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Abstract: This paper studies a class of tests useful for testing goodness of fit of

a wide variety of time series models. These tests are based on a class of empiri-

cal processes marked by certain scores. Major advantages of these tests are that

they are easy to implement, require only weak conditions that are usually satisfied

in practical applications, the relevant critical values are readily available without

bootstrap, and are more powerful than the Ljung-Box test, the Li-Mak test and the

Koul-Stute test in all the cases we have tried. A comparison with the Fan-Zhang

test is included. We also extend the class of tests to include score-like statistics.
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1. Introduction

Let {yt : t = 0,±1,±2, . . .} be a strictly stationary sequence of real-valued
random variables defined on the probability space (Ω,F , P ); let Ft be the σ−field
generated by {yt, yt−1, · · · }. We assume that the mean and the variance of yt

are both finite. Suppose we wish to summarize the information contained in a
finite number of observations of the time series by building a parametric model.
Now, goodness-of-fit tests constitute an essential stage in parametric modelling
and there are numerous tests available in the literature, see, e.g., Li (2004) for
a fairly comprehensive account. Formally, we postulate that the time series is
generated by the model

yt = µt(θ) + ηt

√
ht(θ) , (1.1)

where θ ∈ Θ, Θ being a proper subset of the p−dimensional Euclidean space,
µt(θ) and ht(θ) are, respectively, the conditional mean function and the con-
ditional variance function of yt given Ft−1, {ηt, t = 0,±1, . . .} is a sequence of
independent and identically distributed (i.i.d.) random variables with a common
distribution F , zero mean and unit variance, and ηt is independent of Ft−1. Note
that sometimes θ is called the nuisance parameter with its true value denoted by
θ0.
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Within such a framework, a goodness-of-fit test tests the (composite) null
hypothesis that the given data follow model (1.1). The alternative hypothesis is
merely that the null hypothesis does not hold; the test is sometimes called an
omnibus test or a portmanteau test, accordingly. Given an alternative parametric
model other tests would be more relevant, e.g. the likelihood ratio test. The
likelihood ratio test can be generalised to cover the case of an alternative non-
parametric model such as

yt = µt(·) + ηt

√
ht(·) , (1.2)

where µt(·) and ht(·) are respectively the conditional mean function and the
conditional variance function of yt given Ft−1, {ηt, t = 0,±1, . . .} is as defined
above. With suitable constructions, χ2-asymptotics can be retained, in which
the degrees of freedom tend to infinity as the sample size increases to infinity.
(Fan and Yao (2003)). Fan and Zhang (2004) introduced some important devel-
opments with this approach; for implementation, they resorted to bootstrapping
for the critical values. For likelihood ratio tests, generalised or not, the case of a
mis-specified alternative hypothesis remains challenging.

Todate, many of the goodness-of-fit tests in time series are residual-based.
For example, the classic portmanteau test of Box and Pierce (1970) and its im-
provement by Ljung and Box (1978) are based on the sample autocorrelations of
the residuals. In the context of goodness of fit of nonlinear time series models,
the McLeod and Li test (1983) and the Li and Mak test (1994) are based on the
sample autocorrelations of the squared residuals. Based on a generalized spectral
approach of the residuals, Hong and Lee (2003) and Escanciano (2008) proposed
some new diagnostic tests for model (1.1). The former focuses on the indepen-
dence assumption of the ’noise process’; the latter requires us to approximate
the critical values by bootstrap, but allows non-i.i.d. variables and checks for
many lags in Ft−1. More recently, perhaps influenced by the empirical distribu-
tion function approach in the goodness-of-fit test for independent observations,
substantial developments for time series data have taken place in the form of
tests based on empirical processes marked by certain residuals, see, e.g., Stute
(1997), Koul and Stute (1999), Stute et al. (2006), and Escanciano (2007). Of
course, the use of marked empirical processes in hypothesis testing in time series
has a longer history; see, e.g., An and Cheng (1991). In all these developments,
residuals play a pivotal role.

In the 1980s, unification of numerous classical goodness-of-fit tests, such
as those developed by Quenouille (1947, 1949), Walker (1950, 1952), Bartlett
and Diananda (1950), as well as some of the later ones such as the Box-Pierce
test, was achieved by the observation that a Lagrangian multiplier (LM) test
with an appropriately chosen alternative hypothesis results in a test that is the
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large-sample equivalent of the above goodness-of-fit tests. For example, Newbold
(1980) showed that the LM test for an ARMA(p, q) model against the alternative
of an ARMA(p+m, q) model is asymptotically equivalent to a goodness-of-fit test
based on the first m sample autocorrelations of the residuals. For more details of
the unification, see, e.g., Hosking (1978, 1980) and Godfrey (1979). For extension
of the idea to tests for linearity see, e.g., Tong (1990, Sec. 5.3). This unification
is significant. It suggests that a score (statistic) may be a fundamentally more
useful pivot in the construction of goodness-of-fit tests since an LM test uses the
score evaluated under the null hypothesis. This paper develops goodness-of-fit
tests for time series that are based on empirical processes marked by certain
scores; we later generalise the approach to include their equivalents.

This paper is organized as follows. Section 2 gives the generic form of the
test statistic, then gives explicit expressions for various commonly used models.
Section 3 presents the null distribution, with critical values evaluated, and studies
the local power of our tests. Section 4 reports simulation results, including some
comparative studies. Section 5 illustrates our approach with the Hang Seng
Index. Section 6 draws some conclusions.

2. Score-Based Empirical Process Approach to Goodness-of-Fit Tests

Given observations {y1, . . . , yn} from model (1.1) and initial values {ys : s ≤
0}, let θ̂n denote the maximum likelihood estimator of θ0 under H0.

Assumption 1.

√
n(θ̂n − θ0) = Σ−1

n∑
t=1

Dt(θ0)√
n

+ op(1), (2.1)

where Dt(θ0) is the score of θ evaluated at θ0 and Σ = E[Dt(θ0)D′
t(θ0)], the

information matrix.
This is a mild condition for maximum likelihood estimation of parameters

in time series models and is generally satisfied under standard conditions. We
return to this point later.

Let I{B} denote the indicator function of the event B. Our test statistic is
based on the score-marked empirical process

Tn(x, θ) =
1√
n

n∑
t=1

Dt(θ)I{yt−1 ≤ x}. (2.2)

Since θ0 is usually not fully specified in practice we replace it by θ̂n, noting
Assumption 1, and study Tn(x, θ̂n). Let Σx = E[Dt(θ0)D′

t(θ0)I{yt−1 ≤ x}]
and A = inf{x : Σ = Σx}. When yt has a support on R, then we have A =
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∞, generally. Let Σ̂nx =
∑n

t=1[Dt(θ̂n)D′
t(θ̂n)I{yt−1 ≤ x}]/n and Σ̂n be the

estimators of Σx and Σ, respectively, where Σ̂n = Σ̂nA. We define our generic
test statistic via a linear transformation of Tn(x, θ̂n) as

Sa
n = max

a≤x≤A

[β′Σ̂−1
nxTn(x, θ̂n)]2

β′(Σ̂−1
na − Σ̂−1

n )β
, (2.3)

where β is a nonzero p× 1 constant vector. When p = 1, Sa
n is equivalent to the

weighted LR-test for H0 : yt = µt(θ) + εt with Gaussian white noise {εt} against
the alternative

yt = µ(θ, yt−1) + µ(θ1, yt−1)I{yt−1 ≤ x} + εt, (2.4)

with weight (1−ΣΣ−1
x )/(1−ΣΣ−1

a ), where θ1 ∈ Θ is another unknown parameter.
This connection is similar to the situation pertaining to the classic goodness-of-fit
tests in time series mentioned earlier. For general p, we can replace the threshold
variable yt−1 in I{yt−1 ≤ x} by yt−r or by θ̂′n(yt−1, . . . , yt−p)′ as in Stute et al.
(2006). In fact, we can replace it by any function ξt−1 = g(yt−1, yt−2, . . .) and
our theory still holds as long as ξt−1 has a positive conditional density given
{yt−2, yt−3, . . .}; see Ling and Tong (2006). This assumption is usually satisfied.
We have chosen yt−1 to keep the procedure simple, in the absence of a general
theory for an optimal choice. Our approach can be extended to multivariate time
series models with yt−1 replaced by a suitable choice of ξt−1.

Typically, the quantity a is taken as an early quantile of the process values.
It should, however, ensure that Σ̂−1

na exists. Unlike Chan (1991), the limiting
distribution of Sa

n does not depend on the choice of a since the weight function
cancels out the related component. Note that maxβ Sa

n does not have a limiting
distribution as simple as that of Sa

n; the latter is described by Theorem 2 in
Section 3. Note also that Sa

n is invariant with respect to ‖β‖. If we denote the
normalized score Σ̂−1

nxTn(x, θ̂n) by Un(x) = (u1(x), . . . , up(x))′, then β′Un(x) =∑p
i=1 βiui(x) can be interpreted as a weighted score, and each ui(x) is the marked-

score along the direction of the i−th coordinator in θ. The optimal choice of β

remains an open problem. A simple choice for β is (1, . . . , 1)′, which means that
we attach equal weight to each ui(x). The simulation in Section 4 suggests that
this choice together with a around the 5p% quantile of data produces good power.
Another choice is β = θ̂n, but the simulation results in Section 4 suggest that
this is not as good.

When the alternative of model (1.1) is its threshold counterpart, Tn(x, θ̂n) is
precisely the score function in the LR test. However, the LR test is a quadratic
form of Tn(x, θ) and its limiting distribution is a functional of a Brownian bridge
with a complicated covariance matrix. In this case, except for AR models in Chan
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(1990, 1991) and Chan and Tong (1990), we have to use a simulation method
to obtain its critical values case by case; see, e.g., Wong and Li (1997, 2000).
We should mention that the initial values {ys : s ≤ 0} are typically not available
and are usually replaced by some constants. However, for most stationary models
such as ARMA or GARCH models, the initial values do not affect the asymptotic
properties of the estimated parameters or our test S

(a)
n ; see Assumption 4 of Hong

and Lee (2003).
We can always construct the test Sa

n because we have Dt(θ) from the model
fitting stage. Since Sa

n is generally just the maximum of n different numbers, it
is as easy to implement as the Ljung-Box test and the McLeod-Li test.

Example 1. Consider the double AR (DAR) model

yt =
p∑

i=1

φiyt−i + ηt

√√√√ω +
p∑

i=1

αiy2
t−i,

where ω, αi > 0, t ∈ {−p, . . . , 0, 1, 2, . . .}, and {ηt} is an independent random
sequence with ηt ∼ N(0, 1). Here, θ = (θ′1, θ

′
2)

′ with θ1 = (φ1, . . . , φp)′ and
θ2 = (ω, α1, . . . , αp)′. We take θ̂n as the MLE of θ0. Under conditions for strict
stationarity, Ling (2004, 2007) shows that (2.1) holds and

Dt(θ) =
{Y ′

1t−1εt(θ)
θ′2Y2t−1

,−
Y ′

2t−1

2θ′2Y2t−1

[
1 − ε2

t (θ)
θ′2Y2t−1

]}′
,

where εt(θ) = yt − θ′1Y1t−1, Y1t = (yt, . . . , yt−p+1)′ and Y2t = (1, y2
t , . . . , y

2
t−p+1)

′.
The expansion (2.1) holds since the information matrix is Σ in maximum likeli-
hood estimation.

In some applications, instead of MLE, practitioners may prefer to use least
squares estimation, or quasi-Gaussian MLE. For these, the test statistic Sa

n can
still apply provided the score Dt(θ) is replaced by the derivative of a relevant loss
function, the specific form of which is usually obvious as we show in the following
examples. By an abuse of notation, we denote this derivative also by Dt(θ). Note
that the information matrix is then usually of the form E[Dt(θ)D′

t(θ)]/γ, where
γ is a positive constant, the exact value of which depends on the method of
estimation, as also shown in the examples below. Thus, Assumption 1 remains
essentially the same as stated, but with Σ replaced by Σ/γ.

Example 2. Consider the ARMA (p, q) model

yt =
p∑

i=1

φiyt−i −
q∑

i=1

ψiεt−1 + εt,
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where εt’s are i.i.d. with mean zero and a finite variance σ2. Here, θ = (φ1, . . . , φp, ψ1,

. . . , ψq)′. Under the usual stationarity and invertibility conditions (e.g., Weiss
(1986), the conditional LSE, θ̂n, of θ0 satisfies the expansion (2.1) with γ = σ2,
and Dt(θ) = [∂εt(θ)/∂θ]εt(θ), where εt(θ) = ψ−1(B)φ(B)yt. In particular, for
the AR(2) model (p = 2 and q = 0), we have Dt(θ) = (yt−1, yt−2)′(yt − φ1yt−1 −
φ2yt−2).

Example 3. The TAR(p, q) model is

yt = I{yt−d ≤ r}(φ10 +
p∑

i=1

φ1iyt−i) + I{yt−d > r}(φ20 +
p∑

i=1

φ2iyt−i) + εt,

where maxi=1,2
∑p

j=1 |φij | < 1 and εt’s are i.i.d. with Eε4
t < ∞. Assume that

the AR function is discontinuous and d > 0 is a known integer. Here, θ =
(φ10, φ11, . . . , φ1p, φ20, φ21, . . . , φ2p)′. Let (θ̂n, r̂n) be the LSE of (θ0, r0), where r0

is the true value of r. From Chan (1993), we have n(r̂n − r0) = Op(1) and (2.1)
holds with γ = σ2,

Dt(θ) = D̃t(θ, r0) and D̃t(θ, r) = [Y ′
t−1I{yt−d ≤ r}, Y ′

t−1I{yt−d > r}]′εt(θ, r),

where εt(θ, r) = yt − I{yt−d ≤ r}(φ10 +
∑p

i=1 φ1iyt−i) − I{yt−d > r}(φ20 +∑p
i=1 φ2iyt−i) and Yt−1 = (1, yt−1, . . . , yt−p)′. We can show that

∑n
t=1 ‖D̃t(θ̂n, r̂n)

−Dt(θ̂n)‖/
√

n = op(1). Thus, Sa
n has asymptotically the same distribution when

r0 is replaced by r̂n.

Example 4. Consider the GARCH(r, s) model

yt = ηt

√
ht and ht = α0 +

r∑
i=1

αiy
2
t−i +

s∑
i=1

βiht−i,

where the ηt are i.i.d. with Eη2
t = 1 and Eη4

t < ∞, α0 > 0, α′
is ≥ 0, αr 6= 0,

β′
js ≥ 0, and βs 6= 0. Here, θ = (α0, α1, . . . , αr, β1, · · · , βs)′. Let θ̂n be the

quasi-maximum likelihood estimator of θ0. Under the standard strict stationarity
condition, Francq and Zaköıan (2004) show that (2.1) holds with γ = Eη4

t − 1,
and

Dt(θ) = [2ht(θ)]−1
[ y2

t

ht(θ)
− 1

][∂ht(θ)
∂θ

]
,

where ht(θ) = α0 +
∑r

i=1 αiy
2
t−i +

∑s
i=1 βiht−i(θ). For the important special case

of the GARCH(1,1) model, ht(θ) = α0 + α1y
2
t−1 + β1ht−1(θ) and ∂ht(θ)/∂θ =

[1, y2
t−1, ht−1(θ)]′ + β1∂ht−1(θ)/∂θ.
When extending the GARCH or ARMA model to the ARMA-GARCH model,

we can use the MLE to estimate the associated parameters. For the general model
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(1.1), we can use the quasi-Gaussian MLE to estimate the parameters. In this
case, the score function is Dt(θ) = Ut(θ)ψ(ηt(θ)), where

Ut(θ) =

[
1√
ht(θ)

∂µt(θ)
∂θ

,
1

2ht(θ)
∂ht(θ)

∂θ

]
and ψ(x) =

[
x, x2 − 1

]′
.

We can see that Dt(θ0) is a martingale difference and Σ = E[D′
t(θ0)Dt(θ0)] if ηt

is symmetric and Eη4 = 3. Thus, our test can be used.

3. Null Distribution and Local Power

To get the null distribution of Sa
n, we introduce assumptions as follows.

Assumption 2. Dt(θ0) is an Ft−measurable, strictly stationary and ergodic
martingale difference with E(‖Dt(θ0)‖2(1+ι)) < ∞ for some ι > 0.

Assumption 3. Dt(θ) has the expansion Dt(θ) − Dt(θ0) = Pt(θ∗)(θ − θ0)′ and
EPt(θ0) = Σ/γ, where θ∗ lies between θ and θ0, and for any fixed C > 0,

sup√
n‖θ−θ0‖≤C

1
n

n∑
t=1

∥∥∥Pt(θ) − Pt(θ0)
∥∥∥ = op(1).

Here, Pt(θ) is an information-type matrix and is [∂Dt(θ)/∂θ] if Dt(θ) is
differentiable. The moment condition in Assumption 2 is minimal; Assumption
3 holds for most of the strictly stationary time series models met in practice. We
first give a lemma whose proof is given in the Appendix.

Lemma 1. Under Assumptions 1, 2, and 3,

(a) sup
x∈R∪{∞}

‖Σ̂nx − Σx‖ = op(1),

(b) sup
x∈R

∥∥∥Tn(x, θ̂n) − Tn(x, θ0) −
ΣxΣ−1

√
n

n∑
t=1

Dt(θ0)
∥∥∥ = op(1).

The weak convergence of {Tn(x, θ̂n) : x ∈ R} is a corollary of Theorem 3 of
Escanciano (2007), as follows.

First, let Rγ = [γ1, γ2] ⊂ [x0, A) for some x0 ∈ R, where A is defined as in
(2.3). Let D[Rγ ] denote the space of real-valued functions on Rγ which are right
continuous and have left-hand limits, and let it be equipped with the Skorohod
topology as in Billingsley (1968). The weak convergence on Dp[x0, A) is defined
as on D[Rγ ] × · · · × D[Rγ ] (p factors) for any interval [γ1, γ2], and is denoted by
=⇒.

Theorem 1. Suppose that Assumptions 1, 2, and 3 hold, and that ηt has a
bounded density f in R. If Σx0 is positive definite for some x0 ∈ R, then

Tn(x, θ̂n) =⇒ Gp(x) in Dp[x0, A)
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under H0, where {Gp(x) : x ∈ [x0, A)} is a p−dimensional Gaussian process with
mean zero and covariance kernel Kxy = Σx∧y − ΣxΣ−1Σy; almost all paths of
Gp(x) are continuous in x.

We first note that Σ−1
x Tn(x, θ̂n) ⇒ G0p(x) in Dp[x0, A) under H0, where

{G0p(x)} is a p × 1 vector Gaussian process on [x0, A) with mean zero and
covariance kernel Kxy = Σ−1

x∨y −Σ−1. An important observation is that {G0p(x)}
has independent increments with E{[G0p(x)−G0p(y)][G0p(x)−G0p(y)]′} = Σ−1

y −
Σ−1

x when x > y. For marked empirical processes, the covariance kernel usually
has the form σx∧y − u′

xΣ−1uy. For Theorem 1, σx∧x = ux = Σx. This is the key
for the process {G0p(x)} to have independent increments. For marked processes
(such as the residual-marked process) for which σx∧x 6= ux, we cannot obtain a
process with independent increments after normalization.

Since the components of G0p(x) are dependent, its covariance kernel does
not admit a simple transformation and neither does a quadratic form or the
maximum of all its components. However, for any constant β, β′G0p(x) has
the rather simple covariance kernel σx ∧ σy, where σx = β′(Σ−1

x − Σ−1)β. For
any finite constant a ∈ [x0, A), σx/σa is a continuous and strictly decreasing
function in terms of x and runs through [0, 1] when x runs from A to a. Thus,
B(τ) ≡ β′G0p(x)/

√
σa is a standard Brownian motion on τ = σx/σa ∈ [0, 1]. Let

b ∈ [a,A) be a constant and

Sa
n(b) = max

a≤x≤b

[β′Σ̂−1
nxTn(x, θ̂n)]2

β′(Σ̂−1
na − Σ̂−1

n )β
.

Theorem 1 and the Continuous Mapping Theorem yield the main result.

Theorem 2. If the assumptions of Theorem 1 hold, then, for any p× 1 nonzero
constant vector β, we have

lim
b→A

lim
n→∞

P [Sa
n(b) ≤ x] = P

[
max

τ∈[0,1]
B2(τ) ≤ x

]
for any a ∈ [x0, A) and any x ∈ R, where B(τ) is a standard Brownian motion
on C[0, 1].

From this theorem, the constant Cα such that P [maxτ∈[0,1] B
2(τ) ≥ Cα] = α

can be used as an approximate critical value of Sa
n for rejecting the null H0 at

the significance level α. From Shorack and Wellner (1986, p.34), we have

P
[

max
τ∈[0,1]

B2(τ) ≥ x
]

= 1 − 4
π

∞∑
k=0

(−1)k

2k + 1
exp

[
− (2k + 1)2π2

8x

]
,

for all x > 0, and C0.1 = 3.83, C0.05 = 5.00, and C0.01 = 7.63.
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We next study the asymptotic local power of Sa
n. Let r1t = r1(yt−1, yt−2, . . .)

and r2t = r2(yt−1, yt−2, . . .) be Ft−1−measurable random variables for t = 0,±1,
. . .. Consider the local alternative hypothesis

yt = µt(θ) +
r1t√

n
+ ηt

√
ht(θ) +

r2t√
n

.

Assume that ηt is normal and independent of ys for s ≤ 0, under both H0

and H1n. Let m(x) = E[Dt(θ0)ζtI{yt−1 ≤ x}] − ΣxΣ−1E[Dt(θ0)ζt], where ζt =
ηtr1t/

√
ht(θ0) + (1 − η2

t )r2t/ht(θ0).

Theorem 3. If the assumptions of Theorem 2 hold and 0 < Er2
1t + Er2

2t < ∞
under H0, then under H1n, it follows that

(a) Tn(x, θ̂n) =⇒ m(x) + Gp(x) in Dp[R],

(b) lim
b→A

lim
n→∞

P [Sa
n(b) ≤ z] = P

[
max

τ∈[0,1]
[u(τ) + B(τ)]2 ≤ z

]
,

for any z ∈ R, where u(τ) = β′Σ−1
x m(x)/[β′(Σ−1

a − Σ−1)β]1/2 with x such that
σx = τ , and Gp(x) and B(τ) are defined as in Theorems 1−2.

This shows that Sa
n has good local power if u(τ) 6= 0; otherwise it has no

local power. It is unlikely that u(τ) = 0, unless ζt = β′Dt(θ0). When n and
b are large, we have P (Sa

n > Cα) ≈ P
{

maxτ∈[0,1][u(τ) + B(τ)]2 > Cα

}
→ 1 if

maxτ∈[0,1] |u(τ)| → ∞.

4. Simulation Results

To conduct a theoretical study of the various goodness-of-fit tests in time
series would be ideal. However, there are difficulties. First, the composite nature
of the alternative hypothesis means that the power is likely to change from one
alternative model to the next and there are (uncountably) infinitely many pos-
sible models. Second, the distribution of the test statistic (especially for finite
samples) is typically unknown or unavailable under the alternative hypothesis,
except for trivial cases and for large samples. Third, asymptotic power is usually
not practically informative. For example, when testing the goodness of fit of an
AR(2) model against the alternative of an AR(3) model, both the Ljung-Box test
and our test have power 1 asymptotically.

Therefore, we compare the performances of tests on the basis of simula-
tions. For a summary of similar simulation-based comparative studies of tests
in this vein; see, e.g., Li (2004). This section examines the performance of the
test statistic Sa

n in finite samples through Monte Carlo experiments. In all the
experiments, we take a as the 5p%-quantile of data {y1, . . . , yn} and use 1,000
independent replications.
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Table 1. Sizes of Sa
n for Null Hypothesis H0: ARMA(1,1) model at Signifi-

cance Level α(1,000 replications).

n = 100 n = 200 n = 400
α 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10
φ ψ β = (1, 1)′

-0.8 -0.5 0.019 0.041 0.066 0.009 0.029 0.069 0.008 0.052 0.097
-0.5 -0.5 0.008 0.036 0.066 0.010 0.033 0.079 0.013 0.037 0.090
0.0 -0.5 0.009 0.037 0.078 0.006 0.040 0.085 0.009 0.030 0.072
0.8 -0.5 0.015 0.051 0.105 0.009 0.041 0.080 0.012 0.036 0.079

-0.8 0.5 0.007 0.035 0.067 0.009 0.033 0.072 0.007 0.043 0.084
0.0 0.5 0.006 0.031 0.068 0.010 0.043 0.087 0.007 0.037 0.084
0.5 0.5 0.002 0.030 0.071 0.008 0.046 0.085 0.012 0.047 0.093
0.8 0.5 0.013 0.049 0.100 0.015 0.044 0.092 0.013 0.056 0.097

β = (φ̂n, ψ̂n)′

-0.8 -0.5 0.014 0.053 0.093 0.015 0.051 0.096 0.006 0.040 0.090
-0.5 -0.5 0.008 0.029 0.065 0.007 0.041 0.086 0.009 0.043 0.071
0.0 -0.5 0.002 0.015 0.046 0.007 0.038 0.082 0.010 0.032 0.062
0.8 -0.5 0.007 0.029 0.072 0.009 0.031 0.060 0.007 0.028 0.068

-0.8 0.5 0.011 0.038 0.065 0.005 0.033 0.067 0.005 0.038 0.070
0.0 0.5 0.008 0.030 0.072 0.007 0.033 0.074 0.008 0.032 0.081
0.5 0.5 0.005 0.035 0.070 0.009 0.036 0.079 0.012 0.034 0.086
0.8 0.5 0.011 0.049 0.097 0.014 0.053 0.092 0.018 0.057 0.098

We first study the size and the power of Sa
n when the null hypothesis is

the ARMA(1,1) model, yt = φyt−1 + ψεt−1 + εt, where εt is i.i.d. N(0, 1). We
take β = (1, 1)′ and (φ̂n, ψ̂n)′. For the size, the true parameters are taken to be
(φ, ψ) = (−0.8,−0.5), (−0.5,−0.5), (0.0,−0.5), (0.8,−0.5), (−0.8, 0.5), (0.0, 0.5),
(0.5, 0.5) and (0.8, 0.5). The sample sizes are n = 100, 200 and 400. Table 1
summarizes the results when the significance level α is 0.01, 0.05 and 0.1. It
shows that the sizes are fairly close to their nominal values although there is
evidence of conservatism.

To study the power of Sa
n, we consider two alternatives:

TARMA Model yt = 0.5yt−1 + 0.5εt−1 − θ(yt−1 + εt−1)I{yt−1 ≤ 0} + εt,

BL Model yt = 0.5yt−1 + 0.5εt−1 − θyt−2εt−1 + εt.

The first is an example of the threshold ARMA models proposed by Tong (1978,
1990), while the second is an example of the bilinear models (or BL models, for
short); see, e.g., Granger and Andersen (1978). We first compare our tests with
two commonly used tests, namely the Ljung-Box Qn(m) test and the Li-Mak
Q2

n(m) test. We take θ = 0.1, 0.2, 0.3, 0.4 and 0.5 and compare the power of Sa
n

with Qn(m) and Q2
n(m) at level 0.05 when n = 100, 200 and 400. The results

are reported in Table 2 when m = 6 and β = (1, 1)′, and in Table 3 when m = 12
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Table 2. Powers of Sa
n, Qn(m) and Q2

n(m) for Null Hypothesis H0:
ARMA(1,1) Model at Significance Level 0.05 [β = (1, 1)′ and 1,000 repli-
cations].

θ 0.0 0.1 0.2 0.3 0.4 0.5

H1: TARMA Model

Sa
n 0.026 0.081 0.146 0.419 0.681 0.884

n = 100 Qn(6) 0.053 0.051 0.056 0.070 0.082 0.102
Q2

n(6) 0.027 0.028 0.027 0.024 0.029 0.038

Sa
n 0.035 0.118 0.403 0.780 0.985 0.997

n = 200 Qn(6) 0.066 0.061 0.077 0.091 0.118 0.159
Q2

n(6) 0.035 0.044 0.052 0.061 0.090 0.128

Sa
n 0.035 0.180 0.704 0.980 1.000 1.000

n = 400 Qn(6) 0.052 0.057 0.064 0.095 0.186 0.324
Q2

n(6) 0.034 0.033 0.036 0.067 0.120 0.189

H1: BL Model

Sa
n 0.052 0.114 0.203 0.263 0.289

n = 100 Qn(6) 0.053 0.051 0.045 0.064 0.081
Q2

n(6) 0.030 0.051 0.104 0.163 0.229

Sa
n 0.073 0.228 0.406 0.455 0.440

n = 200 Qn(6) 0.072 0.067 0.069 0.081 0.098
Q2

n(6) 0.041 0.096 0.206 0.313 0.408

Sa
n 0.165 0.495 0.738 0.721 0.634

n = 400 Qn(6) 0.044 0.044 0.045 0.053 0.095
Q2

n(6) 0.044 0.161 0.393 0.593 0.626

and β = (φ̂n, ψ̂n)′. When m = 6, their sizes ( i.e. the case with θ = 0.0) in Table
2 show that, like the Sa

n test, there is apparently some evidence of conservatism
for the Li-Mak test. When m = 12, the sizes ( i.e. the case with θ = 0.0) in Table
3 show that Ljunge-Box test tends to over-reject when n = 100 and 200, which
is because its distribution is not approximated well by the χ2−distribution when
n − m is small. When the alternative is the threshold ARMA model, Tables 2-3
show that the power of Sa

n increases when the sample size n or θ increases, while
both Qn(m) and Q2

n(m) have much less, and in some cases almost no, power.
When the alternative is the bilinear ARMA model, we have a similar conclusion
for Qn(m), but Q2

n(m) performs much better than Qn(m) although not nearly as
well as Sa

n. The power of Sa
n is higher when β = (1, 1)′ than when β = (φ̂n, ψ̂n)′

for the TARMA model, but it shows little difference for the BL model. For
the BL model, there is also evidence to suggest that the power of Sa

n is affected
adversely as θ approaches the boundary of invertibility, which is approximately
0.6. It seems that our test is more powerful against the TARMA alternative than
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Table 3. Powers of Sa
n, Qn(m) and Q2

n(m) for Null Hypothesis H0:
ARMA(1,1) Model at Significance Level 0.05 [β = (φ̂n, ψ̂n)′ and 1,000 repli-
cations].

θ 0.0 0.1 0.2 0.3 0.4 0.5

H1: TARMA Model

Sa
n 0.030 0.061 0.170 0.304 0.416 0.438

n = 100 Qn(12) 0.121 0.110 0.123 0.135 0.164 0.209
Q2

n(12) 0.030 0.032 0.029 0.029 0.028 0.030

Sa
n 0.046 0.112 0.362 0.674 0.878 0.709

n = 200 Qn(12) 0.090 0.094 0.098 0.139 0.205 0.314
Q2

n(12) 0.044 0.039 0.037 0.051 0.052 0.067

Sa
n 0.047 0.211 0.674 0.952 0.970 0.930

n = 400 Qn(12) 0.062 0.065 0.088 0.165 0.336 0.577
Q2

n(12) 0.057 0.052 0.051 0.055 0.071 0.108

H1: BL Model

Sa
n 0.035 0.098 0.210 0.206 0.234

n = 100 Qn(12) 0.053 0.051 0.045 0.064 0.081
Q2

n(12) 0.039 0.058 0.091 0.128 0.175

Sa
n 0.083 0.272 0.455 0.463 0.480

n = 200 Qn(12) 0.086 0.091 0.097 0.097 0.101
Q2

n(12) 0.058 0.086 0.167 0.237 0.288

Sa
n 0.189 0.582 0.747 0.826 0.721

n = 400 Qn(12) 0.057 0.062 0.058 0.062 0.095
Q2

n(12) 0.069 0.121 0.246 0.359 0.419

against the BL alternative. This is consistent with the interpretation of the test
given in §2 by reference to an L-M test.

We next study the size and the power of Sa
n when the null hypothesis is

the GARCH(1,1) model, yt = ηt

√
ht and ht = α0 + α1y

2
t−1 + β1ht−1, where ηt

is i.i.d. N(0, 1). For the size, the true parameters are taken to be α0 = 0.1 and
(α1, β1) = (0.3, 0.4), (0.3,0.5), (0.3,0.6), (0.2,0.7), (0.1,0.8), (0.3,0.7), (0.2,0.8),
and (0.1,0.9). β = (1, 1, 1)′ and (α̂0n, α̂1n, β̂1n)′. The sample sizes are n =100,
200 and 400. Table 4 summarizes the results when the significance level α is 0.01,
0.05 and 0.1, respectively. It shows that the sizes of Sa

n are fairly close to their
nominal values, although there is some evidence of over-rejection when α = 0.01
and conservatism when α = 0.10.

The power of of Sa
n is studied via two alternatives:

TGARCH
√

ht = 0.1 + 0.3|yt−1| + 0.4
√

ht−1 + θ|yt−1|I{yt−1 ≤ 0},

NAGARCH h
3/4
t = 0.1 + 0.3 |(θ − sgn(ηt))yt|3/2 + 0.4h

3/4
t−1.
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Table 4. Sizes of Sa
n for Null Hypothesis H0: GARCH(1,1) model at Signif-

icance Level α (1,000 replications).

n = 100 n = 200 n = 400
α 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

α1 β1 β = (1, 1, 1)′

0.3 0.4 0.016 0.031 0.055 0.005 0.027 0.056 0.008 0.035 0.063
0.3 0.5 0.007 0.027 0.051 0.007 0.025 0.057 0.007 0.034 0.064
0.3 0.6 0.008 0.029 0.056 0.009 0.032 0.062 0.008 0.033 0.063
0.2 0.7 0.009 0.032 0.058 0.010 0.036 0.069 0.008 0.037 0.069
0.1 0.8 0.011 0.041 0.070 0.011 0.034 0.071 0.007 0.037 0.069
0.3 0.7 0.010 0.036 0.068 0.008 0.038 0.070 0.011 0.038 0.073
0.2 0.8 0.010 0.042 0.069 0.008 0.035 0.068 0.010 0.037 0.078
0.1 0.9 0.015 0.055 0.090 0.016 0.043 0.084 0.012 0.048 0.092

β = (α̂0n, α̂n, β̂n)′

0.3 0.4 0.004 0.027 0.049 0.005 0.027 0.056 0.005 0.027 0.053
0.3 0.5 0.007 0.027 0.051 0.007 0.025 0.057 0.005 0.029 0.052
0.3 0.6 0.008 0.029 0.056 0.009 0.032 0.062 0.008 0.033 0.063
0.2 0.7 0.009 0.032 0.058 0.010 0.036 0.069 0.008 0.037 0.069
0.1 0.8 0.011 0.041 0.070 0.011 0.034 0.071 0.007 0.037 0.069
0.3 0.7 0.010 0.036 0.068 0.008 0.038 0.070 0.011 0.038 0.073
0.2 0.8 0.008 0.035 0.068 0.008 0.035 0.068 0.010 0.037 0.078
0.1 0.9 0.015 0.055 0.090 0.016 0.043 0.084 0.012 0.048 0.092

The first model is a threshold GARCH that is a special case of models proposed
by Taylor (1986) and Schwert (1989). The second is a nonlinear asymmetric
GARCH model proposed by Engle and Ng (1993). We take θ = 0.4, 0.6, 0.8,
1.0 and 1.2. The sample sizes are n = 100, 200 and 400. Again, we compare
the power of Sa

n with those of Qn(m) and Q2
n(m). The sizes of Qn(6) and Q2

n(6)
are very close to their corresponding nominal values; see Li and Mak (1994)
and Wong and Ling (2005) for simulation evidence. The results reported in
Table 5 are for the significance level 0.05 when β = (1, 1)′. In all cases, Sa

n is
more powerful than Qn(6) and Q2

n(6). In particular, when the alternative is the
NAGARCH model, Sa

n can reject GARCH with power reaching 50 percent, while
both Qn(6) and Q2

n(6) have virtually no power. Again it seems that our test is
more powerful against the TGARCH alternative than against the NAGARCH
alternative. Similar conclusions hold when β = (α̂0n, α̂1n, β̂1n)′ and m = 12.
Details are available from the authors.

We also carried out some experiments when β = (1, δ) with δ =0, ±0.2,
±0.4, ±0.6 and ±0.8 for the null ARMA(1,1) model. The sizes are relatively
stable. But, for the alternative TARMA(1,1) model, Sa

n is less powerful than
when β = (1, 1), and is more powerful when |δ| > 0.4 and less powerful when
|δ| ≤ 0.4 than when β = (φ̂n, ψ̂n)′. We carried out some experiments by taking a
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Table 5. Powers of Sa
n, Qn(m) and Q2

n(m) for Null Hypothesis H0:
GARCH(1,1) Model at Significance Level 0.05 [β = (1, 1)′ and 1,000 repli-
cations].

θ 0.4 0.6 0.8 10.0 10.2

H1: TGARCH Model

Sa
n 0.310 0.543 0.614 0.618 0.670

n = 100 Qn(6) 0.153 0.156 0.176 0.286 0.457
Q2

n(6) 0.072 0.083 0.069 0.108 0.177

Sa
n 0.478 0.845 0.766 0.666 0.751

n = 200 Qn(6) 0.138 0.167 0.196 0.273 0.502
Q2

n(6) 0.085 0.066 0.070 0.138 0.286

Sa
n 0.680 0.978 0.896 0.737 0.834

n = 400 Qn(6) 0.125 0.132 0.146 0.230 0.512
Q2

n(6) 0.145 0.117 0.080 0.157 0.479

H1: NAGARCH Model

Sa
n 0.099 0.143 0.217 0.322 0.457

n = 100 Qn(6) 0.075 0.082 0.091 0.103 0.115
Q2

n(6) 0.030 0.040 0.046 0.050 0.052

Sa
n 0.116 0.173 0.283 0.454 0.649

n = 200 Qn(6) 0.074 0.079 0.087 0.100 0.109
Q2

n(6) 0.040 0.040 0.046 0.060 0.062

Sa
n 0.127 0.214 0.393 0.630 0.863

n = 400 Qn(6) 0.051 0.055 0.063 0.068 0.072
Q2

n(6) 0.034 0.044 0.053 0.065 0.073

as the 10%-quantile of data {y1, . . . , yn} when the null is the GARCH (1,1) model.

Compared with those in Table 4, the sizes of Sa
n are closer to their nominal levels

when the level is 0.01 and 0.05, and are more conservative when the level is 0.1.

In each case, the power is higher than in Table 5. For example, when n = 400

and the alternative is the NAGARCH model, the powers of Sa
n with β = (1, 1, 1)′

are 0.121, 0.940, 0.334, 0.533 and 0.776, respectively, for θ at 0.4, 0.6, 0.8, 1.0,

and 1.2.

We now compare our test with that of Koul and Stute (1999). Since the

test in Koul and Stute (1999) has not been extended to cover the ARMA model

or the GARCH model in the literature, we only consider the null AR(1), yt =

φyt−1 + εt, where εt is i.i.d. N(0, 1). In this case, their test statistic is KSn ≡
maxx≤x0 |Vn(x)|/[σnGn(x0)], where Gn(x0) =

∑n
t=1 I{yt−1 ≤ x0}/n, σ2

n =
∑n

t=1
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Table 6. Sizes and Powers of Sa
n and KSn for Null Hypothesis H0: AR(1)

Model at Significance Level 0.05 [β = 1 and 1,000 replications].

θ 0.0 0.1 0.2 0.3 0.4 0.5

H1: TAR Model

Sa
n 0.042 0.061 0.109 0.171 0.266 0.392

n = 100 KSn 0.046 0.055 0.073 0.113 0.168 0.248

Sa
n 0.044 0.092 0.184 0.350 0.546 0.747

n = 200 KSn 0.054 0.088 0.158 0.281 0.472 0.630

Sa
n 0.038 0.106 0.306 0.618 0.855 0.960

n = 400 KSn 0.056 0.098 0.272 0.587 0.820 0.947

H1: BL Model

Sa
n 0.032 0.060 0.111 0.146 0.158

n = 100 KSn 0.062 0.085 0.109 0.113 0.119

Sa
n 0.068 0.179 0.317 0.423 0.473

n = 200 KSn 0.078 0.114 0.134 0.149 0.155

Sa
n 0.119 0.404 0.667 0.808 0.840

n = 400 KSn 0.081 0.129 0.177 0.206 0.251

ε2
t (φ̂n)/n, and

Vn(x) =
1√
n

n∑
i=1

I{yi−1 ≤ x} − 1
n

n∑
j=1

yj−1yi−1I{yj−1 ≤ yi−1 ∧ x})
n−1

∑n
k=1 y2

k−1I{yk−1 ≥ yj−1}

 εt(φ̂n),

where εt(φ̂n) = yt − φ̂nyt−1 and φ̂n is the LSE of φ. We take x0 to be the 95%th
quantile of data set {y1, . . . , yn}. In the simulation, φ = 0.5 and sample size
n = 100, 200, and 400. Alternatives are TAR and bilinear (BL) models:

TAR Model yt = 0.5yt−1 − θyt−1I{yt−1 ≤ 0} + εt,

BL Model yt = 0.5yt−1 − θyt−2εt−1 + εt.

Table 6 reports the sizes (i.e. case with θ = 0.0) and powers. It can be seen
that both tests have little power when (i) θ ≤ 0.2 and n = 100; (ii) θ = 0.1 and
n = 200. Except for these cases, the Sa

n test is uniformly more powerful than the
KSn test. In addition, it only needs n iterations to compute the Tn(x, θ̂) in the
Sa

n test, while it needs n3 iterations to compute the Vn(x) in the KSn test. For
each cell in Table 6 when n = 200, the Sa

n test takes 15 seconds, while the KSn

test takes 3 hours and 40 minutes (running on a Pentium IV at HKUST).
Finally, we compare our test with the generalized likelihood-based test with

bias reduction proposed by Fan and Zhang (2004). We first use the null and
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alternative models exactly as in Example 1 of Fan and Zhang (2004). Specifi-
cally, the null model is an AR(3) model given by model (4.1) with β = 0. The
alternative model is

yt = {θ1(1 − β) + βν(yt−3)}yt−1 + θ2yt−2 + θ3yt−3 + εt, (4.1)

where ν(x) = 0.95I{−.5 ≤ x < 0} − 1.8xI{0 ≤ x ≤ 5}, {εt} are independently
and identically distributed N(0, 1) random variables, and β is a given parameter.
The true values of the θ-parameters are θ1 = 0.8, θ2 = −0.56, and θ3 = 0.6.

For each fixed β, we simulate a time series of length n = 500 and use 1,000
replications for different choices of β. Figure 1 shows the power functions of our
test (LT) and the Fan-Zhang test (FZ) when the significance level is 0.05. When
β = 0, the power becomes the size of the test.

From Figure 1, we can see that our test is more powerful than the Fan and
Zhang test when 0 < β ≤ 0.8 ( roughly), but is less powerful when 0.8 < β ≤ 1.
Because it is not known whether model (4.1) is stationary or not and there
is empirical evidence to suggest that it may not be stationary when β > 0.8,
we repeated the simulation study with the following model, which we know is
stationary. (Tong (1990, p.464)). It is a two-regime TAR(3) model:

yt = [0.5I{yt−1 ≤ 0}+ (0.5− β)I{yt−1 > 0}]yt−1 − 0.3yt−2 − 0.1yt−3 + εt, (4.2)

where β ∈ [0, 1]. Figure 2 shows the power functions of LT and FZ when the
significance level is 0.05. Again, the power becomes the size of the test when
β = 0. We are puzzled by the very low power of the Fan-Zhang test in this case,
but can offer no explanation.

5. The Hang Seng Index

We used the Sa
n tests to investigate the Hang Seng Index (HSI) for the Hong

Kong stock market. Each period of two years from 01/06/1988-31/05/1996 was
considered. The model we used to fit the data was the AR-GARCH model

yt = φyt−1 + εt, (5.1)

εt = ηt

√
ht and ht = α0 + fε2

t−i + ght−i. (5.2)

The results are summarized in Table 7. In this table, the values in the paren-
thesis are the corresponding asymptotic standard deviations of the estimated
parameters and LF is the value of log-likelihood function. As in Section 4, Qn(6)
and Q2

n(6) are the Ljung-Box test and Li-Mak test, respectively. Both tests sug-
gest that this model fits the data adequately. We used the statistic Sa

n with
β = (1, . . . , 1)′ and a being the 5p%-quantile of data {y1, . . . , yn} to test the null
model (5.1)-(5.2). The Sa

n test rejects the null model for all the four periods at
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Figure 1. The power functions of our test (LT) and the Fan-Zhang test
(FZ) at the 5% significance level, based on 1,000 simulations and for different
choices of β for model (4.1).

Figure 2. The power functions of our test (LT) and the Fan-Zhang test (FZ)
at the 5% significance level, based on 1,000 simulations and for different
choices of β for model (4.2).

the 0.05-significance level. We should mention that the same model and data set
were used for testing the normality of ηt in Koul and Ling (2006). It is interesting
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Table 7. Empirical Results for Hong Seng Index Fitted AR(1)−GARCH(1,1)
Models

Periods n φ α0 f g LF Qn(6) Q2
n(6) Sa

n

1/6/88−31/5/90 493 0.242 0.083 0.223 0.772 -1170.9 60.38 00.61 260.92
(0.055) (0.027) (0.048) (0.031)

1/6/90−31/5/92 495 0.186 0.526 0.203 0.442 -1310.7 20.97 00.92 70.61
(0.056) (0.162) (0.070) (0.145)

1/6/92−31/5/94 498 0.117 0.322 0.242 0.664 250.5 70.09 30.05 250.63
(0.050) (0.108) (0.057) (0.068)

1/6/94−31/5/96 497 0.128 0.053 0.069 0.900 -950.6 70.30 00.65 360.13
(0.048) (0.029) (0.025) (0.034)

to see if a DAR model, yt = φyt−1 +ηt

√
ω + αy2

t−1, is adequate for these periods.
It turns out that the values of Sa

n were 0.54, 1.77, 10.55, and 6.33, respectively.
Thus, our test suggests that the fitted DAR(1) is adequate at the 0.05 level for
the first two periods but not for the last two periods.

6. Conclusions

This paper has developed a general approach to goodness-of-fit tests that
are easy to construct for a wide variety of time series models, ranging from the
linear model to the nonlinear model, and from the constant variance model to the
ARCH-type model. The critical values of the test statistics are available without
the need to bootstrap. To illustrate the versatility of our general approach,
we have detailed the construction for four specific models. Simulation results
suggest that our test works well compared with classical portmanteau tests such
as the Ljung-Box test and the Li-Mak test, and the recent Koul-Stute test (when
comparison is possible) and Fan-Zhang test. We have demonstrated the efficacy
of our approach in an application to the Hang Seng Index.

Size distortion is a fairly common problem among goodness-of-fit tests in
time series; ours is no exception. In the event of several competing tests each
with size distortion, there seems to be some general agreement that in practice
a conservative test is preferred to one that over-rejects. (See, e.g., Kheoh and
McLeod (1992)). As suggested in Li (2004, p.11), this is particularly the case
when their power is comparable. For our approach, it is worthwhile to investigate
whether the distortion is due to a in (2.3) when the sample size is not large
enough. Another challenging open problem is the optimal choice of β. Of course,
it is not inconceivable that the problem might turn out to be as intractable as
the number of lags used in, for example, the Ljung-Box test or the Li-Mak test.
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Appendix: Proofs of Lemma 1 and Theorem 3

Proof. (a). Note that E‖Dt(θ0)‖2 < ∞ and E‖Pt(θ0)‖ < ∞. We have

max
1≤t≤n

‖Dt(θ0)‖ = op(n1/2) and max
1≤t≤n

‖Pt(θ0)‖ = op(n),

see e.g., Chung (1968, p.93). By Assumption 3, we have∥∥∥Dt(θ̂n)D′
t(θ̂n) − Dt(θ0)D′

t(θ0)
∥∥∥

≤
∥∥∥Dt(θ̂n) − Dt(θ0)

∥∥∥2
+ 2‖D′

t(θ0)‖
∥∥∥Dt(θ̂n) − Dt(θ0)

∥∥∥
= Op(

1
n

)
∥∥∥Pt(θ̂∗n)

∥∥∥2
+ Op(

1√
n

)‖Dt(θ0)‖
∥∥∥Pt(θ̂∗n)

∥∥∥
= Op(

1
n

)
∥∥∥Pt(θ̂∗n) − Pt(θ0)

∥∥∥2
+ op(1)

∥∥∥Pt(θ̂∗n) − Pt(θ0)
∥∥∥ + op(n), (A.1)

where Op(·) and op(·) hold uniformly in t = 1, . . . , n, and θ̂∗n lies between θ̂n and
θ0. Note that

√
n(θ̂∗n − θ0) = Op(1). For any ε > 0, there exists a constant C

such that
P (‖

√
n(θ̂∗n − θ0)‖ > C) ≤ ε

2
.

By Assumption 3 again, we have

P

(
1
n2

n∑
t=1

∥∥∥Pt(θ̂∗n) − Pt(θ0)
∥∥∥2

≥ ε

)

≤ P

[
1
n

sup√
n‖θ−θ0‖≤C

n∑
t=1

∥∥∥Pt(θ̂∗n) − Pt(θ0)
∥∥∥]2

> ε

 +
ε

2
≤ ε, (A.2)

as n is large enough. Similarly, we have

P

(
1
n

n∑
t=1

∥∥∥Pt(θ̂∗n) − Pt(θ0)
∥∥∥ ≥ ε

)
≤ ε. (A.3)
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By (A.1)−(A.3), we can show that

1
n

n∑
t=1

∥∥∥Dt(θ̂n)D′
t(θ̂n) − Dt(θ0)D′

t(θ0)
∥∥∥ = op(1).

Using this equality, we have

sup
x∈R∪{∞}

‖Σ̂nx − Σx‖ ≤ 1
n

sup
x∈R∪{∞}

∥∥∥∆n(x)
∥∥∥ + op(1), (A.4)

where ∆n(x) =
∑n

t=1 Dt(θ0)D′
t(θ0)I{yt−1 ≤ x} − Σx. By the Ergodic Theorem,

for each fixed x, ∆n(x) = o(1) and ∆n(∞) = o(1), a.s.. Thus, for any ε > 0,
there exists a constant M such that

sup
x≤−M

‖∆n(x)‖ ≤ 1
n

n∑
t=1

‖Dt(θ0‖2I{yt−1 ≤ −M} + ‖Σ−M‖ ≤ ε

2
. (A.5)

Furthermore, by the Ergodic Theorem, for a large M we have

sup
x≥M

‖∆n(x)‖ ≤ sup
x≥M

‖∆n(∞) − ∆n(x)‖ + o(1)

≤ 1
n

n∑
t=1

‖Dt(θ0‖2I{yt−1 ≥ M} + E[‖Dt(θ0‖2I{yt−1 ≥ M}]

≤ o(1) +
ε

2
, (A.6)

as n → ∞. Using a standard piece-wised argument, we can show that sup|x|≤M

‖∆n(x)‖ = op(1). Furthermore, by (A.4)−(A.6), we can claim that (a) holds. (b)
comes directly from Assumptions 1 and 3 and (a) of this lemma. This completes
the proof.

Proof of Theorem 3. Let P0n denote the joint distribution of (y1, . . . , yn)
under H0 and P1n that under H1n. Let the log-likelihood ratio of P1n to P0n be
denoted by Λn. Then

Λn = −1
2

n∑
t=1

[
log hnt − log ht(θ0) −

ε2
nt

hnt
+

(yt − µt(θ0))2

ht(θ0)

]
,

where εnt = yt − µt(θ0) − r1t/
√

n and hnt = ht(θ0) + r2t/
√

n. Using Le Cam’s
third lemma in Van der Vaart and Wellner (1996) and either Theorem 2.1 in Ling
and McAleer (2003) or by a direct method, we can show that (a) holds. Part (b)
follows directly from (a). This completes the proof.
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