two parameters, u and b, to be estimated. We need at least two
observations, i.e., p > 2. For p = 2, an explicit expression for the unconditional
cdf of W} can be found, which is given in the Appendix (as it is less important
in practice).

Since the cdf of W} for p > 3 is not available, data-independent quantiles
for W} can not be computed. Instead, we use a conditional method developed in
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Lawless (1973a, 1973b, 1978) to obtain data-dependent analytical solutions which
preserve the confidence coefficient. Define a vector of ancillaries ¢ = (c1,...,¢p)
with ¢; = (X; —@)/b, i = 1,...,p. Let v = 3P, ¢;, and (z) = > om.p €xp(ciz).
If for each ¢, we choose t = t(¢) such that Pr[W} < ¢(¢€) | €] = v, then

Pr[W} < t(&)] = E(Pr[W} < t(@) | €]) = . (1)

So, it suffices to consider the conditional cdf of W};. Using a conditional
expectation theorem, and the fact that Y and (@,b) are independent, we get

PrW; <t|&] = Pr[Yy <ii+h]| 7]
= PrYk<u—|—tb|ub]| c)

= i<n> () 1! E([R(a+tb)]" " | €)

i=k

“EL)EL)ovennee
et

Q(t,1,&) = E([R(i+ tb))' | @)
= E(exp[—lexp(Z12Z2 +tZ5)] | ©), (3)

—_

v

Z() Q(t,n+j—i¢), (2)

.

where

with Z; = (@ — u)/b, and Zy = b/b. Using a general formula given in Lawless
(1982), p. 148, the conditional pdf of (71, Z3) given ¢, in our case, can be written
as

P
f(z1,22 1 €) = g(é,p,m)z5~ exp{ ch )zo + pz122 — Zexp ¢iz2)] le?}
=1 m,p

for —oo < 21 < 00, 0 < z9, where ¢(¢ p,m) = K;/T'(p) and

= [ [T o epwale() ]

Hence, the conditional expectation of (3) is given by

Q(t,1,7) = / / exp[—1e512222] £ (21, 20|@)dz1 do
0 —00
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K1 _ P
= / / eXP Z ¢i)22 + pr1p22
=1
le"*2 + Zexp ciza)|e™ Q}dzldzg

m,p
il exp[(zz 101)2:]
=K / lexp(tZ) + Em,p eXp(ciz)]P dz. (4)

In particular, when k = 1, (2) reduces to formula (9) of Lawless (1973b).
Equation (1) implies that a 100(1 — «)% prediction interval for Vj can be
obtained by choosing ¢;, and to such that Pr[Y; < @ + t1b | c] = al,Pr[Yk <
T+ tob | ] = 1— a9, where a; + a2 = @, then forming an interval [u+tlb u—i—tgb]
for Yy, and [exp(@ + t1b), exp(@i + tob)] for Vi. Experience indicates that the
conditional pdf of W)} for small k is skewed to right; consequently the prediction
intervals are shorter by taking unequal tail-probabilities, say, a; < a9, than by
taking equal tail-probabilities. Since (2) is increasing in ¢, for a given probability
v, the corresponding quantile can be easily determined by a simple computation
routine. To evaluate the integral in (4), we can adopt a method suggested in
Lawless (1978) that one integrates the function over the ranges z = 0 to 1,
z =1t 2, z =2 to 3, and so on. After each integration the relative size of
the addition to the total area thus far is computed is obseved, and when this
becomes sufficiently small, say, less than 107°, the process stops. Usually, the
process stops in only few steps and integration up to z = 10 is sufficient.

2.3. Comparison of different methods

To evaluate the performance of the conditional method, the proposed method
is compared with the unconditional method by simulations. In each case, both
MLE and BLIE procedures for estimating (u, b) are considered for m = 10, p = 8,
n = 4, and kK = 3, 4. The distribution parameters consedered are u = 0 and
b= 0.5, 1.0, 1.6. These parameters are equivalent to 6 =1 and 6 = 2, 1, 0.625,
respectively, in a Weib(6, §) distribution. The confidence coefficient is 0.90 with
a1 = 0.01 and ay = 0.09.

The quantiles for the conditional method (CON) were computed through (2).
The unconditional (UNC) quantiles for W;* were obtained through simulations.
Since simulated quantiles vary from one simulation to another, I took the average
of 100 simulated quantiles of the same assigned lower probability, each generated
from a sample of size 1,000 from the standard SEV(0, 1), as the distribution
of Wy does not depend on parameters w or b. The number of repetitions for
each parameter combination is 200. The results are presented in Table 1a. The
table includes relative frequencies of covering future values Vi (k = 3,4), average
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widths of prediction intervals, and standard deviations (SD) of the simulated
interval widths. It indicates that all relative frequencies are close to the nominal
0.90. All methods show relatively close average widths and standard deviations.
The conditional method with BLIE estimators has slightly shorter average widths
for b= 0.5, 1, 1.6 when k£ = 3, and b = 0.5, 1 when k£ = 4. Yet, none of them
is absolutely superior to the others. The large values of average widths and SDs
for k =4 and b = 1.6 in Table 1la are due to some large values of widths in the
simulated samples. Alternative simulations would yield to different results. Yet,
the relative frequencies of coverage are the focus of this table.

I also studied some coverage probabilities of the two procedures developed
for the Weibull distribution when data were taken from the log-normal distribu-
tion, LN(u,b), such that the logarithm of a variate from that distribution has
a normal distribution with mean u and standard deviation b. The procedures
for constructing prediction intervals used in Table la were carried out under
the situations that data were generated from LN(0,b) for b = 0.5, 1, 1.6. The
standard normal deviates were generated according to Box and Muller (1958).
Some simulation results are given in Table 1b. This table shows that when the
data are from a log-normal distribution the estimated probabilities of covering
the 3rd failure time (V3) for the studied cases are close to the nominal 0.9. The
procedures are less reliable for predicting the later failure time (V}); the actual
confidence levels for this case are around 0.8 for both unequal-tail and equal-tail

intervals.
Table 1a. 90% Prediction intervals using different methods
m=10, p=8, n=4, u=0, a; =0.01, as = 0.09
MLE BLIE
Relative  Average Relative  Average
kb Method Frequency Width SD Frequency Width SD
3 0.5 UNC 0.895 1.280 0.427 0.895 1.281 0.432
CON 0.900 1.280 0.428 0.895 1.274  0.440
1.0 UNC 0.900 2.696 1.532 0.895 2.702 1.539
CON 0.905 2.705 1.540 0.885 2.634 1.593
1.6  UNC 0.885 6.267  5.200 0.885 6.305 5.382
CON 0.885 6.322 5.249 0.875 6.291 5.279
4 0.5 UNC 0.930 2.126 1.017 0.930 2.129 1.030
CON 0.930 2.111 1.008 0.930 2.111  1.008
1.0 UNC 0.900 7.489  6.747 0.900 7.532  6.936
CON 0.900 7.495 6.819 0.895 7.472  6.837
1.6  UNC 0.910 33.075 51.987 0.910 33.023 51.985

CON 0.905 33.350 52.853 0.905 33.351 52.887
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Table 1b. Coverage probabilities of the 90% prediction intervals under log-
normal distributions m =10, p=8, n=4, u=0

Unequal-Tail Equal-Tail

(Oél = 0.01, g = 009) (Oél = 005, g = 005)
kb Method MLE BLIE MLE BLIE
3 0.5 UNC 0.875 0.875 0.880 0.880
CON 0.875 0.875 0.880 0.880
1.0 UNC 0.890 0.890 0.890 0.890
CON  0.895 0.885 0.890 0.890
1.6 UNC 0.875 0.880 0.890 0.890
CON 0.875 0.865 0.890 0.890
4 0.5 UNC 0.775 0.780 0.805 0.805
CON 0.760 0.765 0.805 0.805
1.0 UNC 0.770 0.775 0.800 0.800
CON 0.770 0.770 0.800 0.800
1.6 UNC 0.780 0.780 0.830 0.830
CON 0.785 0.785 0.830 0.830

2.4. Numerical example

Mann and Fertig (1973) provided the following first 10 failure times (in hours)
of 13 airplane components:

0.22, 0.50, 0.88, 1.00, 1.32, 1.33, 1.54, 1.76, 2.50, 3.00

(See also Lawless (1982), Example 4.1.1). These data fit a Weibull model well.
Here, m = 13, p = 10, and both MLE and BLIE for (u,b) are considered.
Suppose this kind of components are to be used in a 3-out-of-4:F system. The
system has 4 components, and the system fails when 3 or more components fail to
function properly. The failure time for this system is the third component failure
time, i.e., V3. We want to find a 90% prediction interval for V3 in a sample of 4
components.

The prediction interval is computed using eight methods: combinations of
unconditional/conditional, MLE/BLIE, and unequal-tail/equal-tail. The results
are shown in Table 2. The first portion of the table is a sample of the first
five simulations. It reveals that the simulated quantiles (¢; and t¢9) using the
unconditional method vary from one simulation to another. Again, I used the
average of 100 such quantiles to stabilize the values (those with asterisks). As
expected, the intervals constructed using unequal tail-probabilities give shorter
widths than those using equal tail-probabilities. Also, the conditional method
gives slightly shorter width than that of the unconditional method.
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Table 2. 90% Prediction intervals for V3 using airplane data m = 13, p =
10, n=4, k=3

Using Unequal Tail-Probabilities: a; = 0.01, ag = 0.09

Method i b t1 to PI for V3  Width
UNC/MLE 0.821 0.705 —2.410 1.003 [0.415, 4.613] 4.197
—2.638 1.100 [0.354, 4.938] 4.584

—2.471 1.087 [0.398, 4.893] 4.495

—2.864 1.014 [0.301, 4.647] 4.345

[ ]
[ ]
o o
—2.651 1.039 [0.350, 4.732] 4.382
[ ]
[ ]
[ ]
[ ]

UNC/MLE* 0.821 0.705 —2.655 1.045 [0.349, 4.750] 4.400
UNC/BLIE* 0.873 0.715 —2.699 0.976 [0.347, 4.810] 4.463
CON/MLE 0.821 0.705 —2.578 1.040 [0.369, 4.735] 4.366
CON/BLIE 0.873 0.715 —2.613 0.953 [0.369, 4.733] 4.364
Using Equal Tail-Probabilities: a; = 0.05, ae = 0.05
UNC/MLE* 0.821 0.705 —1.570 1.324 [0.751, 5.784] 5.033
UNC/BLIE* 0.873 0.715 —1.621 1.255 [0.751, 5.874] 5.123

[ ]
[ ]
CON/MLE  0.821 0.705 —1.566 1.318 [0.753, 5.762] 5.009
CON/BLIE 0.873 0.715 —1.617 1.229 [0.753, 5.764] 5.011

Note: * Quantiles t; and ¢y are based on the average of 100 quantiles gener-
ated from samples of size 1000.

2.5. Remarks on an approximate procedure

Engelhardt and Bain (1979) discussed an approximate 90% lower prediction
limit (L;) for the 5th failure time in a sample of 100 future items, based on the
results of tests on the endurance of 23 deep-groove ball bearings provided by
Lieblein and Zelen (1956). The data are in millions of revolutions before failure.
Their approximations are t; = —4.210 and L; = 10.59. If we use (2) of this paper,
then t; = —4.344 and L = 10.37. A simulation study with 10,000 repetitions for
quantiles of the pivotal statistic W)} gives t; = —4.394 and L; = 10.124. Here,
the previous data is a complete sample (m = p = 23), and the second sample
size (n = 100) is large. It is not clear how good the approximation will be, when
the first sample is censored, or when the second sample is of small or medium
size. Furthermore, the approximation procedure is complicated. Its importance
becomes minor, especially, in the light of the exact procedure developed in this

paper.

3. Using Both Previous and Current Data

In practice, it is sensible to use all available data. Suppose that in addition to
the previously available data X, we also have r (1 < r < n) log failure times from
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the on-going life test, say, Y7,...,Y,. Again, our goal is to construct a prediction
interval for the kth failure time, Vi, of the second sample, where r < k and
Vi = exp(Yy). Here, we shall use both sets of available data.

Let z; and y; be realizations of X; and Yj;, respectively. Then the MLE,
(i1,b), of (u,b) is obtained by solving for u and b in the following two equations:

b

(4i/b) + D _exp(xi/b)}|
m,p

and

b=

> o Yiexp(yi/b) + 327, , i exp(z;/b) Z . Z o
Donrexp(yi/b) + Z:@’p exp(z;/b) Cr+p Yi i

For k = 1, one uses procedures discussed in Section 2. For k > 2, a different
pivotal statistic will be used. We take T} = (Y}, — Y;)/b as the pivot. The
prediction interval for Y to be considered here is of the form [Y; +t1b, Y, + t2b].
Using T} guarantees that the values in the prediction interval will be at least
as great as the last available observation Y,. This makes sense as Y is always
greater than Y,. Should one use a pivotal similar to W} of Section 2, a prediction
interval for Y might include values less than Y., which is clearly not a desirable
situation.

Again, we use the conditional method to determine ¢; and t5. We first
define ancillary statistics a;s and ¢;s for the current and previous data: a; =
(Yi—ﬂ)/l;, i=1,...,1r ¢ = (Xi—ﬁ)/l;, i=1,...,p. Let @ = (a1,...,a,) and
¢=(c1,...,¢p). We note that among the r + p ancillaries, only 7+ p — 2 of them
are functionally independent. Let £ = Y7 a; + Z§:1 cj

To compute Pr[0 < T} < t | d,¢c], we first find the joint pdf of {Y7,...,Y,, Yy,
Xi,...,X,}, then find that of {W}, Z1, Z2,a1,...,ar,¢1,...,¢p—2}, where Wy, =
(Y —u)/b, Z1 = (it —u)/b, and Zy = b/b. Finally, the joint pdf of {Wy, Z1, Zo}
conditional on {@,c} is found to be

k—r—1
f(wkazlazZ | a, C =A Z < " 1) (_1)jzg+p_1

J
7=0
xexp{wy + &2 + (1 +p)z122 —(n — k4 j + 1)e"* —Bj(22)e™*2}

for a,zo + z120 < Wi < 00, —00 < 21 < 00, 0 < 29, where

=Y exp(aiza) + (k —r —1—j)exp(arz) + ) exp(ciza),
< ~

and ) is a normalization constant.
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The cdf of T} conditional on {@,c} is

Prj0 < Ty <t|a,c]
=Pr (ITZQ + Z1Zy < Wy < ((IT +t)Z2 + 217y ‘ a C]

(ar+t)za+2z122
—/ / / f(wg, 21,29 | @,¢)dwidzrdze
a

rz2+z122
RS k-1 (=1)7
=K ;0 ( j ) [(n—k+j+1)
o r+p—2 1 1
></0 TP exp(fz){ AT~ e }dz, (5)
where
Alj Zexp a;z) + Zexp CiZ
Asi(z) =Bj(z2)+ (n—k+j+ 1) exp|(a, + t)z],
and

k—r—1 i —
k—r—1 (—1) % P2 exp(€z) -1
KQ:{ Z . [—_k - 1 :|/ —A ' r+p dZ} .
= J (n—k+j+1)0Jo  [Ay(2)]
For given @ and ¢, one can find ¢; and 3 from expression (5) such that

PI“[O<T]:< <t |5,5] = 01; PI“[O<T]:< < tg | 5,5] =1-—as,

with aq + ag = «, to get an 100(1 — a)% prediction interval for Vi, namely,
[exp(y, +t1b), exp(yy 4 t2b)]. Again, this prediction interval has confidence level
1—-a.

To demonstrate some advantages of using combined data, a simulation study
was performed. Two sets of Type II censored data were generated from SEV
distributions with v = 0 and different scale parameters (b = 0.5, 1, 1.6), under
sampling sizes m = 10, p = 8, n = 10, and r = 6. The goal is to predict the 7th
and the 10th observations of the second sample based on (i) only the first set
of data, (ii) only available data of the second sample, and (iii) all available data
in both samples. The conditional cdf formula for case (ii) can be obtained from
(5) by setting m = p = 0. See Hsieh (1996) for more detailed discussion of this
particular case.

For each of the 18 (bx datum type x s) combinations, 200 prediction intervals
were generated. Their relative frequencies of covering the corresponding Vi,
average interval widths, and standard deviations are given in Table 3a. The
first set of sample intervals for each parameter value are given in Table 3b.
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Table 3a indicates that the method of using both previous and current data
clearly produces shortest average widths and least standard deviations in all
cases. Note, however, in some individual situations other methods may provide
shorter intervals as shown in Table 3b. But this could not overrule the overall
superiority of using combined data as demonstrated in the previous table.

The extremely large values of average widths, SDs and width range for pre-
dicting V1o under b = 1.6 in Tables 3a and 3b are due to high variability of b
in Ty': the estimator is based on only the first 6 failure times out of 10 samples,
and the standard deviation of MLE for b is proportional to b. Besides, here we
are making a 4-step ahead prediction. The more steps ahead prediction, the
wider the prediction interval would be. These cause high right-skewness of the
conditional distribution of T} with & = 10, which leads to a large value of the
0.09 upper quantile (t3). These may explain why those values are so large.

Table 3a. Performance of different 90% prediction intervals m = 10, p =
8 n=10, r=6,u=0,a; = 0.01, ay =0.09

P.I. for V7 P.I. for Vio
Relative  Average Relative  Average
b Data  Frequency Width SD Frequency Width SD

0.5 Previous 0.87 1.06  0.42 0.89 2.25 1.39
Current 0.88 0.49 0.30 0.90 4.03 4.43
Both 0.86 0.33  0.10 0.92 1.52 0.62
1.0 Previous 0.89 226  1.14 0.91 11.43 10.76
Current 0.87 1.13  1.00 0.88 30.60 64.35
Both 0.92 0.72  0.27 0.91 6.15 3.89
1.6 Previous 0.90 5.06  5.27 0.95 157.15 1095.44
Current 0.92 3.11  4.74 0.93 3654.07 22872.76
Both 0.93 1.37  0.82 0.92 28.56 31.78

Table 3b. Samples of 90% prediction intervals m = 10, p =8, n = 10, r =
6, u=0, a; =0.01, as = 0.09

b Data U b P.I for V7 7 P.I. for Vio Vio
0.5 Previous —0.03 0.43 [0.45, 1.51] 1.04 [0.87, 2.95] 1.96
Current —0.02 0.35 [0.94, 1.32] 1.04 [1.04, 3.14] 1.96
Both —0.02 0.40 [0.94, 1.21]* 1.04 [1.07, 2.24]* 1.96
1.0 Previous 0.43 0.59 [0.54, 2.82] 1.65 [1.34, 6.99]* 4.64
Current 0.60 1.39 [1.48, 5.71] 1.65 [2.26, 176.94] 4.64
Both 0.43 0.77 [1.48, 2.63]* 1.65 [1.98, 10.94] 4.64
1.6 Previous 0.14 0.98 [0.20, 3.17] 1.64 [0.92, 14.42]* 6.79
Current 0.45 2.03 [1.28, 8.51] 1.64 [2.32, 1123.74)] 6.79
Both 0.20 1.33 [1.27, 2.97]* 1.64 [1.93, 25.36] 6.79

Note: “*’ indicates the shortest interval in each group of three intervals.
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4. Summary

Explicit formulae have been developed for computing conditional quantiles
of some useful pivotal statistics. One formula is for that based on only previ-
ous independent observations; the other is for that based on both previous and
current early-failure data. The quantiles can be used to construct prediction
intervals for arbitrary kth failure time in a sample of future observations. The
results can be used to predict the total duration time in a Type II censoring life
testing experiment, and to predict the lifetime of an k-out-of-n:F system. The
computation procedure can be easily programmed and implemented for practical
use.

Although the quantiles of the pivotal statistics considered in this paper can
be obtained through simulation, as we have demonstrated, simulation results are
unstable; they vary from one to another. From theoretical as well as practical
points of view, analytical solutions should be used if they are available. The
results of this paper provide such analytical solutions.

Furthermore , the techniques used in this paper can be applied to obtain-
ing explicit formulae for computing conditional quantiles relating to prediction
intervals for any other location-scale distributions.
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Appendix. Distribution of W} for p = 2

Take b = (X2 — X1)/ky and 0 = Xy — kob, where k; and ko satisfy E(l;) =b
and E(u) = u; explicitly, k1 = E(T») — E(T1), ko = E(T), where E(T;) is
the expectation of the ith order statistic of a sample of size m taken from an
SEV(0,1). A formula for computing E(7;) can be found in Mann, Schafer and
Singpurwalla (1974), p. 210. The cdf of W}* when p =2 is

where

m(m — 1) exp(—x)

exp(—x) + 1 exp|(t — ko) /k1]}? d.

B((R@+ b)) = [~ T
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