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Abstract: This paper studies a minimum distance moment estimator for general

nonlinear regression models with Berkson-type measurement errors in predictor

variables. The estimator is based on the first two conditional moments of the re-

sponse variable given the observed predictor variable. It is shown that under gen-

eral regularity conditions the proposed estimator is consistent and asymptotically

normally distributed.
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1. Introduction

Many scientific studies involve fitting a nonlinear relationship of the form

y = g(x; θ) + ε, (1)

where y ∈ IR is the response variable, x ∈ IR is the predictor variable, θ ∈ IRp is
the unknown regression parameter and ε is the random error. Often the predictor
variable x cannot be measured directly, or it is measured with substantial random
error. A special type of measurement error is described by Berkson (1950): a
controlled variable z is observed, related to the true predictor variable through

x = z + δ, (2)

where δ is the unobserved random measurement error.
For example, in a study of the relationship between the temperature used to

dry a sample for chemical analysis and the resulting concentration of a volatile
constituent, an oven is used to prepare samples. The temperature z is set at
300, 350, 400, 450 and 500 degrees Fahrenheit, respectively. The true temperature
x inside the oven, however, may vary randomly around the pre-set values. In such
a situation (2) is a reasonable model for the measurement error.

The distinguishing stochastic feature of Berkson’s measurement error model
(2) is that, in this model, the measurement error δ is independent of the ob-
served predictor z but is dependent on the unobserved true variable x. This is
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fundamentally different from the classical errors-in-variables model, where the
measurement error is independent of x, but dependent on z. This difference in
the stochastic structure leads to completely different procedures in parameter
estimation and inference about the models.

Estimation of linear regression models with Berkson-type measurement er-
rors has been discussed in Fuller (1987) and Cheng and Van Ness (1999). For
nonlinear models, an approximate estimation procedure called regression calibra-
tion has been investigated in Carroll, Ruppert and Stefanski (1995). Recently,
Huwang and Huang (2000) studied a polynomial model where g(x; θ) is a poly-
nomial in x for which the order is known. In particular, they showed that the
model can be identified using the first two conditional moments of y given z and
model parameters can be estimated consistently by the least squares method.

In many applications, however, the underlying theory suggests a specific non-
linear structure of the regression relationship between y and x. From a technical
point of view, genuine nonlinear models are parsimonious and computationally
more efficient than polynomial models, which sometimes suffer from such prob-
lems as multicollinearity.

In this paper, we propose a minimum distance estimator for general nonlinear
models (1) and (2), using the first two conditional moments of y given z. Our
method generalizes the results of Huwang and Huang (2000). Furthermore, we
derive the consistency and asymptotic normality of this estimator.

Throughout the paper we assume that ε and δ are normally distributed with
zero means and variances σ2

ε and σ2
δ , respectively. In addition, we assume that

z, δ and ε are independent and y has finite second moment. We also adopt
the common assumption that the measurement error is ”non-differential” in the
sense that the conditional expectation of y given x and z is the same as the
conditional expectation of y given x. Although in this paper z is assumed to be
a random variable, it is easy to see that all results continue to hold if the obser-
vations z1, z2, . . . , zn are treated as fixed constants such that limn→∞

∑n
i=1 zi/n

and limn→∞
∑n

i=1 z
2
i /n are finite.

In Section 2, we give two examples to motivate our estimation method. In
Section 3, we formally define the minimum distance estimator and derive its
consistency and asymptotic normality under some general regularity conditions.
Conclusions and a discussion are given in Section 4. Finally, proofs of the theo-
rems are given in Section 5.

2. Motivation

To motivate our estimation procedure, we consider some simple examples.
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Example 1. Take g(x; θ) = θ1 exp(θ2x) and θ1θ2 �= 0. For this model the first
two conditional moments can be written as

E(y|z) = θ1e
θ2zE

(
eθ2δ

)
= ϕ1e

ϕ2z, (3)

where ϕ1 = θ1 exp(θ2
2σ

2
δ/2) and ϕ2 = θ2; and

E(y2|z) = θ2
1e

2θ2zE
(
e2θ2δ

)
+ E(ε2) = ψ1e

2ϕ2z + ψ2, (4)

where ψ1 = θ2
1 exp(2θ2

2σ
2
δ ) and ψ2 = σ2

ε . Since (3) and (4) are the usual nonlinear
regression equations and both y and z are observable, it is easy to see that (ϕi, ψj)
are identified by these equations and, therefore, can be consistently estimated
by the nonlinear least squares method. Furthermore, the original parameters
(θi, σ

2
δ , σ

2
ε) are identified because the mapping (θi, σ

2
δ , σ

2
ε) �→ (ϕi, ψj) is bijective.

Indeed, straightforward calculation shows that θ1 = ϕ2
1/
√
ψ1, θ2 = ϕ2, σ2

δ =
log(ψ1/ϕ

2
1)/ϕ

2
2 and σ2

ε = ψ2.

Example 2. Now let g(x; θ) = θ0 + θ1x + θ2x
2, where θ2 �= 0. For this model

the first two conditional moments are respectively

E(y|z) = θ0 + θ1E[(z + δ)|z] + θ2E[(z + δ)2|z]
= θ0 + θ1z + θ2z

2 + θ2σ
2
δ = ϕ1 + ϕ2z + ϕ3z

2, (5)

where ϕ1 = θ0 + θ2σ
2
δ , ϕ2 = θ1 and ϕ3 = θ2; and

E(y2|z) = E[(θ0 + θ1x+ θ2x
2)2|z] +E(ε2|z)

= ψ1 + ψ2z + ψ3z
2 + 2ϕ2ϕ3z

3 + ϕ2
3z

4, (6)

where ψ1 = θ2
0 + (2θ0θ2 + θ2

1)σ
2
δ + 3θ2

2σ
4
δ + σ2

ε , ψ2 = 2θ1(θ0 + 3θ2σ2
δ ) and ψ3 =

2θ0θ2 + θ2
1 + 6θ2

2σ
2
δ . Again, parameters (ϕi, ψj) are identified by the usual non-

linear regression equations (5) and (6), and the original parameters (θi, σ
2
δ , σ

2
ε)

are identified because the mapping (θi, σ
2
δ , σ

2
ε ) �→ (ϕi, ψj) is bijective. In fact, we

find easily that θ0 = ϕ1 −ϕ3σ
2
δ , θ1 = ϕ2, θ2 = ϕ3, σ2

δ = (ψ3 − 2ϕ1ϕ3 −ϕ2
2)/(4ϕ

2
3)

and σ2
ε = ψ1 − ϕ2

1 − ϕ2
2σ

2
δ − 2ϕ2

3σ
4
δ .

The above examples suggest that in many situations, parameters in nonlinear
models can be identified and, therefore, consistently estimated using the first two
conditional moments of y given z. Indeed, Huwang and Huang (2000) have shown
that a polynomial model of any given order can be identified and estimated in this
way. It is worthwhile noting that in general the mapping (θi, σ

2
δ , σ

2
ε) �→ (ϕi, ψj)

needs not be bijective. In the case where more than one set of values of (θi, σ
2
δ , σ

2
ε)

correspond to the same value of (ϕi, ψj), restrictions on (θi, σ
2
δ , σ

2
ε) are needed to

ensure their identifiability. In the next section, we develop a minimum distance
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estimator for the general nonlinear model (1) and (2) based on the first two
conditional moments.

3. Minimum Distance Estimator

Under the assumptions for model (1) and (2), it is easy to see that the first
two conditional moments are given by

E(y|z) = E[g(z + δ; θ)|z] + E(ε|z) =
∫
g(z + t; θ)fδ(t)dt, (7)

E(y2|z) = E[g2(z + δ; θ)|z] + E(ε2|z) =
∫
g2(z + t; θ)fδ(t)dt + σ2

ε , (8)

where fδ(t) = (2πσ2
δ )

1/2 exp(−t2/(2σ2
δ )).

Let γ = (θ′, σδ, σε)′ denote the vector of model parameters and Γ = Θ×Σδ×
Σε ⊂ IRp+2 the parameter space. The true parameter value of model (1) and (2)
is denoted by γ0 ∈ Γ. For every γ ∈ Γ, define

m1(z; γ) =
∫
g(z + t; θ)fδ(t)dt, (9)

m2(z; γ) =
∫
g2(z + t; θ)fδ(t)dt + σ2

ε . (10)

Note that m1(z; γ0) = E(y|z) and m2(z; γ0) = E(y2|z).
Now, suppose (yi, zi)′, i = 1, . . . , n is an i.i.d. random sample. Then the

minimum distance estimator (MDE) γ̂n for γ can be found by minimizing the
objective function

Qn(γ) =
n∑

i=1

[(yi −m1(zi; γ))2 + (y2
i −m2(zi; γ))2], (11)

given that γ is identified by (7) and (8). Regularity conditions under which γ̂n

is identified, consistent and asymptotically normally distributed are well-known,
and often varied, in nonlinear regression literature, see e.g., Amemiya (1985),
Gallant (1987) and Seber and Wild (1989).

In the rest of the paper we give regularity conditions in terms of the regression
function g(x; θ) and measurement error distribution fδ(t). We adopt the set-up
of Amemiya (1985). Let µ denote the Lebesgue measure on IR and ‖ · ‖ the
Euclidean norm in IRp. We assume the following.

A1 Parameter spaces Θ ⊂ IRp, Σδ ⊂ IR and Σε ⊂ IR are compact.
A2 g(x; θ) is continuous in θ for µ-almost all x.

A3 E

∫
sup
Θ
g4(z + t; θ) sup

Σδ

fδ(t)dt <∞.

A4 E[m1(z; γ)−m1(z; γ0)]2 +E[m2(z; γ)−m2(z; γ0)]2 = 0 if and only if γ = γ0.
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These conditions are common in the literature. In particular, the compact-
ness of space Θ for the regression parameter θ is often used. From a practical
point of view, assumption A1 is not as restrictive as it seems to be, because for
any given problem one usually has some information about the possible range
of the parameters. In some situations, the error variance σ2 can be estimated
using the corresponding residuals. In such cases the compactness of Σ is not
needed. In our approach, however, the variances σ2

ε and σ2
δ are simultaneously

estimated together with θ. The advantage is that the joint distribution of esti-
mators θ̂, σ̂δ and σ̂ε can be obtained. Assumption A2 is usually used to ensure
that the objective function Qn(γ) is continuous in γ. Assumption A3 is a mo-
ment condition which implies the uniform convergence of Qn(γ). In view of (7)
and (8), this assumption is equivalent to y and ε having finite fourth moment.
Finally, assumption A4 is the usual condition for identifiability of parameters,
which means that the true parameter γ0 is the unique minimizer of the objective
function Qn(γ) for large n.

Theorem 1. Under A1−A4, the MDE γ̂n
P→ γ0, as n→ ∞.

Proof. See the appendix.

For asymptotic normality, we assume further regularity as follows.
A5 The true parameter θ0 is contained in an open subset Θ0 of Θ. For µ-

almost all x, the function g(x; θ) has continuous first and second order par-
tial derivatives with respect to θ ∈ Θ0.

A6 The first two derivatives of g(x; θ) satisfy

E

∫
sup
Θ0

∥∥∥∥∂g(z + t; θ)
∂θ

∥∥∥∥
2

sup
Σδ

fδ(t)dt <∞,

E

∫
sup
Θ0

∥∥∥∥∥∂
2g(z + t; θ)
∂θ∂θ′

g(z + t; θ)

∥∥∥∥∥ sup
Σδ

fδ(t)dt <∞,

E

∫
sup
Θ0

∥∥∥∥∥∂
2g(z + t; θ)
∂θ∂θ′

∥∥∥∥∥ sup
Σδ

fδ(t)dt <∞.

A7 The matrix A = 2E[(∂m1(z; γ0)/∂γ)(∂m1(z; γ0)/∂γ′) + (∂m2(z; γ0)/∂γ)
(∂m2(z; γ0)/∂γ′)] is nonsingular, where ∂m1(z; γ)/∂γ is the column vector
with elements

∂m1(z; γ)
∂θ

=
∫
∂g(z + t; θ)

∂θ
fδ(t)dt,

∂m1(z; γ)
∂σ2

δ

=
∫
g(z + t; θ)

t2 − σ2
δ

2σ4
δ

fδ(t)dt,

∂m1(z; γ)
∂σ2

ε

= 0,
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and ∂m2(z; γ)/∂γ is the column vector with elements

∂m2(z; γ)
∂θ

= 2
∫
∂g(z + t; θ)

∂θ
g(z + t; θ)fδ(t)dt,

∂m2(z; γ)
∂σ2

δ

=
∫
g2(z + t; θ)

t2 − σ2
δ

2σ4
δ

fδ(t)dt,

∂m2(z; γ)
∂σ2

ε

= 1.

Again, A5−A7 are commonly found as sufficient for the asymptotic normality
of the estimators: A5 ensures that the first derivative ofQn(γ) admits a first-order
Taylor expansion; A6 implies the uniform convergence of the second derivative of
Qn(γ); A7 implies that the second derivative of Qn(γ) has a non-singular limiting
matrix.
Theorem 2. Under A1−A7, as n→ ∞,

√
n(γ̂n −γ0)

d→ N(0, A−1BA−1), where
B = limn→∞E[(1/n)(∂Qn(γ0)/∂γ)(∂Qn(γ0)/∂γ′)] and (∂Qn(γ)/∂γ) = −2

∑n
i=1

[(yi −m1(zi; γ))(∂m1(zi; γ)/∂γ) + (y2
i −m2(zi; γ))(∂m2(zi; γ)/∂γ)].

Proof. See the appendix.

4. Conclusion and Discussion

We propose a minimum distance moment estimator for general nonlinear
regression models with Berkson-type measurement errors in predictor variables
that is based on the first two conditional moments of the response variable given
the observed predictor variable. It is consistent and asymptotically normally
distributed under fairly simple and general regularity conditions. The results
obtained generalize those of Huwang and Huang (2000) who deal with polynomial
models.

The proposed estimator is obtained by minimizing the objective function
Qn(γ) in (11), which can be done using the usual procedures of numerical com-
putation. For some regression functions g(x; θ), explicit forms of the integrals
in (9) and (10) may be hard or impossible to derive. In this case, numerical
integration techniques can be used. Alternatively, the method of simulated mo-
ments (MSM) of McFadden (1989) or Pakes and Pollard (1989) can be applied.
In some special cases the numerical minimization can be simplified. For example,
for the polynomial models of Huwang and Huang (2000), a consistent estimator
is obtained by using the least squares regression of y on z and then solving a
one-dimensional minimization problem for σ2

δ .

Appendix

We restate some theorems of Amemiya (1985) which are used in the proofs.
For this purpose, let w = (w1, . . . , wn) be an i.i.d. random sample and γ a
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vector of unknown parameters. Further, let H(w1, γ) and Sn(w, γ) be measurable
functions for any γ ∈ Γ, and be continuous in γ for any given w. In addition,
the parameter space Γ ⊂ IRk is compact. Using these notations, Theorems 4.1.1,
4.2.1 and 4.1.5 of Amemiya (1985) are as follows.
Lemma 3. Suppose H(w1, γ) satisfies EH(w1, γ) = 0 and E sup

γ∈Γ
|H(w1, γ)| <

∞. Then n−1 ∑n
i=1H(wi, γ) converges in probability to zero uniformly in γ ∈ Γ.

Lemma 4. Suppose, as n → ∞, Sn(w, γ) converges in probability to a non-
stochastic function S(γ) uniformly in γ ∈ Γ, and S(γ) attains a unique minimum
at γ0. Then the estimator γ̂n satisfying Sn(w, γ̂n) = max

γ∈Γ
Sn(w, γ) converges in

probability to γ0.

Lemma 5. Suppose, as n → ∞, Sn(w, γ) converges in probability to a non-
stochastic function S(γ) uniformly in γ in an open neighborhood of γ0, and S(γ)
is continuous at γ0. Then plim γ̂n = γ0 implies plimSn(w, γ̂n) = S(γ0).

Proof of Theorem 1. We show that A1-A4 are sufficient for all conditions
of Lemma 4. First, by A3 and Hölder’s inequality we have E

∫
supΘ |g(z +

t; θ)|j supΣδ
fδ(t)dt < ∞ for j = 1, 2, 3. It follows from A2 and the Domi-

nated Convergence Theorem, that Qn(γ) is continuous in γ. Further, let Q(γ) =
E[y1 −m1(z1; γ)]2 +E[y2

1 −m2(z1; γ)]2 and H(yi, zi, γ) = [yi −m1(zi; γ)]2 +[y2
i −

m2(zi; γ)]2−Q(γ). Then EH(yi, zi, γ) = 0. Again, by A3 and Hölder’s inequality
we have

E sup
Γ

[yi −m1(zi; γ)]2 ≤ 2Ey2
i + 2E sup

Γ
m2

1(zi; γ)

≤ 2Ey2
i + 2E

∫
sup
Θ
g2(z + t; θ) sup

Σδ

fδ(t)dt <∞

and E supΓ[y2
i −m2(zi; γ)]2 ≤ 2Ey4

i + 2E
∫

supΘ g
4(z + t; θ) supΣδ

fδ(t)dt < ∞.
It follows that E supγ∈Γ |H(yi, zi, γ)| <∞ and, therefore by Lemma 3, that

sup
Γ

∣∣∣∣ 1nQn(γ) −Q(γ)
∣∣∣∣ = sup

Γ
| 1
n

n∑
i=1

H(yi, zi, γ)| = op(1).

Further, since E[y1−m1(z1; γ)]2 = E[y1−m1(z1; γ0)]2+E[m1(z1; γ)−m1(z1; γ0)]2

and E[y2
1−m2(z1; γ)]2 = E[y2

1−m2(z1; γ0)]2+E[m2(z1; γ)−m2(z1; γ0)]2, it follows
that Q(γ) ≥ Q(γ0) and, by A4, equality holds if and only if γ = γ0. Thus all
conditions of Lemma 4 hold and γ̂n

P→ γ0 follows.

Proof of Theorem 2. By A5, the first derivative ∂Qn(γ)/∂γ exists and has a
first order Taylor expansion in a neighborhood of γ0. Since ∂Qn(γ̂n)/∂γ = 0 and
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γ̂n
P→ γ0, for sufficiently large n, we have

0 =
∂Qn(γ0)
∂γ

+
∂2Qn(γ̃)
∂γ∂γ′

(γ̂n − γ0), (12)

where ‖γ̃ − γ0‖ ≤ ‖γ̂n − γ0‖. The first derivative in (12) is given by

∂Qn(γ)
∂γ

= −2
n∑

i=1

[
(yi −m1(zi; γ))

∂m1(zi; γ)
∂γ

+ (y2
i −m2(zi; γ))

∂m2(zi; γ)
∂γ

]
,

where ∂m1(zi; γ)/∂γ is the column vector with elements

∂m1(zi; γ)
∂θ

=
∫
∂g(z + t; θ)

∂θ
fδ(t)dt,

∂m1(zi; γ)
∂σ2

δ

=
∫
g(z + t; θ)

t2 − σ2
δ

2σ4
δ

fδ(t)dt,

∂m1(zi; γ)
∂σ2

ε

= 0,

and ∂m2(zi; γ)/∂γ is the column vector with elements

∂m2(zi; γ)
∂θ

= 2
∫
∂g(z + t; θ)

∂θ
g(z + t; θ)fδ(t)dt,

∂m2(zi; γ)
∂σ2

δ

=
∫
g2(z + t; θ)

t2 − σ2
δ

2σ4
δ

fδ(t)dt,

∂m2(zi; γ)
∂σ2

ε

= 1.

The second derivative in (12) is given by

∂2Qn(γ)
∂γ∂γ′

= 2
n∑

i=1

[
∂m1(zi; γ)

∂γ

∂m1(zi; γ)
∂γ′

+
∂m2(zi; γ)

∂γ

∂m2(zi; γ)
∂γ′

]

− 2
n∑

i=1

[
(yi −m1(zi; γ))

∂2m1(zi; γ)
∂γ∂γ′

+ (y2
i −m2(zi; γ))

∂2m2(zi; γ)
∂γ∂γ′

]
,

where the non-zero elements in ∂2m1(zi; γ)/∂γ∂γ′ are

∂2m1(zi; γ)
∂θ∂θ′

=
∫
∂2g(z + t; θ)

∂θ∂θ′
fδ(t)dt,

∂2m1(zi; γ)
∂θ∂σ2

δ

=
∫
∂g(z + t; θ)

∂θ

t2 − σ2
δ

2σ4
δ

fδ(t)dt,
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∂2m1(zi; γ)
(∂σ2

δ )2
=

∫
g(z + t; θ)

t4 − 6σ2
δ t

2 + 3σ4
δ

4σ8
δ

fδ(t)dt,

and the non-zero elements in ∂2m2(zi; γ)/∂γ∂γ′ are

∂2m2(zi; γ)
∂θ∂θ′

= 2
∫
∂2g(z + t; θ)

∂θ∂θ′
g(z + t; θ)fδ(t)dt + 2

∫
∂g(z + t; θ)

∂θ

∂g(z + t; θ)
∂θ′

fδ(t)dt,

∂2m2(zi; γ)
∂θ∂σ2

δ

= 2
∫
∂g(z + t; θ)

∂θ
g(z + t; θ)

t2 − σ2
δ

2σ4
δ

fδ(t)dt,

∂2m2(zi; γ)
(∂σ2

δ )2
=

∫
g2(z + t; θ)

t4 − 6σ2
δ t

2 + 3σ4
δ

4σ8
δ

fδ(t)dt.

Analogous to the proof of Theorem 1, we can verify by A5 and A6 that
(1/n)∂2Qn(γ)/∂γ∂γ′ converges in probability to ∂2Q(γ)/∂γ∂γ′ uniformly in a
neighborhood of γ0. It follows from Lemma 5 that

1
n

∂2Qn(γ̃)
∂γ∂γ′

P→ ∂2Q(γ0)
∂γ∂γ′

(13)

= 2E
[
∂m1(z; γ0)

∂γ

∂m1(z; γ0)
∂γ′

+
∂m2(z; γ0)

∂γ

∂m2(z; γ0)
∂γ′

]

− 2E

[
(y −m1(z; γ0))

∂2m1(z; γ0)
∂γ∂γ′

+ (y2 −m2(z; γ0))
∂2m2(z; γ0)
∂γ∂γ′

]
= A,

which is non-singular by A7. Furthermore, by the Central Limit Theorem,

1√
n

∂Qn(γ0)
∂γ

L→ N(0, B). (14)

The theorem follows then from (12)−(14) and Slutsky’s Theorem (Amemiya
(1985)).
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