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Abstract: Multivariate spatial-statistical models are often used when modeling en-

vironmental and socio-demographic processes. The most commonly used models

for multivariate spatial covariances assume both stationarity and symmetry for the

cross-covariances, but these assumptions are rarely tenable in practice. In this ar-

ticle, we introduce a new and highly flexible class of nonstationary and asymmetric

multivariate spatial covariance models that are constructed by modeling the simpler

and more familiar stationary and symmetric multivariate covariances on a warped

domain. Inspired by recent developments in the univariate case, we propose model-

ing the warping function as a composition of a number of simple injective warping

functions in a deep-learning framework. Importantly, covariance-model validity is

guaranteed by construction. We establish the types of warpings that allow for

cross-covariance symmetry and asymmetry, and we use likelihood-based methods

for inference that are computationally efficient. The utility of this new class of mod-

els is shown through two data illustrations: a simulation study on nonstationary

data, and an application to ocean temperatures at two different depths.

Key words and phrases: Cross-covariance, deep learning, Gaussian process, spatial

statistics, warping.

1. Introduction

Multivariate spatial-statistical models are used to jointly model two or more

variables that are spatially indexed. They find widespread use in several applica-

tion domains, such as the environmental sciences and the social sciences, where

spatial processes interact. The utility of multivariate models lies in the con-

cept of “borrowing strength,” where in this setting, information on one process

(obtained, for example, through observation) imparts information on the other

processes being jointly modeled, but that may or may not be directly observed.

Multivariate spatial models need to adequately model both the marginal behavior

of the spatial processes and the joint dependence between the processes. Often,
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the central object of interest when constructing a multivariate spatial model is the

cross-covariance matrix function. This function encodes the marginal covariances

and cross-covariances of the spatial processes, and its use improves inference over

one-at-a-time univariate analyses of each process.

Typically, the two simple assumptions of stationarity and symmetry are

made when modeling the marginal behavior of, and the joint dependence be-

tween, multiple processes. For example, the popular linear model of coregion-

alization (LMC) (e.g., Goulard and Voltz (1992); Wackernagel (2003); Gu and

Shen (2020)) assumes both of these properties, as does a recent multivariate model

constructed using spectral representations (Qadir and Sun (2021)) and the mul-

tivariate Matérn model (Gneiting, Kleiber and Schlather (2010); Apanasovich,

Genton and Sun (2012)). In the multivariate Matérn model, the elements of the

cross-covariance matrix function are all Matérn covariance functions. However,

although this has proven to be considerably more flexible than the traditional

LMC, covariance nonstationarity and asymmetry are present in many scientific

applications and should be modeled. For example, the rates of ice loss in Antarc-

tica are clearly nonstationary, because more ice loss occurs in regions of high ice-

stream velocity, which are at the boundary of the continent (Zammit-Mangion

et al. (2015b)). In addition, in the inversion of a trace-gas, the cross-covariance

between the flux field and the mole-fraction field is asymmetric because of at-

mospheric transport (Zammit-Mangion et al. (2015a)). Asymmetry of the cross-

covariances is clearly present in the ocean-temperature data in Section 4.2, due

to diffusive and advective oceanographic processes.

Nonstationarity in a univariate setting has been addressed using spatial de-

formations (e.g., Sampson and Guttorp (1992); Damian, Sampson and Guttorp

(2001); Schmidt and O’Hagan (2003); Fouedjio, Desassis and Romary (2015);

Porcu et al. (2020)); basis functions (e.g., Cressie and Johannesson (2008));

stochastic partial differential equations (SPDEs) (e.g., Lindgren, Rue and Lind-

ström (2011); Fuglstad et al. (2015)); and process convolution with a spatially

varying kernel, which leads to spatially varying model parameters (e.g., Higdon,

Swall and Kern (1999); Paciorek and Schervish (2006)). Addressing nonstation-

arity in a multivariate setting is more problematic, because one needs to ensure

validity, that is, nonnegative-definiteness, of all possible covariance matrices con-

structed through a proposed cross-covariance matrix function. Valid spatial mul-

tivariate modeling approaches that account for nonstationarity include those of

Gelfand et al. (2004) and Kleiber and Nychka (2012), who extended the LMC

and multivariate Matérn model, respectively, to contain spatially varying parame-

ters. Other approaches consider basis functions (Nguyen, Cressie and Braverman
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(2017)) or systems of SPDEs (Hu and Steinsland (2016); Hildeman, Bolin and

Rychlik (2022)).

Some multivariate models also model asymmetry. For example, Li and

Zhang (2011) built on the bivariate example given by Ver Hoef and Cressie

(1993) and extended the general stationary multivariate model to the asym-

metric case. Apanasovich and Genton (2010) used latent dimensions to model

asymmetric cross-covariances, and Cressie and Zammit-Mangion (2016) used a

noncentered kernel to introduce asymmetry in the joint dependence structure;

see also Ver Hoef and Barry (1998) and Majumdar and Gelfand (2007).

An attractive way to introduce nonstationarity and asymmetry in multi-

variate spatial-statistical models is through a generalization of the univariate

deformation approach of Sampson and Guttorp (1992). It is well known that

nonstationarity can be modeled by deforming space; specifically, a stationary

process on a warped domain can induce a highly nonstationary process on the

original (geographic) domain. In the multivariate case, one may apply a common

deformation to all of the processes, or separate deformations to each process. As

we demonstrate here, using a common deformation function enforces symmetry

and constrains the nonstationary behavior (i.e., the local anisotropies and scales)

to be common for each process. However, process-specific deformation functions

allow for distinct nonstationary behavior and practically guarantee asymmetry.

Multivariate models built using spatial deformations bring with them several ad-

vantages over some of the other models mentioned above. In particular, they are

able to capture complex nonstationary and asymmetric behavior. Their cross-

covariance functions are valid by construction. Furthermore, if deep composi-

tional warping functions are used, they are computationally efficient to fit and

predict with.

The remainder of this paper is organized as follows. In Section 2, we pro-

vide some background on multivariate spatial models and univariate deep com-

positional spatial models (DCSMs). In Section 3, we introduce a multivariate

generalization of the univariate DCSM and show how asymmetry can be induced

in a simple manner through what we call “aligning functions.” In Section 4,

we show results from two data illustrations. First, we show the utility of multi-

variate DCSMs for modeling symmetric nonstationary simulated data. Then, we

show its utility in an application on modeling Atlantic Ocean temperatures at

two different depths. In these illustrations of our methodology, we show, through

cross-validation and visualization, that spatial predictions from the multivariate

DCSMs are generally superior to those from conventional multivariate spatial

models. In Section 5, we summarize our conclusions. Additional material is
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provided in the Supplementary Material.

2. Background

The multivariate DCSM that we construct in Section 3 requires the speci-

fication of a conventional symmetric, stationary, possibly isotropic, multivariate

covariance model and a deep warping function. In this section, we briefly review

these two building blocks.

2.1. Multivariate spatial covariance models

Consider a p-variate spatial process Y(s) ≡ (Y1(s), . . . , Yp(s))′, s ∈ G, where

we refer to G ⊂ Rd as the geographic domain in d-dimensional Euclidean space.

We assume that var(Yi(s)) < ∞, for all s ∈ G and all i = 1, . . . , p. Therefore,

this multivariate process has finite expectation µ(·) ≡ (µ1(·), . . . , µp(·))′, and a

valid cross-covariance matrix function CG(· , ·) ≡ (Cij,G(· , ·) : i, j = 1, . . . , p),

where Cij,G(s,u) = cov(Yi(s), Yj(u)); s,u ∈ G. For i, j = 1, . . . , p, the covariance

function Cii,G(· , ·) is the covariance function of the process Yi(·) and, for i 6= j,

Cij,G(· , ·) is the cross-covariance function of (Yi(·), Yj(·))′.
In some cases, the cross-covariance matrix function depends only on h ≡

s − u. That is, for i, j = 1, . . . , p, Cij,G(s,u) ≡ Coij,G(h); s,u ∈ G, where now

each Coij,G(·) is a function of displacement. In this case, we say that Co
G(·) =

(Coij,G(·) : i, j = 1, . . . , p) is a stationary cross-covariance matrix function. A

cross-covariance matrix function is said to be symmetric if, for i, j = 1, . . . , p,

Cij,G(s,u) = Cji,G(s,u), for s,u ∈ G. In the stationary case, symmetry is given

by Coij,G(h) = Coji,G(h), for h = s− u and s,u ∈ G.

Stationarity and symmetry are strong assumptions in practice, but they re-

main popular because they facilitate the construction of valid cross-covariance

matrix functions with a relatively small set of parameters. Among the most

popular stationary symmetric multivariate covariance models is the multivari-

ate Matérn model (Gneiting, Kleiber and Schlather (2010)), where the marginal

covariance functions and cross-covariance functions are all Matérn covariance

functions. In this model, every process may have a different degree of smooth-

ness, thus circumventing a key limitation of the LMC, where, for i = 1, . . . , p, the

smoothness of each Yi(·) is generally the same by construction.

The isotropic Matérn correlation function is given by M(h|ν, a) =

(21−ν/Γ(ν))(a‖h‖)νKν(a‖h‖), where ν is the smoothness parameter, Kν(·) is the

modified Bessel function of the second kind of order ν, a is the scale parameter,

and Γ(·) is the gamma function. A multivariate spatial-statistical process Y(·)
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has a multivariate Matérn cross-covariance matrix function if, for i, j = 1, . . . , p,

and s,u ∈ G,

Cii,G(s,u) ≡ cov(Yi(s), Yi(u)) = σ2iM(h|νii, aii),
Cij,G(s,u) ≡ cov(Yi(s), Yj(u)) = ρijσiσjM(h|νij , aij), for i 6= j,

(2.1)

where {aij} are scale parameters, {νij} are smoothness parameters, {σ2i } are vari-

ance parameters, and {ρij} are cross-correlation parameters. From (2.1), we can

see that multivariate Matérn cross-covariance functions are stationary, symmet-

ric, and isotropic cross-covariance functions. In order to ensure validity, some

constraints must be placed on the parameters of the multivariate Matérn covari-

ance models shown in (2.1). The parsimonious Matérn covariance models have

even stricter constraints than the more general multivariate Matérn models do

(see also Apanasovich, Genton and Sun (2012)), but they have been shown to be

flexible enough to model several environmental processes of interest (see Gneiting,

Kleiber and Schlather (2010) for more details). We shall use the multivariate par-

simonious Matérn covariance model in Section 4 to construct multivariate DCSMs

for two bivariate spatial data sets.

2.2. Deep compositional spatial models

The univariate deep compositional spatial modeling approach of Zammit-

Mangion et al. (2021) uses injective warpings to construct nonstationary covari-

ance models from simple covariance models. The idea of using deformations (or

warpings) to modify the properties of a process stems from the work of Samp-

son and Guttorp (1992); see also Meiring et al. (1997), Sampson, Damian and

Guttorp (2001), Schmidt and O’Hagan (2003), Calandra et al. (2016), and the

references therein. In this article, we extend the univariate deep compositional

approach to the important multivariate case.

Consider, for the moment, a univariate process Y (·) with var(Y (s)) < ∞,

s ∈ G, and with nonstationary covariance function CG(· , ·). After warping the

space G, suppose that CG(· , ·) can be expressed as a simpler stationary co-

variance function, CD(· , ·), on a deformed space D, using a warping function

f : G → D. Specifically, CG(s,u) ≡ CD(f(s), f(u)), for s,u ∈ G, where CD(· , ·)
is a familiar (stationary) covariance function. In DCSMs, the warping function f

is constrained to be smooth and injective in order to preclude the possibility of

space-folding; see also Perrin and Monestiez (1999). In particular, it is expressed

as the composition f(·) ≡ f[L] ◦ f[L−1] ◦ · · · ◦ f[1](·), where f[1](·), . . . , f[L](·) are

simple elemental injective functions, and L is the number of warpings (or lay-
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ers). This compositional construction is very flexible in that it can model highly

nonstationary spatial processes, yet it is simple enough to facilitate parameter

estimation from relatively sparse data. Zammit-Mangion et al. (2021) call the

functions f[1](·), . . . , f[L](·) warping units, and propose three types: axial warp-

ing units, radial basis function units, and Möbius transformation units. In this

article, we also use these three types of warping units; see Table S1 in the Sup-

plementary Material for more details. For example, in Section 4.1, the warping

function f(·) is a composition of L = 4 warping units, where f[1](·) and f[2](·) are

two axial warping units (one for each spatial dimension), f[3](·) is a radial basis

function unit, and f[4](·) is a Möbius transformation unit.

Zammit-Mangion et al. (2021) modeled a low-rank univariate process that

was approximately stationary on the warped domain. Here, in a multivariate set-

ting, we construct valid flexible models for covariances and cross-covariances on a

geographic domain G by considering a stationary and symmetric cross-covariance

matrix function on the warped domain D. We use the warping functions to model

the nonstationary and asymmetric behavior of the multivariate spatial process.

3. Multivariate DCSMs

3.1. Model

We now construct multivariate DCSMs by extending the univariate con-

struction of Zammit-Mangion et al. (2021). In the univariate case, one warping

function is all that is required; however, in the p-variate case, we could use p

different warping functions, one for each process.

We start off with the special case where a single warping function is used for

all of the p processes. In this case, for i, j = 1, . . . , p, we have

Cij,G(s,u) = Cij,D(f(s), f(u)) = Coij,D(f(s)− f(u)); s,u ∈ G, (3.1)

where Co
D(·) ≡ (Coij,D(·) : i, j = 1, . . . , p) is a stationary nonnegative-definite

cross-covariance matrix function.

Proposition 1. If Co
D(·) is symmetric, then the cross-covariance matrix function

CG(· , ·) defined in (3.1), is symmetric.

Proof. See Section S1.1 of the Supplementary Material.

Consider now the case where p warpings, one for each process, are used to

construct the cross-covariance matrix function of the p-variate process. In this

case, for i, j = 1, . . . , p,
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Cij,G(s,u) = Cij,D(fi(s), fj(u)) = Coij,D(fi(s)− fj(u)); s,u ∈ G, (3.2)

where {fi(·) : i = 1, . . . , p} are process-specific warping functions and, as in Propo-

sition 1, the valid stationary cross-covariance matrix function Co
D(·) is symmetric.

Proposition 2. If Co
D(·) is symmetric, then the cross-covariance matrix function

CG(·, ·) defined in (3.2) is not necessarily symmetric.

Proof. See Section S1.2 of the Supplementary Material.

The validity of the cross-covariance matrix function constructed using warp-

ing functions is established through the following proposition.

Proposition 3. Assume that Co
D(·) is a valid, stationary cross-covariance matrix

function. Consider the spatial locations {si1, . . . , sini
}, where ni > 0, for i =

1, . . . , p. Let ΣG = (Σij,G : i, j = 1, . . . , p), where Σij,G = (Cij,G(sik, sjl) : k =

1, . . . , ni, l = 1, . . . , nj), N =
∑p

i=1 ni, and Cij,G(·, ·) is given by (3.2). Then,

ΣG is nonnegative-definite.

Proof. See Section S1.3 of the Supplementary Material.

Summarizing the results of Proposition 1–3, we see that if Co
D(·) is a valid sta-

tionary cross-covariance matrix function, then the cross-covariance matrix func-

tion CG(· , ·) constructed through (3.2) is valid (i.e., nonnegative-definite). Fur-

thermore, if fi(·) 6= fj(·), for any i, j = 1, . . . , p, then the cross-covariance matrix

function is not necessarily symmetric.

Using p general warpings, as in (3.2), will yield a highly flexible parameterized

model, but one that may be prone to over-fitting. In practice, any asymmetry

present is likely to be simple and dominated by global shifts and rotations. Hence,

to model asymmetry, we propose expressing each fi(·) as a composition of a

shared warping function f(·) and a process-specific “aligning function” gi(·), for

i = 1, . . . , p. That is, for i, j = 1, . . . , p, we let

Cij,G(s,u) = Cij,D(f ◦ gi(s), f ◦ gj(u))

= Coij,D(f ◦ gi(s)− f ◦ gj(u)); s,u ∈ G, (3.3)

where gi(·), for i = 1, . . . , p, are simple transformations commonly used to align

spatial fields and that can include translations and rotations (e.g., Wiens et al.

(2020)). It can be seen from Propositions 2 and 3 that the effect of the align-

ing functions {gi} is to introduce asymmetry, while preserving nonnegative-

definiteness. Note that a common frame of reference for the aligning functions

needs to be chosen when aligning fields in this way. Therefore, without loss of
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generality, we fix g1(·) to be the identity map, in which case, f1(·) = f ◦ g1(·)
is simply the shared warping function f(·). The cross-covariance model in (3.3)

is a generalization of the asymmetric cross-covariance model of Li and Zhang

(2011), where the shared warping function f(·) is the identity map and the align-

ing functions are translations, that is, where gi(s) = s + di, for some di ∈ R2,

i = 2, . . . , p.

Under the cross-covariance-matrix model (3.3), nonstationarity can be intro-

duced through both the shared warping function f(·) and the aligning functions

{gi(·) : i = 1, . . . , p}. Perhaps not surprisingly, the aligning functions can induce

nonstationarity in the cross-covariance functions even when f(·) is the identity

map, as we demonstrate in the following proposition.

Proposition 4. Consider the p-variate cross-covariance matrix model (3.3),

where f(·) is the identity map; one of the aligning functions gk(·), for some

k ∈ {2, . . . , p}, is an affine transformation, and {gi(·), i 6= k} are identity maps.

Then, Cik,G(·, ·), for i 6= k, is not necessarily stationary.

Proof. See Section S1.4 of the Supplementary Material.

Proposition 4 represents one simple way to introduce nonstationarity. More

generally, when one has p warping functions {fi(·) : i = 1, . . . , p}, nonstationarity

of Cij,G(·, ·) is obtained by choosing fi(·) and fj(·) such that fi(s) − fj(u) is not

a function of s− u, for s,u ∈ G.

3.2. Parameter estimation

Assume now that we have observations {Zik : k = 1, . . . , ni; i = 1, . . . , p} of

a p-variate Gaussian process Ỹ(·), where

Zik = Ỹi(sik) + εik; k = 1, . . . , ni, i = 1, . . . , p. (3.4)

In (3.4), {εik : k = 1, . . . , ni; i = 1, . . . , p} are independent Gaussian measure-

ment errors that satisfy εik ∼ Gau(0, τ2i ) for k = 1, . . . , ni and i = 1, . . . , p,

and τ21 , . . . , τ
2
p are measurement-error variances that are assumed to be process-

specific, and hence all potentially different. We model the p-variate Gaussian

process Ỹ(·) = (Ỹ1(·), . . . , Ỹp(·))′ to have first moment that is linear in covariates

x(·) ≡ (x1(·), x2(·), . . . , xq(·))′. That is,

Ỹi(·) = x(·)′βi + Yi(·), i = 1, . . . , p, (3.5)

where β1, . . . ,βp ∈ Rq are vectors of unknown coefficients that need to be esti-

mated, and now Y(·) ≡ (Y1(·), . . . , Yp(·))′ is a zero-mean second-order nonsta-
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tionary multivariate Gaussian process on the geographic domain G.

Let Ỹi≡(Ỹi(si1), . . . , Ỹi(sini
))′, Ỹ≡(Ỹ′1, . . . , Ỹ

′
p)
′,Yi≡(Yi(si1), . . . , Yi(sini

))′,

Y ≡ (Y′1, . . . ,Y
′
p)
′, Xi ≡ (x(si1), . . . ,x(sini

))′, X = bdiag(X1, . . . ,Xp), where

bdiag(·) returns a block diagonal matrix from its arguments, and β = (β′1, . . . ,β
′
p)
′.

Then, (3.5) can be written compactly as

Ỹ = Xβ + Y. (3.6)

The covariance matrix of Y, ΣG ≡ cov(Y), is given by (Σij,G : i, j = 1, . . . , p),

where Σij,G ≡ (Cij,G(sik, sjl) : k = 1, . . . , ni; l = 1, . . . , nj). Furthermore,

cov(Ỹ) = cov(Y).

Let Zi ≡ (Zi1, . . . , Zini
)′, Z ≡ (Z′1, . . . ,Z

′
p)
′, εi ≡ (εi1, . . . εini

)′, and ε ≡
(ε′1, . . . , ε

′
p)
′. Then, from (3.4) and (3.6), we have, Z = Xβ + Y + ε, where the

covariance matrix of ε, V ≡ cov(ε), is diagonal. The model for the observations,

Z, is therefore

Z ∼ Gau(Xβ,ΣZ), (3.7)

where ΣZ = ΣG + V.

Likelihood-based inference can be used to estimate the parameters (includ-

ing the warping parameters) in (3.7) (Zammit-Mangion et al. (2021)). Here, we

use restricted maximum likelihood (REML) in which the parameters in β have

been marginalized out to estimate the parameters in ΣZ . REML is known to

provide less biased estimators of variance-component parameters (Cressie and

Lahiri (1996)), and can help avoid degenerate predictions (e.g., Gu, Wang and

Berger (2018)). Let θ be the vector containing all parameters appearing in the

covariance matrix ΣZ , which includes the unknown parameters appearing in the

warping function f(·) (and the aligning functions {gi(·)}, if present), the param-

eters in the cross-covariance matrix function of the process on D (i.e., the scale

parameter a, smoothness parameters {νij}, variance parameters {σ2i }, and cross-

correlation parameters {ρij} for the parsimonious Matérn covariance function),

and the measurement-error variances. The restricted maximum likelihood esti-

mate θ̂ of θ is found by maximizing the log-restricted likelihood L(θ; Z) with

respect to θ, for some given Z. After obtaining θ̂, the associated estimate β̂ of β

is found through generalized least squares. The REML parameter estimates are

“plugged in” and allow spatial predictions of the hidden processes at an unob-

served location s∗. For more details on fitting and prediction, see Section S2 of

the Supplementary Material.

The computational time complexity of evaluating the restricted likelihood

is the sum of that of evaluating the deformation function and that of factoriz-
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ing the full joint covariance matrix on the deformed space. The computational

complexity of evaluating the aligning functions {gi(·)}, when these are affine

transformations, is O(
∑p

i=2 ni). The computational complexity of evaluating the

shared warping-function layer f[l](·) is O(Nrl), where N =
∑p

i=1 ni is the total

number of observations for all processes, and rl is the number of basis functions

in f[l](·). Hence, the total complexity for evaluating the deformation function is

O(
∑p

i=2 ni + N
∑L

l=1 rl). The complexity of factorizing the covariance matrix

on the deformed space is O(N3). Usually, we choose rl � N, for l = 1, . . . , L,

so that the computational complexity is dominated by the factorization of the

covariance matrix on the deformed space. The actual runtime also changes with

the number of iterations used to optimize the parameter estimates, which needs

to be larger when the model is more complex. Parameter estimation was done

using gradient-based optimization via the R package tensorflow (Allaire and

Tang (2019)), which computes gradients using automatic differentiation, and can

be run on a graphics processing unit (GPU).

3.3. Fixing the frame of reference

While setting g1(·) to be the identity map establishes a common frame of

reference for the aligning functions, the shared warping function f(·) and any scale

parameters appearing in the cross-covariance matrix function are themselves non-

identifiable unless this common frame of reference is fixed. Non-identifiability

occurs when there exist at least two distinct parameters, θ1, θ2 say, for which

L(θ1; ·) = L(θ2; ·) (Kadane (1974)). Note that this notion of non-identifiability of

parameters differs from the identifiability problem of consistent estimation under

infill asymptotics described by Zhang (2004). In our case, if we use a stationary

symmetric cross-covariance matrix function on the warped domain that is also

isotropic, the likelihood is invariant to translation, rotation, or reflection of f(·).
Because we also allow f(·) to stretch and contract the geographic domain, any

scale parameter aij associated with the cross-covariance function Coij,D(·) is also

non-identifiable (see Anderes and Stein (2008); Anderes and Chatterjee (2009)

for more details). While this invariance and lack of identifiability does not pose

a problem for prediction, it does mean that we cannot make inference on certain

properties of the warping function, such as stretches/contractions and rotations,

without further assumptions. As we discuss next, it helps to use a function b0(·),
which we call a homogenizing function, to place the estimates of f(·) in a fixed

frame of reference and to obtain transformations of the scale parameters that are

identifiable.

We illustrate our methodology on the two-dimensional Euclidean space with
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d = 2. Specifically, we establish a fixed frame of reference (which can be easily

generalized for d > 2) when we assume isotropy on D, as follows. Consider three

locations, say sk, sl, and sm, in G ⊂ R2 such that f(sk), f(sl), and f(sm) are

not colinear. Then, we use the homogenizing function to shift, scale, rotate, and

reflect the warped domain D such that b0 ◦ f(sk) = (0, 0)′, b0 ◦ f(sl) = (1, 0)′,

and b0,2 ◦ f(sm) > 0, where b0,2(·) refers to the second element of b0(·). A

homogenizing function that accomplishes these transformations is given by

b0(·) ≡ b3 ◦ b2 ◦ b1(·), (3.8)

where b1(·) shifts and scales, b2(·) rotates around the origin, and b3(·) reflects

around the horizontal axis. Figure S1 in the Supplementary Material illustrates

the effect of the homogenizing function b0(·) on points in D.

Denote s̃k ≡ f(sk), s̃l ≡ f(sl), and s̃m ≡ f(sm). The shifting and scaling

is done through the function b1(s) ≡ (1/‖s̃l − s̃k‖)(s − s̃k); s ∈ D. Denote the

scaled and shifted domain as D1, where D1 ≡ {b1(s) : s ∈ D}. Note that the

distance between b1(s̃l) and b1(s̃k) is fixed to one in D1. The operation that

rotates b1(s̃l) to the point (1, 0)′ is given by

b2(s) ≡

(
cosψl sinψl
− sinψl cosψl

)
s; s ∈ D1,

where ψl = atan2(b1,2(s̃l), b1,1(s̃l)) is the angle of b1(s̃l), and b1,i(·) refers to the

ith element of b1(·). Denote the scaled, shifted, and rotated domain as D2,

where D2 ≡ {b2(s) : s ∈ D1}. Finally, the reflection operation that ensures that

b0,2(s̃m) > 0 is given by

b3(s) ≡

(
1 0

0 gm

)
s; s ∈ D2,

where gm ≡ sign(b2 ◦ b1(s̃m)), equal to −1 if a reflection around the horizontal

axis is needed, and equal to +1 otherwise. The fixed frame of reference is defined

to be the domain D3 ≡ {b3(s) : s ∈ D2}.
Fixing the frame of reference can be useful when, for example, one is boot-

strapping to do uncertainty quantification of the warped locations, because these

warped locations are non-identifiable otherwise. Importantly, we have the follow-

ing result when the covariance functions in the deformed space are solely functions

of (scaled) distances.

Theorem 1. Assume that the cross-covariance functions on the warped do-

main, C̃oij,D(h; aij), where {aij} are scale parameters, are solely functions of
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aij‖h‖,h ∈ R2, aij > 0. Consider two cross-covariance matrix functions C
(1)
G (·, ·)

and C
(2)
G (·, ·), where C

(r)
ij,G(s,u) ≡ C̃oij,D(||f (r)(s)− f (r)(u)||; a(r)ij ), for r = 1, 2, and

s,u ∈ G. If C
(1)
G (·, ·) = C

(2)
G (·, ·), then b0◦f (1)(·) = b0◦f (2)(·), where b0(·) is given

by (3.8), and a
(1)
ij ||f (1)(sl)− f (1)(sk)|| = a

(2)
ij ||f (2)(sl)− f (2)(sk)||. Conversely, if

b0 ◦ f (1)(·) = b0 ◦ f (2)(·) and a
(1)
ij ||f (1)(sl)− f (1)(sk)|| = a

(2)
ij ||f (2)(sl)− f (2)(sk)||,

for i, j = 1, . . . , p, then C
(1)
G (·, ·) = C

(2)
G (·, ·).

Proof. See Section S1.5 of the Supplementary Material.

Theorem 1 shows that, after homogenization using (3.8), locations warped

using functions that yield the same cross-covariance matrix functions on the geo-

graphic domain must coincide. This result can be used to obtain a visual apprecia-

tion of the uncertainty in the estimated warping function when bootstrapping the

warping parameters. Informally, after homogenization, two covariance functions

that are similar should yield points that are in close proximity to one another,

and vice versa. We use such a visual diagnostic in our simulation study in Section

4.1.

Theorem 1 also reveals that there is a one-to-one correspondence between

the cross-covariance matrix function on the geographic domain and the scale

parameters in the warped domain after homogenization. Specifically, ãij =

a
(1)
ij ||f (1)(s)− f (1)(u)|| = a

(2)
ij ||f (2)(s)− f (2)(u)||, for i, j = 1, . . . , p, if and only

if C
(1)
G (s,u) = C

(2)
G (s,u), for all s,u ∈ G. This leads to the following corollary,

which shows that consistent inference of a transformation of the different pro-

cesses’ scale parameters in the warped domain can be made after homogenizing

the warpings to a fixed frame of reference. This can be useful for validating our

methods when the true warping function is known, as it is in the simulation study

presented in Section 4.1.

Corollary 1. Assume the conditions of Theorem 1 hold, and define ãij ≡
aij || f(sl)− f(sk) || , for i, j = 1, . . . , p. Then, the set comprising the homogenized

warping function and transformed scale parameters, {b0 ◦ f(·), {ãij}}, is identifi-

able. That is, two sets of parameters {b0◦f (1)(·), {ã(1)ij }} and {b0◦f (2)(·), {ã(2)ij }},
where ã

(r)
ij = a

(r)
ij ||f (r)(sl)− f (r)(sk)||, for r = 1, 2, yield the same log-restricted

likelihood function L(1)(·; ·) and L(2)(·; ·) if and only if they are identical. That

is, {b0 ◦ f(·), {ãij}} is identifiable in the sense of Kadane (1974).

Proof. See Section S1.5 of the Supplementary Material.

Fixing the frame of reference allows us to do uncertainty quantification on

any warping function parameters and transformed scale parameters. While under
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certain conditions, REML estimators are asymptotically Gaussian (Cressie and

Lahiri (1996)), we are not aware of an analytical form of the asymptotic distribu-

tion of the REML estimators for a nonstationary covariance model constructed

through deformation. Hence, we use bootstrapping to make inference on these

parameters. Bootstrapping with spatial data needs to be done with care, because

the data are correlated; see Solow (1985) and Olea and Pardo-Iguzquiza (2011)

for more discussion. A bootstrapping algorithm for quantifying the uncertainties

of the parameters in model (3.7) is shown in Algorithm 1 in Section S3 of the

Supplementary Material (Olea and Pardo-Iguzquiza (2011)). We use Algorithm

1 to visualize uncertainties on warped locations, and we use it for uncertainty

quantification of parameter estimates in the simulation study of Section 4.1.

4. Data Illustrations

In this section, we use two illustrations to show the potential benefit of

using multivariate DCSMs over conventional ones. In Section 4.1, we show

the results from a study using data simulated from a symmetric nonstation-

ary bivariate-covariance model. In Section 4.2, we show the results from a

study using North Atlantic Ocean temperatures at two different depths. Sec-

tion S4 of the Supplementary Material contains additional data illustrations

using data simulated from an asymmetric nonstationary bivariate covariance

model, from models with misspecified warping functions, and from a trivari-

ate covariance model. It also contains an experiment using real maximum-and-

minimum-temperature data in the United States. The code and data for re-

producing the results from all our data illustrations are available from https:

//github.com/quanvu17/deepspat_multivar.

4.1. Simulated symmetric nonstationary data

We first demonstrate the use of multivariate DCSMs on data simulated using

a symmetric nonstationary bivariate covariance model. We simulated the bivari-

ate data from a Gaussian multivariate DCSM, Ỹ(·), with constant mean (i.e.,

q = 1 and x(·) = x1(·) = 1 in (3.5), so that there are two intercepts, β11 and β21,

that need to be estimated). The data were simulated on an equally spaced 101

× 101 grid of the geographic domain G ≡ [−0.5, 0.5] × [−0.5, 0.5]. The warping

function we used was a composition of axial warping units, followed by a single-

resolution radial basis function unit, followed by a Möbius transformation unit;

see Zammit-Mangion et al. (2021) for a detailed description of these warping

units. On the warped domain, we modeled the covariances using a stationary

https://github.com/quanvu17/deepspat_multivar
https://github.com/quanvu17/deepspat_multivar
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isotropic multivariate parsimonious Matérn model. We randomly sampled 1,000

locations from the grid, and used these as measurement locations.

We compared the predictions of the stationary parsimonious Matérn model

(Model 4.1.1) with those of the multivariate DCSM (Model 4.1.2) in order to

gauge the loss in prediction performance when the nonstationarity arising from

the warping is ignored. After fitting Model 4.1.1 and Model 4.1.2 to the observa-

tions at the 1,000 locations, we computed the predictions and prediction standard

errors of the latent processes on the 101 × 101 grid. Figure 1 shows the true sim-

ulated fields, predictions, and prediction standard errors, from both models. As

observed in the univariate case (Zammit-Mangion et al. (2021)), we see that

the DCSM can predict sharp features in the spatial fields, while the stationary

parsimonious Matérn model smooths out such features. Furthermore, while the

stationary parsimonious Matérn model produces prediction standard errors that

are mostly unrelated to the process behavior (due to the stationarity assump-

tion), the DCSM produces prediction standard errors that are highly reflective

of the processes’ local anisotropies and scales. These visualizations illustrate the

advantages of using a multivariate DCSM over a stationary multivariate model

when the underlying processes are highly nonstationary.

To compare the predictive performance of the two models quantitatively,

we calculated the predictive performance at the remaining 9,201 locations us-

ing two commonly used scoring rules, namely the root mean squared prediction

error (RMSPE) and the continuous-ranked probability score (CRPS) (Gneiting

and Raftery (2007)). We repeated the procedure of random sampling 1,000 lo-

cations and accessing the predictive performance 30 times. Table 1 summarizes

the results, with averages from the 30 cross-validation studies, and also gives

the average Akaike information criterion (AIC) from these studies. Figure S2

in the Supplementary Material shows box plots of the RMSPE and CRPS for

both models across the 30 simulations. From the table and figure, it is clear

that there is a large improvement in RMSPE and CRPS when using the DCSM

(Model 4.1.2) over the stationary parsimonious Matérn model (Model 4.1.1). This

improvement was expected because the data were generated from the highly non-

stationary process. Using the more sophisticated nonstationary model comes at

some computational cost. It took 1,545.4 seconds, on average, to fit Model 4.1.2,

almost twice as long as the 823.5 seconds it took to fit Model 4.1.1.

We next used a bootstrap to examine the ability of the DCSM to recover the

true parameters. We bootstrapped in a fixed frame of reference (via the homog-

enizing function) with 1,000 bootstrap samples to quantify uncertainties on the

model parameters using the method outlined in Section 3.3. Figure 2 shows the
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Figure 1. Comparison of predictions and prediction standard errors when using a bivari-
ate stationary parsimonious Matérn model (Model 4.1.1) and a bivariate DCSM (Model
4.1.2) in the study of Section 4.1, where measurement locations were randomly sampled
from G. First row: The process Ỹ1(·) (left panel), and the predictions obtained using
Model 4.1.1 (center panel) and Model 4.1.2 (right panel). Second row: Locations of
the measurement of Ỹ1(·) (left panel), and the prediction standard errors obtained when
using Model 4.1.1 (center panel) and Model 4.1.2 (right panel). Third and fourth rows:
Analogous to the first and second rows, respectively, for the process Ỹ2(·).

measurement locations in G, the measurement locations under the true warping

function and homogenization, the measurement locations under the estimated
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Table 1. Average hold-out validation results, AIC, and the time required to fit for the
simulation study in Section 4.1, where the measurement locations are randomly sampled
30 times from G.

Ỹ1(·) Ỹ2(·)
RMSPE CRPS RMSPE CRPS AIC Time (s)

Model 4.1.1 0.404 0.221 0.089 0.048 887.0 823.5

Model 4.1.2 0.358 0.196 0.072 0.037 257.0 1,545.4

warping function and homogenization, and the bootstrap samples of the warped

locations. We see that the estimated warped locations and the bootstrap sam-

ples of the warped locations are similar to the warped locations under the true

warping function. Specifically, important features, such as the contraction in the

middle part of the domain, are recovered. Table S2 in the Supplementary Mate-

rial lists the true cross-covariance matrix function parameters, along with their

estimates and their 95% bootstrap confidence intervals. The REML estimates

are relatively close to the true parameter values, and all of the 95% bootstrap

confidence intervals of the model parameters contain the true values.

We also considered the case where the data are missing in a block, which is

shown in Section S4.1 in the Supplementary Material.

4.2. Modeling temperatures in the North Atlantic Ocean at two dif-

ferent depths

We next consider sea temperatures in the North Atlantic Ocean at two very

different depths: 0.5 m and 318.1 m. The data were obtained from the Coperni-

cus Marine Environment Monitoring Service (CMEMS)1. We analyzed temper-

atures on July 1, 2018, between 36.3◦N–39.6◦N and 60.0◦W–63.3◦W, with 1,600

measurements on a 40 × 40 grid. Panels (1,1) and (3,1) in Figure 3 show the

temperatures at the two depths, where we can see that there is a small amount

of misalignment in the temperature processes, suggesting that the modeling of

cross-covariance asymmetry may be important.

We considered the following models:

• Model 4.2.1: A bivariate stationary symmetric parsimonious Matérn model

with only an intercept in the trend.

• Model 4.2.2: A bivariate symmetric DCSM, where the warping function

f(·) is a composition of axial warping units, a single-resolution radial basis

1http://marine.copernicus.eu/services-portfolio/access-to-products/?option=com_csw&view=

details&product_id=GLOBAL_ANALYSIS_FORECAST_PHY_001_024

http://marine.copernicus.eu/services-portfolio/access-to-products/?option=com_csw&view=details&product_id=GLOBAL_ANALYSIS_FORECAST_PHY_001_024
http://marine.copernicus.eu/services-portfolio/access-to-products/?option=com_csw&view=details&product_id=GLOBAL_ANALYSIS_FORECAST_PHY_001_024
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Figure 2. Measurement locations on the original domain G and the warped domain
after homogenization, D3. Top row: Measurement locations on the original domain
(left panel); true warped measurement locations (right panel). Bottom row: REML
estimate of the warped measurement locations (left panel); bootstrap distribution of
the warped measurement locations (right panel; for visualization purposes, only 100
bootstrap samples are shown).

function unit, and a Möbius transformation unit, and with Model 4.2.1 on

the warped domain.

• Model 4.2.3: A bivariate asymmetric DCSM, where the aligning function

g2(·) is an affine transformation (as described in Proposition 4) and the

warping function is as in Model 4.2.2, and with Model 4.2.1 on the warped

domain.

The predictive performance of these three models was first examined using

a five-fold cross-validation study, where we randomly divided the 1,600 measure-

ment locations into five groups. The results are summarized in Table S3 in the

Supplementary Material. We see that allowing for model nonstationarity and/or

asymmetry does indeed result in improved predictions, but the observed improve-

ment is not substantial.

We also considered the case where the data are missing in a block. Specifi-

cally, we assumed that we have all the measurements on the grid, except those

between 37.5◦N–38.2◦N. Figure 3 shows the true fields and the predictions using
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Figure 3. Comparison of predictions when using a symmetric stationary parsimonious
Matérn model (Model 4.2.1), a bivariate symmetric DCSM (Model 4.2.2), and a bivariate
asymmetric DCSM (Model 4.2.3). First row: Original temperature observations at depth
0.5 m, Z1 (first panel); predictions obtained using Model 4.2.1 (second panel), Model 4.2.2
(third panel), and Model 4.2.3 (fourth panel). Second row: Locations of the retained
measurements (first panel); prediction standard errors obtained when using Model 4.2.1
(second panel), Model 4.2.2 (third panel), and Model 4.2.3 (fourth panel). Third and
fourth rows: Analogous to the first and second rows, respectively, for Z2, the temperature
observations at depth 318.1 m.

Model 4.2.1, Model 4.2.2, and Model 4.2.3, while Table 2 shows the diagnostic

results when predicting the temperature at the missing locations. The improve-

ment of the bivariate DCSMs over the stationary symmetric Model 4.2.1 is ev-
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Table 2. Hold-out validation results, AIC, and the time required to fit for the ocean
temperature data at depths 0.5 m and 318.1 m for the study in Section 4.2, where data
were missing in the white block shown in the second and fourth rows of Figure 3.

T0.5 T318.1
RMSPE CRPS RMSPE CRPS AIC Time (s)

Model 4.2.1 0.450 0.226 0.463 0.236 -5,274.7 1,311.1

Model 4.2.2 0.234 0.136 0.301 0.176 -6,891.7 2,491.0

Model 4.2.3 0.228 0.126 0.301 0.166 -7,892.1 4,343.2

ident in this case. Observe that the asymmetric version of the DCSM (Model

4.2.3) produces slightly better predictive diagnostics than those of the symmetric

version (Model 4.2.2), illustrating the importance of being able to model asymme-

try. Visualizations of the nonstationary and asymmetric structure of estimated

cross-covariance matrix function are given in Figure S3 and Figure S4 in the

Supplementary Material.

5. Conclusion

We have introduced a new class of cross-covariance matrix functions that

are valid by construction and that capture both nonstationarity and asymmetry.

Specifically, using p warping functions, each of which is constructed as a compo-

sition of elementary injective warping units, we model p-variate spatial processes

that have nonstationary and asymmetric covariances on the geographic domain.

These are modeled in terms of processes with stationary, symmetric, and possibly

isotropic covariances on a warped domain. We also consider a special case where

the same warping function is used for all p processes, resulting in a symmetric

cross-covariance matrix function on the geographic domain. We show the benefit

of using multivariate DCSMs over classical stationary models, such as the mul-

tivariate parsimonious Matérn model, through illustrations based on simulated

data and real-world data.

There are a number of avenues that can be considered for future develop-

ment of the proposed models. First, the models we propose do not consider

nonstationarity in the variance parameters or in the cross-correlation parame-

ters. Spatially varying variance parameters and cross-correlation parameters can

be introduced, as in Kleiber and Nychka (2012) and Messick, Heaton and Hansen

(2017). Second, we use only the parsimonious multivariate Matérn model on the

warped domain, but indeed any model could be used (e.g., one based on the

cross-variogram). Third, we present data examples for two-dimensional space

(d = 2), but our model can also be used in higher-dimensional space. The
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challenge is to find warping functions that are injective in a higher-dimensional

domain. Furthermore, because the computational complexity of evaluating the

likelihood function in the model is O(N3) for a data set of size N , the model needs

to be modified when modeling large spatial data sets. Specifically, to deal with

very large nonstationary spatial data sets, one would need to extend the model

in such a way that it has a scalable structure on the deformed space. Several

models that can deal with very large spatial data sets are summarized in Heaton

et al. (2019). Finally, when using this new class of multivariate spatial models,

several decisions need to be made on the architecture (e.g., the number of layers

of warping units, the order of the warping units, etc.), and further work needs to

be carried out to determine how these decisions affect the predictive performance.

In conclusion, we show that multivariate DCSMs are easy to construct and

fit from simple injective warping functions. We also show that they can provide

superior predictive performance compared with that of conventional stationary

models, particularly when data are missing over large regions.

Supplementary Material

Section S1 contains the proofs of Propositions 1–4, Theorem 1, and Corollary

1; Section S2 gives the log-restricted likelihood and prediction formulae; Section

S3 contains additional tables and figures; and Section S4 contains additional data

illustrations.
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