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Abstract: This paper proposes a model averaging method based on Kullback-Leibler

distance under a homoscedastic normal error term. The resulting model average

estimator is proved to be asymptotically optimal. When combining least squares

estimators, the model average estimator is shown to have the same large sample

properties as the Mallows model average (MMA) estimator developed by Hansen

(2007). We show via simulations that, in terms of mean squared prediction error and

mean squared parameter estimation error, the proposed model average estimator is

more efficient than the MMA estimator and the estimator based on model selection

using the corrected Akaike information criterion in small sample situations. A

modified version of the new model average estimator is further suggested for the

case of heteroscedastic random errors. The method is applied to a data set from

the Hong Kong real estate market.
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1. Introduction

Model averaging is an alternative to model selection for dealing with model

uncertainty. By minimizing a model selection criterion, such as Cp (Mallows

(1973)), AIC (Akaike (1973)), and BIC (Schwarz (1978)), one model can be cho-

sen from a set of candidate models, but we end up “putting all our inferential

eggs in one unevenly woven basket” (Longford (2005)). Model averaging often

reduces the risk in regression estimation, as “betting” on multiple models pro-

vides a type of insurance against a singly selected model being poor (Leung and

Barron (2006)). Additionally, it is often the case that several models fit the

data equally well, but may differ substantially in terms of the variables included

and may lead to different predictions (Miller (2002)). Combining these mod-

els seems to be more reasonable than choosing one of them. Averaging weights

can be based on the scores of information criteria (Buckland, Burnham and Au-

gustin (1997), Hjort and Claeskens (2003), Claeskens, Croux and van Kerckhoven

(2006), Zhang and Liang (2011), Zhang, Wan, and Zhou (2012)). Other model
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averaging strategies that have been developed include, for example, the adaptive

regression by mixing of Yang (2001), the Mallows model averaging (MMA) of

Hansen (2007) (see also Wan, Zhang, and Zou (2010)), and the optimal mean

squared error averaging of Liang et al. (2011).

The Cp and AIC are both widely used criteria in model selection. The

former was developed from prediction of “scaled sum of squared errors” (Mallows

(1973)), and the latter was produced by an approximately unbiased estimator

of the expected Kullback-Leibler (KL) distance (Akaike (1973)). In addition,

GIC (Konishi and Kitagawa (1996)), KIC (Cavanaugh (1999)), and RIC (Shi

and Tsai (2004)) were also developed from the KL distance. Recently, Hansen

(2007) utilized the Cp criterion in model averaging (called Mallows’ criterion) and

presented the asymptotic optimality of the resulting MMA estimator. Motivated

by these facts, proposing a novel model averaging approach from estimating the

expected KL distance seems to be feasible and potentially interesting. From

Shao (1997), Cp and AIC can be classified into the same class according to their

asymptotic behaviors. Thus, the new approach is expected to have the same

asymptotic optimality as MMA.

Hurvich and Tsai (1989) proposed a corrected version of AIC, AICc, that

is an exactly unbiased estimator of the expected KL distance in linear models

with normally homoscedastic error and thus has advantages over AIC and Cp

under small sample situations. Following this observation, our approach is based

on an unbiased estimator of the expected KL distance from the averaging model

(the model with parameters estimated by model averaging) to the true data

generating process, thus our approach is further expected to have advantages

over MMA under small sample situations, which is verified by our simulation

study. A referee mentioned that the choice of weights via a Kullback-Leibler

distance was proposed in an entirely different context by Rigollet (2012), in

which non-random vectors are aggregated and risk inequalities were proved.

More recently, to average estimators under a heteroscedasticity setting,

Hansen and Racine (2012) proposed a jackknife model averaging (JMA) method.

Liu and Okui (2013) suggested a Mallows’ Cp-like criterion for a heteroscedas-

ticity setting and referred to their method as heteroscedasticity-robust Cp model

averaging. In the current paper, we further modify our approach for averaging

estimators for a heteroscedasticity setting.

The remainder of this paper is organized as follows. Section 2 introduces a

weight choice criterion from estimating the KL distance and proves the asymp-

totic optimality of the resulting model average estimator. Section 3 extends the

new method to the setting with heteroscedastic errors. Section 4 investigates

the finite sample performance of the proposed model average estimators through

extensive simulation studies. Section 5 applies the model average estimators to
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an empirical example. Section 6 has concluding remarks. Assumptions for the

theoretical properties are provided in an Appendix and the proofs are reported

in the Supplementary Material.

2. Weight Choice Criterion from KL Distance

Consider the data generating process

y = µ+ e, (2.1)

where y = (y1, . . . , yn)
T is an n×1 vector of observations, µ = (µ1, . . . , µn)

T is the

mean vector of y, and e = (e1, . . . , en)
T with the ei’s independent with mean zeros

and variance σ2. We assume that e has a multivariate normal distribution when

developing weight choice criteria, but the normality assumption is unnecessary

when proving asymptotic optimality of the resulting model average estimators.

Assume that there are S candidate models used to approximate the data

generating process given in (2.1). Write µ̂(s) as the estimator of µ based on the

sth candidate model. Let the weight vector w = (w1, . . . , wS)
T, belonging to

the set W = {w ∈ [0, 1]S :
∑S

s=1ws = 1}. The model average estimator of µ is

written as µ̂(w) =
∑S

s=1wsµ̂(s). Denote σ̂2 as an estimator of σ2.

Let f and g be the true density of the distribution generating the data y,

and the density of the model fitting the data, respectively. The KL distance

between them is given by I(f, g) = Ef(y){log f(y)} − Ef(y){log g(y|θ)}, where θ

includes unknown parameters. Suppose that θ̂(y) is an estimator of θ. Then, the

expected KL distance is

Ef(y){I(f, gθ̂(y))} = Ef(y∗){log f(y∗)} − Ef(y)(Ef(y∗)[log g{y∗|θ̂(y)}]),

where y∗ is another realization from f and independent of y. Ignoring the con-

stant Ef(y∗){log f(y∗)}, the fit of g{y|θ̂(y)} can be assessed using the Akaike

information (AI): AI = −2Ef(y)(Ef(y∗)[log g{y∗|θ̂(y)}]). Here, the fitting model

is assumed to be normally distributed and the unknown parameters in (2.1) are

estimated by θ̂(y) = {µ̂(w), σ̂2}. Thus, we write the Akaike information as

AI(w) = −2Ef(y)(Ef(y∗)[log g{y∗|θ̂(y)}])
= Ef(y)

[
Ef(y∗)

{
n log 2π + n log σ̂2 + ∥y∗ − µ̂(w)∥2σ̂−2

}]
= Ef(y)

{
n log 2π + n log σ̂2 + ∥µ− µ̂(w)∥2 + σ2nσ̂−2

}
. (2.2)

Define

B(w) = n log 2π + n log σ̂2 + ∥y − µ̂(w)∥2σ̂−2 + 2σ2σ̂−2trace

(
∂µ̂(w)

∂yT

)
+
2σ2

σ̂4
{y − µ̂(w)}T∂σ̂

2

∂y
+

2σ4

σ̂6
trace

(
∂σ̂2

∂y

∂σ̂2

∂yT

)
− σ4

σ̂4
trace

(
∂2σ̂2

∂y∂yT

)
.
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Although the definition of B(w) appears complicated, the idea behind it is simple.

For the purpose of selecting good weights, one should minimize AI(w) with w ∈
W. But AI(w) involves unknown moments of various random variables. So, we

attempt to find an unbiased estimator of AI(w), which is just B(w).

Theorem 1. If σ̂2 and ∂σ̂2/∂y are continuous functions with piecewise contin-

uous partial derivatives with respect to y, the expectation of B(w) exists, and e

has a multivariate normal distribution, then for any w ∈ W, E{B(w)} = AI(w).

We focus on the case that µ̂(s) is linear with respect to y, µ̂(s) = P(s)y,

where the matrix P(s) is not related to y. This class of estimators includes

least squares, ridge regression, Nadaraya-Watson and local polynomial kernel

regression with fixed bandwidths, nearest neighbor estimators, series estimators,

and spline estimators (Hansen and Racine (2012)). Let P (w) =
∑S

s=1wsP(s), so

that µ̂(w) = P (w)y.

When σ2 is known, B(w) can be simplified to

n log 2π + n log σ2 + σ−2∥y − µ̂(w)∥2 + 2trace{P (w)},

which, in the sense of weight choice, is equivalent to the Mallows’ criterion of

Hansen (2007) for the situation with known σ2.

In practice, σ2 is unknown. We can estimate it directly by σ̂2, which is

required to satisfy Assumptions (A.4)−(A.5) in the appendix. For simplicity, we

further assume that σ̂2 is unrelated to w, which means that σ̂2 is not from model

averaging as in the existing literature, such as Hansen (2007) and Liang et al.

(2011). After removing the terms unrelated to w and multiplying by σ̂2, B(w)
reduces to

B∗(w) ≡ ∥y − P (w)y∥2 + 2σ̂2trace{P (w)} − 2yTPT(w)
∂σ̂2

∂y
, (2.3)

which can be taken as a criterion for choosing weights. We let w∗=argmin
w∈W

{B∗(w)},

the resulting weights by minimizing the criterion B∗(w).

The predictive squared error in estimating µ is Ln(w) = ∥µ̂(w) − µ∥2. We

can show the asymptotic optimality of µ̂(w∗) in the sense that µ̂(w∗) yields

a squared error that is asymptotically identical to that of the infeasible optimal

model average estimator. Unless otherwise stated, all limiting processes discussed

are with respect to n → ∞.

Theorem 2. If Assumptions (A.1)−(A.5) in the Appendix are satisfied, then

Ln(w
∗){ inf

w∈W
Ln(w)}−1 = 1 + op(1).
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The direct use of σ̂2 in B∗(w) instead of σ2 makes B∗(w) not unbiased for

estimating AI, up to a term unrelated to w. In what follows, we consider a situ-

ation where AI can be estimated unbiasedly using data, up to a term unrelated

to w.

As in such model averaging papers as Hansen (2007), Wan, Zhang, and Zou

(2010), Liang et al. (2011), and Hansen and Racine (2012), we now focus on least

squares estimation with P(s) = X(s)(X
T
(s)X(s))

−XT
(s), where X(s) is the covariate

matrix in the sth candidate model and (XT
(s)X(s))

− is a generalized inverse of

XT
(s)X(s). Let X =

(
X(1), . . . , X(S)

)
, m = rank(X), and P = X

(
XTX

)−
XT.

We adopt σ̂2(y, k) = yT(In − P )y/k to estimate σ2, where k is a positive con-

stant. Consider the situation of µ being a linear function of X, µ = Xβ. Then,

σ̂2(y, n) is the maximum likelihood estimator of σ2 and σ̂2(y, n−m) is an unbi-

ased estimator of σ2. Substitute σ̂2(y, k) for σ̂2 in (2.2) and denote the resulting

AI(w) as AIk(w). Define

C(w) ≡ n log 2π + n log σ̂2(y, k) + 2k(n−m− 2)−1trace{P (w)}
+∥y − µ̂(w)∥2σ̂−2(y, k) + 4σ2σ̂−2(y, k)− 2k−1(n−m− 4)σ4σ̂−4(y, k).

Because AIk(w) involves unknown moments of various random variables, in a

manner similar to that leading to Theorem 1, we derive its unbiased estimator,

which is just C(w).

Theorem 3. Suppose e has a multivariate normal distribution and µ is a linear

function of X. For any k > 0, if the expectation of C(w) exists, then E {C(w)} =

AIk(w).

By removing the terms unrelated to w and multiplying by σ̂2(y, k), C(w)
simplifies to

C∗(w) ≡ ∥y − µ̂(w)∥2 + 2yT(In − P )y(n−m− 2)−1trace{P (w)},

which we refer to as the KL model averaging (KLMA) criterion. Let ŵ =

argmin
w∈W

{C∗(w)}. The resulting model average estimator is called the KLMA

estimator.

Remark 1. By comparing the criterion C∗(w) and the Mallows’ criterion of

Hansen (2007), the only difference is that n −m − 2 is used here, while n −m

is used in Mallows’ criterion. The quantity n − m − 2 is from calculating the

mean of the inverse Chi-squared distribution; see (S3.1) of the Supplementary

Material. So the KLMA estimator will have the same large sample properties as

the MMA estimator, and thus the asymptotic optimality of the MMA estimator

presented by Hansen (2007) and Wan, Zhang, and Zou (2010) also holds for the
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KLMA estimator. In particular, our Assumptions (A.1) and (A.4) are sufficient

for the asymptotic optimality of the KLMA estimator and Assumptions (A.2),

(A.3), and (A.5) are not necessary.

Remark 2. Let c(w) = e′{In −P (w)}µ+ σ2trace{P (w)}− e′P (w)e. Obviously,

|E{c(w)}| = 0, but our weight vector ŵ is determined by data, so that |E{c(ŵ)}|
may not be zero. We show in the Supplementary Material that

E{Ln(ŵ)} ≤ infw∈W E{Ln(w)}+ |E{c(ŵ)}|, (2.4)

which means that the expected predictive squared error by using ŵ is upper-

bounded by the minimum expected error of model averaging estimators plus

the term |E{c(ŵ)}|. This result holds for finite sample sizes. Similar results

have been developed by Yang (2001) and Zhang, Lu and Zou (2013). If infw∈W
E{Ln(w)} → ∞, then the term |c(ŵ)| is of order lower than infw∈W E{Ln(w)}
under some regularity conditions (Wan, Zhang, and Zou (2010)).

3. The KLMA Estimator under a Heteroscedastic Error Setting

When the covariance matrix of e, Ω, is a general diagonal matrix, it follows

from (2.2) that the Akaike information is

AIhetero = Ef(y)

(
Ef(y∗)

[
n log 2π + log |Ω̂|+ {y∗ − µ̂(w)}TΩ̂−1{y∗ − µ̂(w)}

])
= Ef(y)

[
n log 2π + log |Ω̂|+ {µ− µ̂(w)}TΩ̂−1{µ− µ̂(w)}+ trace(Ω̂−1Ω)

]
,

where Ω̂ is an estimator of Ω and is also diagonal. Using similar conditions to

those of Theorem 1 and the same argument as in the proof of Theorem 1, we see

that

D(w) ≡ n log 2π + log |Ω̂|+ {y − µ̂(w)}TΩ̂−1{y − µ̂(w)}

+2trace

{
ΩΩ̂−1∂µ̂(w)

∂yT

}
+ 2{y − µ̂(w)}TΩΩ̂−2â+ δ̂ (3.1)

has expectation AIhetero, where â = (â1, . . . , ân)
T, âi = ∂Ω̂ii/∂yi, Ω̂ii is the ith

diagonal element of Ω̂, and δ̂ is a scale related to ∂Ω̂ii/∂yi and ∂2Ω̂ii/∂y
2
i , but

unrelated to w.

We focus on the case with µ̂(w) = P (w)y. After removing some terms

unrelated to w and estimating Ω by Ω̂ in (3.1), D(w) reduces to

D∗(w) ≡ {y − µ̂(w)}TΩ̂−1{y − µ̂(w)}+ 2trace{P (w)} − 2yTPT(w)Ω̂−1â.

It is straightforward to show that when Ω̂ = σ̂2In, D∗(w) simplifies to B∗(w).

Let ŵhetero = argmin
w∈W

{D∗(w)}, the resulting weights by minimizing D∗(w).
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Under the heteroscedastic error setting, we define the predictive squared
error in estimating µ as Lhetero,n(w) = {µ̂(w) − µ}TΩ−1{µ̂(w) − µ}. A result is
the asymptotic optimality of µ̂(ŵhetero) in the sense of minimizing Lhetero,n(w).

Theorem 4. If Assumptions (A.2) and (A.3), and Assumptions (B.2)−(B.5) in
the Appendix are satisfied, then

Lhetero,n(ŵhetero){ inf
w∈W

Lhetero,n(w)}−1 = 1 + op(1). (3.2)

When the structure of Ω is known and it is related to an unknown parameter
vector η, Ω = Ω(η), we can estimate Ω by the maximum likelihood (ML) approach
based on the model with the largest number of covariates. Let η̂ be the ML
estimator of η. Then âi = ∂Ω̂ii/∂yi = ∂η̂T/∂yi(∂Ω̂ii/∂η̂). The Supplementary
Material provides some formulas for calculating ∂η̂T/∂y. The resulting estimator
is referenced as version 1 modified KLMA (mKLMA1) estimator.

When the structure of Ω is unknown, we use residuals from model averaging
to estimate Ω. Specifically, we use a two-stage procedure to get the weights.

Stage 1. Estimate µ using the methods developed in Sections 2, then use the
residual vector y − µ̂(w∗) for the estimation of Ω, where w∗ is the weight vector
minimizing B∗(w). Specifically, let Ω̂ii = {yi − µ̂(w∗)i}2, where yi and µ̂(w∗)i
are the ith elements of y and µ̂(w∗), respectively. Ignoring the randomness of w∗,
we have âi = ∂Ω̂ii/∂yi = 2{yi − µ̂(w∗)i}{1 − P (w∗)ii}, where P (w∗)ii is the ith

diagonal element of P (w∗). When focusing on least squares model averaging, we
utilize ŵ instead of w∗.
Stage 2. To obtain the weights, minimize

E(w) ≡ {y − µ̂(w)}TΩ̂−1{y − µ̂(w)}+ 2trace {P (w)} − 4yTPT(w)Ω̂−1

×[{y1 − µ̂(w∗)1}{1− P (w∗)11}, . . . , {yn − µ̂(w∗)n}{1− P (w∗)nn}]T.

The resulting estimator is termed the version 2 modified KLMA (mKLMA2)
estimator.

4. Simulations

4.1. Homoscedastic error setting

We conducted simulation experiments to compare the small sample perfor-
mance of the KLMA estimator and the MMA estimator under the homoscedastic
error setting. The results from the estimator selected by AICc, a method that
has been shown to perform better than Cp, AIC and BIC in model selection in
small sample situations (see, for example, Hurvich and Tsai (1989) and Hurvich,
Simonoff and Tsai (2002)), are also presented. In the first example, the number
of covariates was fixed, while in the second example, it increased with the sample
size n.
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n = 20 n = 50

Figure 1. Results for Example 1: risk comparisons under Lµ as a function of R2.

Example 1 (the fixed number of covariates). This example is based on the

setting of Hurvich and Tsai (1989): the model (2.1) with

µ = Xβ, β = (1, 2, 3, 0, 0, 0, 0)T, and Xj ∼ Normal(0, In), j = 1, . . . , 7,

where Xj is the jth column of X. Seven candidate models were considered with

X(s) = (X1, . . . , Xs), s = 1, . . . , 7, respectively. Let R2 = Var (µi)/Var (yi) =

Var (µi)/{Var (µi) + σ2} = 14/(14 + σ2), controlled by σ2. We varied σ2 such

that R2 varied in the range [0.1, 0.9]. The estimator µ̂ was evaluated in terms of

its risk under the loss function Lµ = ∥µ̂ − µ∥2, the predictive loss of µ̂. We did

this by computing the average across 1,000 replications. The sample size n was

20 and 50.

The simulation results are shown in Figure 1. For clearer comparison, we

normalized the risk by dividing by the risk of the infeasible optimal least squares

estimator. It is encouraging that the KLMA has a lower risk than the MMA in the

entire range of R2 we considered, and the superiority is more obvious for n = 20.

When n = 50, the two model average estimators have similar performance, which

is expected as they have the same large sample properties. In most situations,

the model averaging outperforms model selection by the AICc.

The estimators were also evaluated in terms of risk under the loss function

Lβ = ∥β̂−β∥2. The simulation results are presented in Section S8 of the Supple-

mentary Material. The comparison results are analogous to those under Lµ and

support our proposed KLMA.

Example 2 (an increasing number of covariates). This example is based on the

setting in Hansen (2007): yi = µi + ei =
∑∞

j=1 θjxji + ei, x1i = 1, all other

xji are Normal(0, 1), ei is Normal(0, 1), independent of xji, all xji are mutually
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n = 20, α = 1 n = 50, α = 1

Figure 2. Results for Example 2: risk comparisons under Lµ as a function of R2.

independent, θj = c
√
2αj−α−1/2, R2 = c2/(1 + c2) ∈ [0.1, 0.9], controlled by c,

and α is set to 0.5, 1.0, and 1.5. Like Hansen (2007), we considered S = [3n1/3]

nested approximating models with the sth model comprising the first s regressors,

where [3n1/3] returns the nearest integer from 3n1/3. As in Example 1, we focused

on the small sample cases, with n = 20 and 50. Following Hansen (2007), our

evaluation was based on the predictive loss function Lµ with 1,000 replications.

The simulation results with α = 1 are depicted in Figure 2 and all simulation

results are shown in Section S9 of the Supplementary Material. It is seen that

the MMA estimator typically yields better estimates than the model selection

estimator, which is in accordance with what was observed by Hansen (2007).

The KLMA estimator is found to be superior to the MMA estimator in a large

region of the parameter space, and this superiority is most marked when R2 is

small and α is large. This performance is particularly encouraging in view of the

fact that this experiment is performed under the setting of Hansen (2007), where

it has been shown that the MMA estimator performs better than many commonly

used model selection and averaging methods. When R2 is large, MMA can be

slightly better than KLMA. When n increases, they perform more similarly.

4.2. Heteroscedastic error setting

We conducted simulation experiments with heteroscedastic errors to com-

pare the mKLMA1 and mKLMA2 estimators with the JMA estimator in Hansen

and Racine (2012). The weight vector of the JMA estimator was obtained by

minimizing a jackknife criterion.

Example 3. This example is based on the same setting as in Example 1 ex-

cept that n varied in {20, 50, 150, 400}, and e ∼ Normal[0, diag{exp(ηX2,1), . . .,
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n = 20 n = 150

Figure 3. Results for Example 3: risk comparisons under Lµ as a function of R2.

exp(ηX2,n)}], whereX2,i is the i
th element ofX2 and η > 0. We changed the value

of η such that R2 = Var (µi)/Var (yi) ≈ Var (µi)/[Var (µi) + E{exp(ηX2,i)}] =
14/{14 + exp(η2/2)} varied in the range [0.1, 0.9].

The risk comparison results of mKLMA1, mKLMA2, and JMA estimators

under Lµ loss are presented in Figure 3 with n = 20 and 150 (the results with

n = 50 and 400 are shown in Figure S.3 of the Supplementary Material). It is

clear that mKLMA1 generally leads to the lowest risk. The mKLMA2 and JMA

methods perform comparably; the latter has been shown to have advantages

over the MMA estimator and other estimators selected by AIC, BIC, and cross-

validation (Hansen and Racine (2012)). When R2 is small, JMA produces a lower

risk than mKLMA2, while mKLMA2 is superior to JMA when R2 is large. The

risk comparison under Lβ loss is presented in Figure S.4 of the Supplementary

Material. As in Example 1, the patterns under Lµ and Lβ are almost the same.

We also evaluated estimators in terms of risk under the loss function Lhetero,µ =

(µ̂− µ)Ω−1(µ̂− µ). Figure 4 shows risk comparison results with n = 20 and 150

(other results are shown in Figure S.5 of the Supplementary Material), from

which, we see that mKLMA2 and JMA are still comparable, and that mKLMA1

performs much better.

In Sections S11-S13 of the Supplementary Material, for a robustness check,

we provide some more simulation examples. It is seen that our method is still

superior to the other methods when the errors are not normally distributed or

the coefficients depend on the sample size.
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n = 20 n = 150

Figure 4. Results for Example 3: risk comparisons under Lhetero,µ as a function of R2.

5. Empirical Example

We applied our methods to a data set from the Hong Kong residential prop-

erty market. The data set consists of 560 transactions of the housing estate

‘South Horizon’ located in the South of Hong Kong, recorded by Centaline Prop-

erty Agency Ltd. from January 2004 to October 2007. The model from Magnus,

Wan and Zhang (2011) is adopted to analyze this data set:

LPRICEt = β1 + β2LAREAt + β3LFLOORt + β4GARVt + β5INDVt

+β6SEAV Ft + β7SEAV St + β8SEAVMt + β9MONVt

+β10STRIt + β11STRNt + β12UNLUCKt + et (5.1)

for t = 1, . . . , 560, where LPRICE is the natural logarithm of the sales price per

square foot, and the twelve regressors, including the constant term, are shown in

Table 1. As in Magnus, Wan and Zhang (2011), we treated the first six variables

as focus regressors and the other six variables as auxiliary regressors, and so we

combine 26 = 64 models.

We used indices of the six auxiliary regressors to indicate these candidate

models. For example, (7, 8) indicates the model including SEAV S and SEAVM .

We examined the predictive power of the six model selection and averaging meth-

ods used in the simulation study: AICc, MMA, KLMA, JMA, mKLMA1, and

mKLMA2, the last three of which are developed for the heteroscedastic setting.

Magnus, Wan and Zhang (2011) has found that the heteroscedasticity structure

of this data set is

Ω = diag{exp(ηSTRN1), . . . , exp(ηSTRNn)},

so we also used this structure when implementing mKLMA1.
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Table 1. Regressors in application. See Magnus, Wan and Zhang (2011) for
a detailed description of these variables.

Index Regressor Explanation
1 INTER. Constant term
2 LAREA Size of dwelling in square feet (natural logarithm)
3 LFLOOR Floor level of dwelling (natural logarithm)
4 GARV 1 if garden view; 0 otherwise
5 INDV 1 if industry view; 0 otherwise
6 SEAVF 1 if full sea view; 0 otherwise
7 SEAVS 1 if semi sea view; 0 otherwise
8 SEAVM 1 if minor sea view; 0 otherwise
9 MONV 1 if mountain view; 0 otherwise
10 STRI 1 if internal street view; 0 otherwise
11 STRN 1 if no street view; 0 otherwise
12 UNLUCK 1 if located on floors 4, 14, 24, 34 or in block 4; 0 otherwise.

Table 2. Weights estimated by model averaging methods.

Model MMA KLMA JMA mKLMA2 mKLMA1

(7) 0.06 0.06 0.01 0.18 0.52∗

(8) 0.00 0.00 0.00 0.00 0.14
(7,8) 0.00 0.00 0.16 0.00 0.08
(7, 10) 0.22 0.22 0.16 0.16 0.00
(8, 9) 0.11 0.11 0.15 0.02 0.00
(8, 10) 0.00 0.00 0.00 0.00 0.16

(7, 8, 12) 0.21 0.20 0.08 0.31∗ 0.00
(7, 10, 12) 0.09 0.10 0.00 0.04 0.00
(8, 10, 12) 0.25∗ 0.25∗ 0.18 0.27 0.11

(7, 10, 11, 12) 0.06 0.06 0.25∗ 0.01 0.00

Table 2 shows weights for all model averaging methods. We list only the

models whose largest weights for all model averaging methods are not smaller

than 0.01. In each column, the largest weight is indicated by an asterisk. It is

seen that MMA and KLMA perform very closely and both put the largest weights

on model (8, 10, 12). JMA, mKLMA2, and mKLMA1 put the largest weights on

models (7, 10, 11, 12), (7, 8, 12) and (7), respectively. The model selected by AICc

is (7, 8, 10, 12).

In many applications, it is often the case that a prediction may be sensitive to

the sample that is used to estimate the forecasting model. Too early observations

may not be useful or even lead to worse results in prediction, so we used a moving

window of samples for estimation. We let n = 50 and 400. For each n, we did

560− n one-step-ahead predictions.

To make comparison results easily detected, in each prediction, we subtracted

minimum squared prediction error (SPE) of the six methods, from all SPEs.
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Table 3. MSPEDs by model averaging and selection methods and their
standard errors in forecasting Hong Kong estate price (×10−3).

n AICc MMA KLMA JMA mKLMA2 mKLMA1

50 MSPED 1.522 1.175 1.164 1.276 1.309 1.081
s.e. 0.152 0.092 0.090 0.115 0.156 0.092

400 MSPED 0.771 0.690 0.690 0.684 0.682 0.654
s.e. 0.099 0.063 0.063 0.065 0.081 0.083

The corresponding values are called SPE distances. Table 3 displays mean SPE

distances (MSPEDs) and their standard errors based on 560 − n predictions.

Again, it is seen that KLMA performs better than MMA for relatively small

sample size situation and they have very similar performance for the large sample

sizes. We also find that mKLMA1 performs best, and JMA and mKLMA2 are

comparable.

6. Concluding Remarks

We have developed a novel weight choice criterion based on the KL dis-

tance. Like the well-known MMA estimator, the resulting KLMA estimator is

asymptotically optimal. More importantly, for finite sample situation, the KLMA

estimator has been observed to be generally superior to the MMA estimator. We

have further extended the KLMA estimator to the setting with heteroscedasticity

and proved the corresponding asymptotic optimality. The simulation study and

application have shown the promise of the proposed model average estimators.

For the purpose of statistical inference, it is necessary to obtain the limiting

distribution of a model average estimator. Under the commonly used models with

the local misspecification assumption, the limiting distribution theory of model

average estimator using weights with an explicit form has been established in

the literature such as Hjort and Claeskens (2003). Deriving the limiting distri-

butions of our model average estimators, whose weight vectors have no explicit

expressions, warrants further investigation.

Lastly, we remark that unbiasedness built in Theorems 1 and 3 are based on

the normality assumption of e. Although a robustness check in the simulation

study shows that our method still outperforms its competitors when e follows a

uniform or Chi-squared distribution, we cannot conclude that our approach can

be generally applied to other error distribution cases. Developing specific weight

choice criteria for other distributions is an interesting open question for future

studies.
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Appendix: Assumptions

Let λmax(A) denote the maximum singular value for a matrix A, Rn(w) =

E {Ln(w)}, ξn = infw∈W Rn(w), w
0
s be an S × 1 vector in which the sth element

is one and the others are zeros, and T̂ be a matrix such that ∂σ̂2/∂y = T̂ y.

Assumption A.1. For a constant κ1 and some fixed integer 1 ≤ G < ∞,

E(e4Gi ) ≤ κ1 < ∞, i = 1, . . . , n, and Sξ−2G
n

∑S
s=1R

G
n (w

0
s) = o(1).

Assumption A.2. maxs∈{1,...,S} λmax(P(s)) = O(1).

Assumption A.3. ∥µ∥2n−1 = O(1).

Assumption A.4. supw∈W [|(σ̂2 − σ2)trace{P (w)}|R−1
n (w)] = op(1).

Assumption A.5. nλmax(T̂ )ξ
−1
n = op(1).

Assumptions (A.1)−(A.3) are commonly used in such literature on model

selection and model averaging as Li (1987), Andrews (1991), Shao (1997), Hansen

(2007), andWan, Zhang, and Zou (2010). The normality of e required in Theorem

1 is not necessary for asymptotic optimality. In Section S7 of the Supplementary

Material, we present a discussion on Assumption (A.1) and its relationship with

the normality of e.

Assumption (A.4) restricts the estimator σ̂2. In Hansen (2007) and Wan,

Zhang, and Zou (2010), the model with the largest rank of regressor matrix,

denoted as r, is used to estimate σ2. In this case, Assumption (A.4) is implied

by Assumptions (A.1)−(A.3) and r2n−1 = O(1). See the proof of Theorem 2 in

Wan, Zhang, and Zou (2010) for the derivation.

Assumption (A.5) places a constraint on the robustness of the estimator σ̂2.

Under any candidate model s, a natural estimator of σ2 is σ̂2 = ∥y− µ̂(s)∥2/n =

yT(In−P(s))
T(In−P(s))y/n, and then Assumption (A.5) is obviously implied by

Assumptions (A.1)−(A.2).

Let Rhetero,n(w) = E {Lhetero,n(w)}, ξhetero,n = infw∈W Rhetero,n(w), Â be a

matrix such that â = Ây, and P̃ (w) = Ω−1/2P (w)Ω1/2.
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Assumption B.1. For a constant κ2 and some fixed integer 1 ≤ G1 < ∞,

E(e4G1
i ) ≤ κ2 < ∞, i = 1, . . . , n, and Sξ−2G1

hetero,n

∑S
s=1R

G1
hetero,n(w

0
s) = o(1).

Assumption B.2. There exist two constants c1 and c2 such that 0 < c1 ≤
mini∈{1,...,n}Ωii ≤ maxi∈{1,...,n}Ωii ≤ c2 < ∞.

Assumption B.3. (maxi∈{1,...,n} |Ω̂ii − Ωii|)2nξ−1
hetero,n = op(1).

Assumption B.4. maxi∈{1,...,n} |Ω̂ii−Ωii| supw∈W [R−1
hetero,n(w)trace{P̃ (w)P̃T(w)}]

= op(1).

Assumption B.5. nλmax(Â)ξ
−1
hetero,n = op(1).

Assumptions (B.1) and (B.5) are similar to Assumptions (A.1) and (A.5),

respectively. Assumptions (B.3)−(B.4) restrict the estimator Ω̂. When the struc-

ture of Ω is known and it is related to a parameter vector η, Ω = Ω(η), we

generally have ∥η̂ − η∥ = Op(n
−1/2) and maxi∈{1,...,n} |Ω̂ii − Ωii| = Op(n

−1/2)

under some regularity conditions and, in this case, Assumptions (B.3)−(B.4) are

implied by Assumption (B.1) and formula (S5.4) in the Supplementary Material,

respectively.
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